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Abstract. In this paper, we aim to consider the k = (k1, k2, · · · , kd)-th order derivatives β(k)(T, x) of self-
intersection local time β(T, x) for the linear fractional stable process Xα,H in Rd with indices α ∈ (0, 2) and
H = (H1, · · · ,Hd) ∈ (0, 1)d. We first give sufficient condition for the existence and joint Hölder continuity of
the derivatives β(k)(T, x) using the local nondeterminism of linear fractional stable processes. As a related
problem, we also study the power variation of β(k)(T, x).

1. Introduction

Let {Bs, s ≥ 0} be one dimensional Brownian motion with B0 = 0 and L(t, x) be its local time at x up to
time t. In connection with stochastic area integrals with respect to local time and the Brownian excursion
filtration, Rogers and Walsh [21, 22] studied the space integral of local time. Let

A(t,Bt) =
∫ t

0
1[0,∞)(Bt − Bs)ds,

they showed that A(t,Bt) was not a semimartingale, and in fact showed that

A(t,Bt) −
∫ t

0
L(s,Bs)dBs,

has finite non-zero 4
3 -variation, where L(s, x) =

∫ s

0 δ(Br − x)dr and δ(·) is the Dirac delta function.
If one lets h(x) = 1[0,∞)(x) and then

d
dx

h(x) = δ(x),
d2

dx2 h(x) = δ′(x),

2020 Mathematics Subject Classification. Primary 60G52; Secondary 60J55.
Keywords. linear fractional stable process, self-intersection local time, joint Hölder continuity, power variation.
Received: 13 January 2023; Revised: 22 May 2023; Accepted: 28 May 2023
Communicated by Miljana Jovanović
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in the sense of Schwartz’s distribution. Rosen [23] developed a new approach to the study of A(t,Bt), and
Markowsky [17] proved a Tanaka-style formula as follows,

1
2
α
′

t(y) +
1
2

sgn(y)t =
∫ t

0
L(s,Bs − y)dBs −

1
2

∫ t

0
sgn(Bt − Bu − y)du,

where

sgn(y) =


− 1, if y < 0,
0, if y = 0,
1, if y > 0,

and α
′

t(y) denotes the derivative of the intersection local time of B. Rosen [23] demonstrated the existence
of α

′

t(y) and formally defined as

α
′

t(y) := −
∫ t

0

∫ s

0
δ
′

(Bs − Br − y)drds.

Note that the Dirac delta function δ(·) can be approximated by the heat kernel function

fε(x) =
1

(2πε)
1
2

e−
|x|2
2ε =

1
2π

∫
R

eixζe−
ε|ζ|2

2 dζ, x ∈ R, i =
√

−1. (1)

Then the derivative of self-intersection local time α(t, y) can be approximated by

α
′

ε(t, y) := −
∫ t

0

∫ s

0
f
′

ε(Bs − Br − y)drds, ε→ 0.

The study of self-intersection local time for Brownian motion has attracted the attention of many
scholars. Hu [9] discussed the exact smoothness of the self-intersection local time of Brownian motion in
the sense of Meyer-Watanabe. If the Brownian motion is replaced by a more general Gaussian process
(fractional Brownian motion), Hu [10] considered the self-intersection local time of fractional Brownian
motions via chaos expansion and showed the condition of the existence. In [11], Hu and Nualart proved
existence condition of the renormalized self-intersection local time for fractional Brownian motion, and gave
two central limit theorems for nonexistence conditions. Also, the regularity in the sense of the Malliavin
calculus of the renormalized self-intersection local time of d-dimensional fractional Brownian motion has
been studied in Hu and Nualart [12]. Jaramillo and Nualart [13] obtained functional limit theorem for the
self-intersection local time of the fractional Brownian motion. Yu et al. [31] studied the self-intersection
local time for a class of non-Gaussian process (Rosenblatt process).

It is worth noting that the derivatives of self-intersection local time can be used in the application of Itô
formula, they have received much attention recently. For fractional Brownian motion, the corresponding
derivative of self-intersection local time was considered in Jung and Markowsky [15]. Yan and Yu [30]
considered derivative for self-intersection local time of multidimensional fractional Brownian motion and
showed the Bouleau-Yor type identity. Moreover, Jung and Markowsky [16] introduced a new version
of this derivative and proved Hölder continuous conditions both in time and space variables. For the
condition that the derivative does not exist and its critical condition, there are naturally two central limit
theorems, which have been proved in Jaramillo and Nualart [14], and Yu [32], respectively. However, in
concrete situations when the Gaussianity is not plausible for the model, one can use, for example, the stable
process which have been applied in some scientific areas such as network traffic modeling and finance.
This processes form an important subclass of infinitely divisible processes and have attracted a good deal
of attention in recent years since their heavy-tailed distributions, self-similarity properties, long memory
properties and so on.

Recently, several types of anisotropic stable random fields have arisen in theory and in applications, such
as linear fractional stable processes, harmonizable fractional stable processes and so on. In [6], Delbeke and
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Abry used a stochastic integral representation of the linear fractional stable motion to describe the wavelet
coefficients as α-stable integrals. Stoev and Taqqu [26] presented efficient methods for simulation, using the
fast Fourier transform algorithm of the linear fractional stable processes and generated paths of the linear
fractional stable process by using Riemann-sum approximations and provided bounds and estimates of
the approximation error. Ayahce, Roueff and Xiao [2] obtained an anisotropic uniform and quasi-optimal
modules of continuity as well as upper bound for their behavior at infinity and around the coordinate axes
of the sample paths for linear fractional stable sheets. Ayachea and Xiao [3] proved that for every α ∈ (0, 2),
the N-parameter harmonizable fractional α-stable field is locally nondeterministic. They also established
the joint continuity of the local time for harmonizable fractional α-stable field.

Motivated by the aforementioned works in the field of fractional stable processes, we are absorbed in
the case of the linear fractional stable process, (LFSP, in short, 0 < α < 2, H ∈ (0, 1)d) which does not satisfy
the Gaussian property unless α = 2. Thanks to Xiao [28], we give the definition of d-dimensional LFSP.

Definition 1.1. For any given α ∈ (0, 2) and H = (H1, · · · ,Hd) with Hl ∈ (0, 1) for l = 1, · · · , d, a d-dimensional
LFSP Xα,H = (Xα,H1

t , · · · ,Xα,Hd
t ), t ≥ 0 is defined by the following integral representation:

Xα,Hl
t =

∫
R

1Hl (t, s)Mα(ds),

where Mα is a symmetric α-stable random measure on R with Lebesgue control measure and

1Hl (t, s) = C{((t − s)+)Hl−1/α
− ((−s)+)Hl−1/α

}. (2)

In the above, t+ = max{0, t} for t ≥ 0 and C > 0 is a normalizing constant.

Note that, when α = 2, Xα,H is known as multidimensional fractional Brownian motion. When H1 = · · · =
Hd = 1/α, Xα,H becomes the symmetric stable process. There has been several interesting studies about
sample path properties, local time of the fractional stable fields and even multifractional stable process.
For some details on the distributional properties and limiting theorems of this class of processes, we can
see Cambanis and Maejima [4]. In [1], Ayache, Roueff and Xiao extended the properties of the local time
in the Gaussian case to the symmetric α-stable case. They proved the existence of the local time for linear
fractional stable sheets and showed the local time is jointly continuous as well. Shen, Yu and Li [25] obtained
the existence of the local times of linear multifractional stable sheets and established its joint continuity and
Hölder regularity.

Although there exist many investigations in the literature devoted to studying the derivatives of self-
intersection local time for Brownian motion, fractional Brownian motion, as we know, there is little research
on the derivative of self-intersection local time for non-Gaussian processes (Rosen [23] considered the
α-stable processes with α , 2), especially the LFSP. Moreover, due to their heavy-tailed distributions, self-
similarity properties, long memory properties, they are potentially useful and important for modelling
complex systems in diverse areas of applications. This motivates us to carry out the present paper, aiming
to study the higher-order derivative of self-intersection local time for the LFSP.

Now, we define the derivative of self-intersection local time for LFSP, which is similar to that in Gaussian
processes.

Definition 1.2. Let Xα,H = (Xα,H1
t , · · · ,Xα,Hd

t ), t ≥ 0 be a LFSP in Rd with parameters α ∈ (0, 2) and H =

(H1, · · · ,Hd) ∈ (0, 1)d. The self-intersection local time of Xα,H, denoted by β(T, x), is formally defined by

β(T, x) :=
∫ T

0

∫ s

0
δ(Xα,Hs − Xα,Hr − x)drds,

for all T ≥ 0 and x ∈ Rd, where δ(·) is the Dirac delta function. Intuitively, its higher-order derivative can be defined
as

β(k)(T, x) :=
∫ T

0

∫ s

0
δ(k)(Xα,Hs − Xα,Hr − x)drds,
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where the order k = (k1, k2, · · · , kd) and

δ(k)(x) =
∂(k)

∂xk1
1 . . . ∂x

kd
d

δ(x),

where the derivative of the δ function is in the sense of Schwartz’s distribution.

Since the Dirac delta function can be approximated by the heat kernel function in (1), the similar approxi-
mation can be extended in Rd (see, for example, Guo, Hu and Xiao [7], Hong and Xu [8]) as the following
expression

fε(x) =
1

(2πε)
d
2

e−
|x|2
2ε =

1
(2π)d

∫
Rd

ei⟨x,ζ⟩e−
ε|ζ|2

2 dζ, x ∈ Rd.

Thus we can consider approximating β(k)(T, x) by

β(k)
ε (T, x) :=

∫ T

0

∫ s

0
f (k)
ε (Xα,Hs − Xα,Hr − x)drds, as ε→ 0, (3)

where

f (k)
ε (x) =

∂(k)

∂xk1
1 . . . ∂x

kd
d

fε(x) ≡
i|k|

(2π)d

∫
Rd

(
d∏

l=1

ζkl
l )eixζe−

ε|ζ|2
2 dζ.

If β(k)
ε (T, x) converges to a random variable in Lm spaces with m ∈ [1,∞) as ε→ 0, we denote the limit by

β(k)(T, x) and call it the k-th-order derivative of self-intersection local time for LFSP.
Moreover, the study of p-variation of the local times for non-Gaussian processes has always been a hot

topic in the field of stochastic analysis. For example, Marcus and Rosen [18] studied p-variation of the local
times of symmetric stable processes in R both in almost surely case and Lp case. For the derivative case,
Yan, Yu and Chen [29] proved the p-variation for the derivative of intersection local time of independent
symmetric α-stable processes in R was zero under certain conditions. As a related problem, the second
research object of this paper is the p-variation of β(k)(T, x) for LFSP inRd. For convenience, we will consider
location x = 0 (because the modulus of e−i⟨ξ,x⟩ equal to one), i.e. the p-variation of β(k)(T, 0).

The rest of this paper is organized as follows. Section 2 contains some necessary preliminaries on
LFSP and some basic lemmas. Section 3 devotes to discussing the existence and joint Hölder continuity
of β(k)(T, x). In Section 4, we study the p-variation of β(k)(T, 0). Throughout this paper, if not mentioned
otherwise, the letter C, with or without a subscript, denotes a generic positive finite constant and may
change from line to line.

2. Preliminaries

In this section, we briefly recall the property of LFSP, which is important to the proofs in Section 3 and
Section 4 and introduce the local nondeterminism of LFSP.

It is well known that for α ∈ (0, 2), if X̃αt = (X̃α,1t , · · · , X̃
α,d
t ) is a d-dimensional stochastic process having

the following integral representation:

X̃α,lt =

∫
R

1l(t, s)Mα(ds),

for l = 1, · · · , d and all t ≥ 0, where Mα is a symmetric α-stable random measure on a measurable space
(Λ,F ) with control measure m and 1l(t, ·) : Λ→ R (t ∈ R) is a family of measurable functions satisfying∫

Λ

|1l(t, x)|αm(dx) < ∞, ∀t ∈ R.
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Then for all a1, · · · , am ∈ R, the characteristic function of X̃α,lt is given by

E exp(i
m∑

j=1

a jX̃α,lt ) = exp(−
∥∥∥∥ m∑

j=1

a jX̃α,lt

∥∥∥∥α
α
), (4)

where∥∥∥∥ m∑
j=1

a jX̃α,lt

∥∥∥∥α
α

:=
∫
R

∣∣∣∣ m∑
j=1

al1l(t, s)
∣∣∣∣αds.

More details about stable processes can be found in [20], [24] and references therein. In particularly
when X̃α,lt = Xα,Hl

t , the characteristic function of Xα,Hl
t , l = 1, 2, · · · , d is given by

E exp(i
m∑

j=1

a jX
α,Hl
t ) = exp(−

∥∥∥∥ m∑
j=1

a jX
α,Hl
t

∥∥∥∥α
α
) (5)

for all a1, · · · , am ∈ R and t ≥ 0, where∥∥∥∥ m∑
j=1

a jX
α,Hl
t

∥∥∥∥α
α

:=
∫
R

∣∣∣∣ m∑
j=1

a j1Hl (t, s)
∣∣∣∣αds,

here 1Hl is the kernel function given in (2).
It is easy to find that for α = 2, Xα,Ht becomes a fractional Brownian motion. Since 1Hl is chosen such that

∥X2,H
t ∥2 = 1, we obtain that when α = 2,

E exp

i
m∑

j=1

a jX
2,Hl
t

 = exp

−1
2

Var(
m∑

j=1

a jX
2,Hl
t )

 .
Besides, when α , 2, Xα,H is non-Gaussian and non-Markovian process, yet it is self-similar and has

stationary increments in the following sense. For any a > 0 and b > 0,

Xα,Hat
Law
= (aH1 Xα,H1

t , · · · , aHd Xα,Hd
t ),

and
Xα,Hl

t+b − Xα,Hl
b

Law
= Xα,Hl

t − Xα,Hl
0 .

Next, we introduce one-sided local nondeterminism for the LFSP, which is the key feature leading to the
proofs of our main results in Section 3. For more applications of the local nondeterminisim, we can refer to
[5], [19], [27] and references therein.

Definition 2.1. [28] Let Xα,H := (Xα,H1
t , · · · ,Xα,Hd

t ), t ≥ 0 be d-dimensional LFSP with kernel function 1Hl (·) given
in (2). Then Xα,H(·) is said to have the local nondeterminism on any Borel set I ∈ R+ if for every integer t, s ∈ I with
|t − s| sufficiently small,

∥Xα,Hl
t ∥α > 0, ∥Xα,Hl

t − Xα,Hl
s ∥α > 0,

and there exists a constant C > 0 such that for every n ≥ 2 and t1, · · · , tm ∈ I with t j ≤ tm for all j = {1, · · · ,m − 1},
we have

∥Xα,Hl
tm
|Xα,Hl

t1
, · · · ,Xα,Hl

tm−1
∥α ≥ C min

1≤ j≤m−1
(tm − t j)Hl ,

where the distance from Xα,Hl
tm

to span {Xα,Hl
t1
, · · · ,Xα,Hl

tm−1
} is defined by

∥Xα,Hl
tm
|Xα,Hl

t1
, · · · ,Xα,Hl

tm−1
∥α :=


inf

a1,··· ,am−1∈R
∥Xα,Hl

tm
−

m−1∑
j=1

a jX
α,Hl
t j
∥α, α ∈ (0, 2),

Var(Xα,Hl
tm
|Xα,Hl

t1
, · · · ,Xα,Hl

tm−1
), α = 2.
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3. Existence and joint Hölder continuity

In this section, we discuss the existence and joint Hölder continuity of higher-order derivatives of
self-intersection local time for the LFSP.

Theorem 3.1. For β(k)
ε (T, x) is defined in (3) with H = (H1, · · · ,Hd) ∈ (0, 1)d and k = (k1, · · · , kd). If Hl(kl +

1
2 ) < 1

for all l = 1, 2, · · · , d, then we can get β(k)(T, x) exists in Lm spaces with m ∈ [1,∞). Moreover, the process β(k)(T, x)
has a modification which is a.s. joint Hölder continuous in (T, x).

In order to prove the Theorem 3.1, we need the following lemma which can make the proof more clearly.
For any x ∈ Rd and bounded Borel set B ⊆ R2, let

β(k)
ε (B, x) =

∫
B

f (k)
ε (Xα,Hs − Xα,Hr − x)drds.

We use |B| to denote the Lebesgue measure of B ⊆ R2.

Lemma 3.2. Under the conditions of Theorem 3.1, for some 0 < ρ1 < minl=1,2,··· ,d{1 − Hl(kl +
1
2 )}, 0 < ρ2 <

minl=1,2,··· ,d{1 ∧ ( 1
Hl
− kl −

1
2 )}, we can obtain∣∣∣∣E[(β(k)

ε (B, x))m]
∣∣∣∣ ≤ Cm,ρ,H |B|mρ1 , (6)

and ∣∣∣∣E[(β(k)
ε (B, x) − β(k)

ε′ (B, x′))m]
∣∣∣∣ ≤ Cm,ρ,H |(ε, x) − (ε′, x′)|mρ2 (7)

hold for all m ∈ [1,∞), 0 < ε, ε′ ≤ 1, x, x′ ∈ Rd and all Borel sets B ⊆ D1
1 =: [0, 1

2 ] × [ 1
2 , 1].

Proof. We first claim that β(k)
ε (B, x) ∈ Lm, for even integer m ≥ 1,∣∣∣∣E[(β(k)

ε (B, x))m]
∣∣∣∣ =(

1
2π

)md
∫

Bm

∫
Rmd
E exp(

m∑
j=1

i⟨ζ j,Xα,Hs j
− Xα,Hr j

− x⟩)

× exp(−
ε
2

m∑
j=1

|ζ j|
2)

m∏
j=1

(
d∏

l=1

|ζ j,l|
kl )dζdsdr,

where ⟨ζ j,Xα,Hs j
− Xα,Hr j

⟩ :=
∑d

l=1 ζ j,l(X
α,Hl
s j
− Xα,Hl

r j
) and |ζ j|

2 =
∑d

l=1 |ζ j,l|
2.

Then we can get∣∣∣∣E[(β(k)
ε (B, x))m]

∣∣∣∣ ≤ (
1

2π
)md
∫

Bm

∫
Rmd
E exp(

m∑
j=1

i⟨ζ j,Xα,H1
2
− Xα,Hr j

⟩)

× E exp(
m∑

j=1

i⟨ζ j,Xα,Hs j
− Xα,H1

2
⟩)

m∏
j=1

(
d∏

l=1

|ζ j,l|
kl )dζdsdr.

Fix an ordering of the set {r1, r2, · · · , rm} and let t1 ≤ t2 ≤ · · · ≤ tm be a relabeling of the set {r1, r2, · · · , rm}.
Denote the set U = {u : ru ≤ t j,u = 1, · · · ,m} satisfying ξ j =

∑
u∈U ζu so that the ξ j spans Rm. Using the

method of variable substitution, it follows that

m∑
j=1

⟨ζ j,Xα,H1
2
− Xα,Hr j

⟩ =

m∑
j=1

⟨ξ j,Xα,Ht j+1
− Xα,Ht j

⟩
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where ⟨ξ j,Xα,Ht j+1
−Xα,Ht j

⟩ :=
∑d

l=1 ξ j,l(X
α,Hl
t j+1
−Xα,Hl

t j
) and the t1, · · · , tm are the ri’s relabeled so that t1 ≤ · · · ≤ tm ≤

tm+1 =
1
2 .

Similarly, we can fix an ordering of the set {s1, s2, · · · , sm} and let t′1 ≤ t′2 ≤ · · · ≤ t′m be a relabeling of the
set {s1, s2, · · · , sm}. Denote the set U′ = {u : su ≤ t′j,u = 1, · · · ,m} satisfying ξ′j =

∑
u∈U′ ζu so that the ξ′j also

spans Rm. Then we can rewrite

m∑
j=1

⟨ζ j,Xα,Hs j
− Xα,H1

2
⟩ =

m∑
j=1

⟨ξ′j,X
α,H
t′j
− Xα,Ht′j−1

⟩

with ⟨ξ′j,X
α,H
t′j
− Xα,Ht′j−1

⟩ :=
∑d

l=1 ξ
′

j,l(X
α,Hl
t′j
− Xα,Hl

t′j−1
) and 1

2 = t′0 ≤ t′1 ≤ · · · ≤ t′m. Applying (5) and the local

nondeterminism in Definition (2.1), we have

∣∣∣∣E[(β(k)
ε (B, x))m]

∣∣∣∣ ≤ (
1

2π
)md
∫

Bm

∫
Rmd

exp(−
m∑

j=1

d∑
l=1

|ξ j,l|
α(t j+1 − t j)αHl )

× exp(−
m∑

j=1

d∑
l=1

|ξ′j,l|
α(t′j − t′j−1)αHl )

m∏
j=1

(
d∏

l=1

|ζ j,l|
kl )dζdtdt′, (8)

where ξ j,l ∈ R and |ξ j,l| denotes the absolute value of ξ j,l.
Then using the simple bound∫ 1

0
exp(−tαHl |ξ j,l|

α)dt ≤
c

1 + |ξ j,l|
1

Hl

, l = 1, · · · , d (9)

m-times for integrals dt and dt′, it follows that

∣∣∣∣E[(β(k)
ε (B, x))m]

∣∣∣∣ ≤C
∫
Rmd

m∏
j=1

d∏
l=1

1

1 + |ξ j,l|
1

Hl

m∏
j=1

d∏
l=1

1

1 + |ξ′j,l|
1

Hl

m∏
j=1

(
d∏

l=1

|ζ j,l|
kl )dζ

≤C
∫
Rmd

( m∏
j=1

d∏
l=1

|ζ j,l|
kl
2

1 + |ξ j,l|
1

Hl

)( m∏
j=1

d∏
l=1

|ζ j,l|
kl
2

1 + |ξ′j,l|
1

Hl

)
dζ

≤C
∥∥∥∥ m∏

j=1

d∏
l=1

|ζ j,l|
kl
2

1 + |ξ j,l|
1

Hl

∥∥∥∥
2

∥∥∥∥ m∏
j=1

d∏
l=1

∏d
l=1 |ζ j,l|

kl
2

1 + |ξ′j,l|
1

Hl

∥∥∥∥
2
.

Since ξi =
∑

u∈U ζu, we can obtain that

∥∥∥∥ m∏
j=1

d∏
l=1

|ζ j,l|
kl
2

1 + |ξ j,l|
1

Hl

∥∥∥∥2
2
≤

∫
Rmd

m∏
j=1

d∏
l=1

|ζ j,l|
kl

1 + |ξ j,l|
2

Hl

dζ ≤
∫
Rmd

m∏
j=1

d∏
l=1

1 + |ξ j,l|
kl + |ξ j,l|

2kl

1 + |ξ j,l|
2

Hl

dξ

is bounded if 2
Hl
− 2kl > 1, for all l = 1, 2, · · · , d.

Hence, we get∣∣∣∣E[(β(k)
ε (B, x))m]

∣∣∣∣ < ∞,
for all ε > 0 , x ∈ Rd and Borel sets B ⊆ [0, 1

2 ] × [ 1
2 , 1] under the condition 2

Hl
− 2kl > 1.
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Now, We first establish (6). Applying the Hölder inequality to (8), for any 1
a +

1
a′ = 1, we have∣∣∣∣E[(β(k)

ε (B, x))m]
∣∣∣∣

≤ Cm|B|
m
a

∫
Rmd

{( ∫
Bm

exp(−
m∑

j=1

d∑
l=1

|ξ j,l|
α(t j+1 − t j)αHl )

× exp(−
m∑

j=1

d∑
l=1

|ξ′j,l|
α(t′j − t′j−1)αHl )dtdt′

)a′} 1
a′ (

m∏
j=1

d∏
l=1

|ζ j,l|
kl )dζ.

Using (9) for integrals with respect to dt and dt′, we have∣∣∣∣E[(β(k)
ε (B, x))m]

∣∣∣∣
≤ Cm,α,H |B|

m
a

∫
Rmd

( m∏
j=1

d∏
l=1

1

1 + |ξ j,l|
1

Hl

·

m∏
j=1

d∏
l=1

1

1 + |ξ′j,l|
1

Hl

) 1
a′ (

m∏
j=1

d∏
l=1

|ζ j,l|
kl )dζ

≤ Cm,α,H |B|
m
a

∫
Rmd

( m∏
j=1

d∏
l=1

|ξ j,l − ξ j−1,l|
kl
2

1 + |ξ j,l|
1

a′Hl

)
·

( m∏
j=1

d∏
l=1

|ξ′j,l − ξ
′

j−1,l|
kl
2

1 + |ξ′j,l|
1

a′Hl

)
dξ

≤ Cm,α,H |B|
m
a

∥∥∥∥ m∏
j=1

d∏
l=1

|ξ j,l|
kl

1 + |ξ j,l|
1

a′Hl

∥∥∥∥
2

∥∥∥∥ m∏
j=1

d∏
l=1

|ξ′j,l|
kl

1 + |ξ′j,l|
1

a′Hl

∥∥∥∥
2

≤ Cm,α,H |B|
m
a ,

where 1 < a′ < 1
Hl(kl+

1
2 )

and Hl(kl +
1
2 ) < 1 for all l = 1, 2, · · · , d. If a′ is chosen close to 1, and the estimate (6)

can be obtained when the Hölder order ρ1 =
1
a .

Next, we obtain the estimate (7). To handle the variation in x, we have∣∣∣∣E[(β(k)
ε (B, x) − β(k)

ε (B, x′))m]
∣∣∣∣

= (
1

2π
)md
∫

Bm

∫
Rmd
| exp(−i

m∑
j=1

⟨ζ j, x⟩) − exp(−i
m∑

j=1

⟨ζ j, x′⟩)|

× exp(−
m∑

j=1

d∑
l=1

|ξ j,l|
α(t j+1 − t j)αHl ) exp(−

m∑
j=1

d∑
l=1

|ξ′j,l|
α(t′j − t′j−1)αHl )

×

m∏
j=1

(
d∏

l=1

|ζ j,l|
kl ) exp(−

ε
2

m∑
j=1

d∑
l=1

|ζ j,l|
2)dζdsdr.

Using the estimate
| exp(−i⟨x, ζ j⟩) − exp(−i⟨x′, ζ j⟩)| ≤ Cρ|ζ j|

λ
|x − x′|λ

and
|ζ j|
λ
≤ C(|ζ j,1|

λ + · · · + |ζ j,d|
λ)

for any 0 ≤ λ ≤ 1. Similar to the proof of (6) and replace kl by kl + λ, we can obtain∣∣∣∣E[(β(k)
ε (B, x) − β(k)

ε (B, x′))m]
∣∣∣∣ < Cm,ρ,H |x − x′|mρ2 (10)
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for 0 < ρ2 < {1 ∧ ( 1
Hl
− kl −

1
2 )} for all l = 1, 2, · · · , d. Similarly, to handle the variation in ε, by the estimate∣∣∣∣ f̂ (εζ j) − f̂ (ε′ζ j)

∣∣∣∣ ≤ C|ζ j|
λ
|ε − ε′|λ

for any 0 ≤ λ ≤ 1, where f̂ is the Fourier transform of f . Then we can get∣∣∣∣E[(β(k)
ε (B, x) − β(k)

ε′ (B, x))m]
∣∣∣∣ < Cm,ρ,H |ε − ε

′
|
mρ2 . (11)

Thus the estimate (7) can be obtained by (10) and (11). This completes the proof.

Proof of Theorem 3.1.

Proof. Now, let us give the proof of Theorem 3.1. Let

Dn
q = [(2q − 2)2−n, (2q − 1)2−n] × [(2q − 1)2−n, (2q)2−n],

where q ∈ {1, · · · , 2n−1
}. Using the scaling Xα,Hl

λt
Law
= λHl Xα,Hl

t for l = 1, · · · , d and f (k)
λε (x) = 1

λ|k|+d f (k)
ε (x/λ) we

have
β(k)
ε (B, x) Law

= 2−n(2−(|k|+d)|H|)β(k)
2n|H|ε

(2nB, 2n|H|x),

where |H| = H1 + · · · +Hd. It follows from (6) and (7), we can get that for all Borel sets B ⊆ Dn+1
q ,∣∣∣∣E[(β(k)

ε (B, x))m]
∣∣∣∣ ≤ Cm,ρ,H2−nm(2−(|k|+d)|H|−2ρ1)

|B|mρ1 ,

and ∣∣∣∣E[(β(k)
ε (B, x) − β(k)

ε′ (B, x′))m]
∣∣∣∣ ≤ Cm,ρ,H2−nm(2−(|k|+d)|H|−ρ2 |H|)|(ε, x) − (ε′, x′)|mρ2 . (12)

Then if we choose 0 < ρ1 < minl=1,2,··· ,d{1 −Hl(kl +
1
2 )} and 0 < ρ2 < minl=1,2,··· ,d{1 ∧ ( 1

Hl
− kl −

1
2 )}we have∣∣∣∣E[(β(k)

ε (B, x))m]
∣∣∣∣ ≤ C|B|mρ1 , (13)

and ∣∣∣∣E[(β(k)
ε (B, x) − β(k)

ε′ (B, x′))m]
∣∣∣∣ ≤ C|(ε, x) − (ε′, x′)|mρ2 .

Let BT = {0 ≤ r ≤ s ≤ T} and set β(k)
ε (T, x) =: β(k)

ε (BT, x). If T,T′ ≤ M < ∞, then |BT − BT′ | ≤ M|T − T′|. In
the following discussion, we let D = {(s, r) : 0 ≤ r ≤ s ≤ T}, D′ = {(s, r) : 0 ≤ r ≤ s ≤ T′}. Without loss of
generality, we assume that T < T′. Then, by (13), we have∣∣∣∣E[(β(k)

ε (T, x) − β(k)
ε (T′, x))m]

∣∣∣∣ ≤ C|T′ − T|mρ1 . (14)

Combining (14) with (12), for some γ < min{ρ1, ρ2}, we have∣∣∣∣E[(β(k)
ε (T, x) − β(k)

ε′ (T′, x′))m]
∣∣∣∣ ≤ C|(ε, x,T) − (ε′, x′,T′)|mγ

holds locally, which assures us of a locally uniform and continuous limit

β(k)(T, x) = lim
ε→0
β(k)
ε (T, x).

Hence, these show that β(k)(T, x) exists in Lm spaces for all m ≥ 1 and has a modification which is a.s. joint
Hölder continuous in (T, x). This completes the proof of Theorem 3.1.

Remark 3.3. Note that if d = 1, k = 1 and H = 1
α , the condition for the existence of β(k)(T, x) in Theorem 3.1 is

consistent with that in Rosen [23]. It is easy to see that if α = 2, the LFSP degenerates into fractional Brownian
motion. If d = 1, k = 1 and α = 2, the condition for the existence of β(k)(T, x) in Theorem 3.1 is consistent with that
in Jung and Markowsky [16].
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4. P-variation

In this section, as a related problem, we discuss the p-variation of derivatives of self-intersection local
time for the LFSP.

For better study of p-variation of β(k)(T, 0), we recall the definition of p-variation associated with a
stochastic process X = {Xt, t ≥ 0}. For fixed M > 0 and any partitions {0 = t0 < t1 < t2 < · · · < tn = M} of
[0,M] with maxi |ti − ti−1| → 0 (n→∞), define

Vp(X,M) := lim
n→∞

n∑
i=1

|Xti − Xti−1 |
p, p > 0,

if the limit exists in L1(Ω). The process Xt has bounded p-variation if Vp(X,M) < ∞ for any M > 0, and
Vp(X,M) is called the p-variation associated with a stochastic process Xt on [0,M].

Theorem 4.1. Assume that Hl(kl + 1) < 1 for all l = 1, 2, · · · , d, then the p-variation of β(k)(T, 0) on [0,M] equals to
zero for any M > 0 provided p > maxl=1,2,··· ,d{

2
2−Hl(kl+1) }.

Proof. By Theorem 3.1, we have β(k)
ε (T, 0)→ β(k)(T, 0) in L2, as ε→ 0. Hence

E
[
(β(k)(T1, 0) − β(k)(T2, 0))2

]
= lim
ε→0
E
[
(
∫ T1

0

∫ s

0
f (k)
ε (Xα,Hs − Xα,Hr )drds −

∫ T2

0

∫ s

0
f (k)
ε (Xα,Hs − Xα,Hr )drds)2

]
= lim
ε→0
E
[
(
∫ T1

T2

∫ s

0
f (k)
ε (Xα,Hs − Xα,Hr )drds)2

]
=: Θ(α,H)

for all 0 < T2 < T1 ≤M. For simplicity, we set M = 1.

Θ(α,H) = lim
ε→0
E
[
(
∫ T1

T2

∫ s

0
f (k)
ε (Xα,Hs − Xα,Hr )drds)2

]
=

1
(2π)2d

lim
ε→0

∫
R2d

∫ T1

T2

∫ s1

0

∫ T1

T2

∫ s2

0
Eei⟨ζ,(Xα,Hs1

−Xα,Hr1
)⟩ei⟨η,(Xα,Hs2

−Xα,Hr2
)⟩

× e−
ε
2
∑d

l=1(|ζl |
2+|ηl |

2)(
d∏

l=1

|ζl|
kl )(

d∏
l=1

|ηl|
kl )dr2ds2dr1ds1dζdη,

where ζ = (ζ1, · · · , ζd), η = (η1, · · · , ηd), |ζl| and |ηl| denote the absolute value of ζl and ηl respectively. There
are six possibilities for the ordering of r1, s1 and r2, s2. Then by the symmetry of r1, s1 and r2, s2, we divide
them into the following three cases: {0 < r1 < r2 < s2 < s1}, {0 < r2 < r1 < s2 < s1} and {0 < r2 < s2 < r1 < s1}.
This gives

Θ(α,H) =
2

(2π)2d
(Υ1 + Υ2 + Υ3),

where

Υ1 := lim
ε→0

∫
R2d

∫ T1

T2

∫ s1

T2

∫ s2

0

∫ r2

0
E
(
ei⟨ζ,(Xα,Hs1

−Xα,Hr1
)⟩ei⟨η,(Xα,Hs2

−Xα,Hr2
)⟩
)
e−
ε
2
∑d

l=1(|ζl |
2+|ηl |

2)

× (
d∏

l=1

|ζl|
kl )(

d∏
l=1

|ηl|
kl )dr1dr2ds2ds1dζdη,
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Υ2 := lim
ε→0

∫
R2d

∫ T1

T2

∫ s1

T2

∫ s2

0

∫ r1

0
E
(
ei⟨ζ,(Xα,Hs1

−Xα,Hr1
)⟩ei⟨η,(Xα,Hs2

−Xα,Hr2
)⟩
)
e−
ε
2
∑d

l=1(|ζl |
2+|ηl |

2)

× (
d∏

l=1

|ζl|
kl )(

d∏
l=1

|ηl|
kl )dr2dr1ds2ds1dζdη,

and

Υ3 := lim
ε→0

∫
R2d

∫ T1

T2

∫ s1

T2

∫ r1

0

∫ s2

0
E
(
ei⟨ζ,(Xα,Hs1

−Xα,Hr1
)⟩ei⟨η,(Xα,Hs2

−Xα,Hr2
)⟩
)
e−
ε
2
∑d

l=1(|ζl |
2+|ηl |

2)

× (
d∏

l=1

|ζl|
kl )(

d∏
l=1

|ηl|
kl )dr2ds2dr1ds1dζdη.

For the term Υ1, we have

Υ1 = lim
ε→0

∫
R2d

∫ T1

T2

∫ s1

T2

∫ s2

0

∫ r2

0
E
(
ei⟨ζ,(Xα,Hs1

−Xα,Hs2
+Xα,Hs2

−Xα,Hr2
+Xα,Hr2

−Xα,Hr1
)⟩
· e−i⟨η,(Xα,Hs2

−Xα,Hr2
)⟩
)

× e−
∑d

l=1
ε
2 (|ζl |

2+|ηl |
2)(

d∏
l=1

|ζl|
kl )(

d∏
l=1

|ηl|
kl )dr1dr2ds2ds1dζdη

= lim
ε→0

∫
R2d

∫ T1

T2

∫ s1

T2

∫ s2

0

∫ r2

0
e−
∑d

l=1(s1−s2)αHl |ζl |
α
−
∑d

l=1(s2−r2)αHl |ζl+ηl |
α
−
∑d

l=1(r2−r1)αHl |ζl |
α

× e−
∑d

l=1
ε
2 (|ζl |

2+|ηl |
2)(

d∏
l=1

|ζl|
kl )(

d∏
l=1

|ηl|
kl )dr1dr2ds2ds1dζdη

= lim
ε→0

∫
R2d

∫
E1

e−
∑d

l=1 w
αHl
4 |ζl |

α
−
∑d

l=1 w
αHl
3 |ζl+ηl |

α
−
∑d

l=1 w
αHl
2 |ζl |

α
4∏

i=1

dwi

× e−
∑d

l=1
ε
2 (|ζl |

2+|ηl |
2)(

d∏
l=1

|ζl|
kl )(

d∏
l=1

|ηl|
kl )dζdη,

where the set

E1 =
{
(w1,w2,w3,w4) : w1 + w2 + w3 ≥ T2,w1 + w2 + w3 + w4 ≤ T1,w1,w2,w3,w4 ≥ 0

}
.

By the Hölder inequality with 0 < a < 1 and the inequality∫ 1

0
e−xαHl |v|αdx ≤

Cα
1 + |v|1/Hl

,

l = 1, · · · , d, we have∫ T1−w1−w2−w3

0
e−
∑d

l=1 w
αHl
4 |ζl |

α
dw4 ≤ (T1 − T2)a(

∫ 1

0
e−
∑d

l=1 w
αHl
4 |ζl |

α/(1−a)dw4)1−a

≤ C
(T1 − T2)a

1 +
∏d

l=1 |ζl|
(1−a)/Hl

.

The integral with respect to dw1 is bounded by∫ T1−w2−w3−w4

T2−w2−w3

dw1 ≤ T1 − T2,
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for all (w1,w2,w3,w4) ∈ E1.
Thus, we can get

Υ1 ≤C(T1 − T2)1+a
∫
R2d

∫
E1

1

1 +
∏d

l=1 |ζl|
(1−a)/Hl

· e−
∑d

l=1 w
αHl
3 |ζl+ηl |

α
−
∑d

l=1 w
αHl
2 |ζl |

α
dw2dw3

× (
d∏

l=1

|ζl|
kl )(

d∏
l=1

|ηl|
kl )dζdη

≤C(T1 − T2)1+a
∫
R2d

1

1 +
∏d

l=1 |ζl|
(1−a)/Hl

·
1

1 +
∏d

l=1 |ζl + ηl|
1/Hl
·

1
1 + |ζ|1/Hl

×

d∏
l=1

|ζl|
kl

d∏
l=1

|ηl|
kl dζdη.

Let ζl = xl and ζl + ηl = yl, it can be obtained that∫
R2d

1

1 +
∏d

l=1 |ζl|
(1−a)/Hl

·
1

1 +
∏d

l=1 |ζl + ηl|
1/Hl
·

1

1 +
∏d

l=1 |ζl|
1/Hl

d∏
l=1

|ζl|
kl

d∏
l=1

|ηl|
kl dζdη

=

∫
R2d

1

1 +
∏d

l=1 |xl|
(1−a)/Hl

·
1

1 +
∏d

l=1 |yl|
1/Hl
·

1

1 +
∏d

l=1 |xl|
1/Hl

d∏
l=1

|xl|
kl

d∏
l=1

|yl − xl|
kl dxdy

≤

∫
R2d

1

1 +
∏d

l=1 |xl|
(2−a)/Hl

·
1

1 +
∏d

l=1 |yl|
1/Hl
·

d∏
l=1

|xl|
kl

d∏
l=1

(|xl|
kl + |yl|

kl )dxdy

≤

∫
R2d

∏d
l=1(|xl|

2kl + |xl|
kl |yl|

kl )

(1 +
∏d

l=1 |xl|
(2−a)/Hl )(1 +

∏d
l=1 |yl|

1/Hl )
dxdy,

which is bounded as long as 1
Hl

(2 − a) − 2kl > 1 and 1 < 1
Hl
− kl, for all l = 1, 2, · · · , d. This gives

0 < a < 2 −Hl(2kl + 1), Hl(kl + 1) < 1.

Similar to the proof of Υ1, for the term Υ2, we then have

Υ2 = lim
ε→0

∫
R2d

∫ T1

T2

∫ s1

T2

∫ s2

0

∫ r1

0
E
(
ei⟨ζ,(Xα,Hs1

−Xα,Hs2
+Xα,Hs2

−Xα,Hr1
)⟩
· ei⟨η,(Xα,Hs2

−Xα,Hr1
+Xα,Hr1

−Xα,Hr2
)⟩
)

× e−
∑d

l=1
ε
2 (|ζl |

2+|ηl |
2)(

d∏
l=1

|ζl|
kl )(

d∏
l=1

|ηl|
kl )dr2dr1ds2ds1dζdη

= lim
ε→0

∫
R2d

∫ T1

T2

∫ s1

T2

∫ s2

0

∫ r1

0
e−
∑d

l=1(s1−s2)αHl |ζl |
α
−
∑d

l=1(s2−r1)αHl |ζl+ηl |
α
−
∑d

l=1(r1−r2)αHl |ηl |
α

× e−
∑d

l=1
ε
2 (|ζl |

2+|ηl |
2)(

d∏
l=1

|ζl|
kl )(

d∏
l=1

|ηl|
kl )dr2dr1ds2ds1dζdη

≤ lim
ε→0

∫
R2d

∫
E1

e−
∑d

l=1 w
αHl
4 |ζl |

α
−
∑d

l=1 w
αHl
3 |ζl+ηl |

α
−
∑d

l=1 w
αHl
2 |ηl |

α
4∏

i=1

dwi(
d∏

l=1

|ζl|
kl )(

d∏
l=1

|ηl|
kl )dζdη

≤C(T1 − T2)1+a
∫
R2d

1

1 +
∏d

l=1 |ζl|
(1−a)/Hl

·
1

1 +
∏d

l=1 |ζl + ηl|
1/Hl
·

1

1 +
∏d

l=1 |ηl|
1/Hl

×

d∏
l=1

|ζl|
kl

d∏
l=1

|ηl|
kl dζdη.
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Using the same variable substitution of ζl = xl and ζl + ηl = yl, we can get

Υ2 ≤C(T1 − T2)1+a
∫
R2d

1

1 +
∏d

l=1 |xl|
(1−a)/Hl

·
1

1 +
∏d

l=1 |yl|
1/Hl
·

1

1 +
∏d

l=1 |yl − xl|
1/Hl

×

d∏
l=1

|xl|
kl

d∏
l=1

|yl − xl|
kl dxdy

≤C(T1 − T2)1+a
∫
R2d

∏d
l=1 |xl|

kl

1 +
∏d

l=1 |xl|
(1−a)/Hl

·
1

1 +
∏d

l=1 |yl|
1/Hl
·

∏d
l=1 |yl − xl|

kl

1 +
∏d

l=1 |yl − xl|
1/Hl

dxdy,

is bounded if 0 < a < 1 −Hl(kl + 1) for all l = 1, 2, · · · , d.
Then for the term Υ3, it is easier to obtain

Υ3 = lim
ε→0

∫
R2d

∫ T1

T2

∫ s1

T2

∫ r1

0

∫ s2

0
e−
∑d

l=1(s1−r1)αHl |ζl |
α
−
∑d

l=1(s2−r2)αHl |ηl |
α
· e−

ε
2
∑d

l=1(|ζl |
2+|ηl |

2)

× (
d∏

l=1

|ζl|
kl )(

d∏
l=1

|ηl|
kl )dr2ds2dr1ds1dζdη

= lim
ε→0

∫
R2d

∫
E2

e−
∑d

l=1 w
αHl
4 |ζl |

α
−
∑d

l=1 w
αHl
2 |ηl |

α
4∏

i=1

dwi · e−
ε
2
∑d

l=1(|ζl |
2+|ηl |

2)

× (
d∏

l=1

|ζl|
kl )(

d∏
l=1

|ηl|
kl )dζdη

≤C(T1 − T2)1+a
∫
R2d

1

1 +
∏d

l=1 |ζl|
(1−a)/Hl

·
1

1 +
∏d

l=1 |ηl|
1/Hl

d∏
l=1

|ζl|
kl

d∏
l=1

|ηl|
kl dζdη

=C(T1 − T2)1+a
∫
R2d

∏d
l=1 |xl|

kl

1 +
∏d

l=1 |xl|
(1−a)/Hl

·

∏d
l=1 |yl − xl|

kl

1 +
∏d

l=1 |yl − xl|
1/Hl

dxdy,

where
E2 =

{
(w1,w2,w3,w4) : w1 + w2 ≥ T2,w1 + w2 + w3 + w4 ≤ T1,w1,w2,w3,w4 ≥ 0

}
and applying the same variable substitution of ζl = xl and ζl + ηl = yl. Thus Υ3 is bounded if 0 < a <
1 −Hl(kl + 1) and Hl(kl + 1) < 1 for all l = 1, 2, · · · , d. So we can have

Θ(α,H) ≤ C(T1 − T2)1+a.

From what we have discussed above, the desired estimate is

E
[
(β(k)(T1, 0) − β(k)(T2, 0))2

]
≤ C(T1 − T2)1+a,

for all 0 < T2 < T1 and 0 < a < 1 −Hl(kl + 1). It follows that

E
[
(β(k)(T1, 0) − β(k)(T2, 0))p

]
≤

{
E[(β(k)(T1, 0) − β(k)(T2, 0))2]

} p
2
≤ C(T1 − T2)(1+a) p

2 ,

for all 0 < p ≤ 2.
Thus, the p-variation of β(k)(T, 0) equals to zero, provided (1 + a) p

2 > 1 for all 0 < a < 1 − Hl(kl + 1) and
l = 1, 2, · · · , d. This gives

p > max
l=1,2,··· ,d

{
2

2 −Hl(kl + 1)

}
.

This completes the proof.
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