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Yüksel Yalçınkayaa
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Abstract. In this research, we present a boundary value problem for a Dirac system with tempered frac-
tional derivatives. Firstly, the definitions and properties of tempered fractional derivatives and tempered
fractional integrals are given. Next, it is shown that the operator of the corresponding eigenvalue problem
is a self-adjoint operator, that the eigenfunctions are orthogonal concerning different eigenvalues, and in
which case the eigenvalue is simple.

Fractional derivative and fractional integral, which is a sub-branch of mathematical analysis, is the
extended form of derivative and integral to non-integer orders [1–3]. In the fractional derivative and
integral fields, which are known to have emerged towards the end of the 17th century; Many researchers
such as Leibnitz, Riemann, Liouville, Weyl, Euler, Lagrange, Fourier, Greenwald, Letnikov, Laplace, Abel,
Holmgren, Heaviside, Hadamard, Lacroix, and Caputo have done many studies. Mathematical models
created with fractional differential equations have obtained more successful results than classical integer
differential equations. Fractional calculus has been used frequently in the modeling and applications of
problems in the fields of science and engineering in recent years. Fractional calculation technique with
the discovery of its wide application area; transmission line theory, signal processing, chemical analysis,
heat transfer, dam hydraulics, materials science, temperature field problems, oil layers, diffusion problems,
fractal equation, waves in liquids and gases, Schrödinger equation, fluids, physics, and control theory,
analytical and numerical methods are used in many fields such as earthquake sciences. With the spread of
fractional calculations, many scientists have worked in this field [1–8].

Caputo defined the fractional derivative of Caputo in 1967 to eliminate the problem of calculating
the initial values and measuring experimentally arises in the applications of the Laplace transform of the
Riemann-Liouville definition. The difference between fractional analysis from the classical analysis is that
there is more than one derivative definition. Since the existence of more than one definition allows using the
most appropriate definition according to the type of problem, the best solution to the problem is obtained.
Main fractional derivative definitions; Riemann-Liouville, Grünwald-Letnikov, and Caputo are fractional
derivatives.

The tempered fractional derivative is an expanded form of the fractional derivative, and the tempered
fractional derivative is obtained by multiplying the classical fractional derivative with an exponential func-
tion. The fractional operator is dependent on a parameter l, and if this parameter is equal to zero, classical
Caputo and Riemann-Liouville fractional derivatives are obtained [9]. Tempered fractional derivatives are
used in finance, groundwater hydrology, geophysical flow, and poroelasticity calculations. Tempered frac-
tional derivatives; It is used in the modeling of price fluctuations in finance, to provide slow convergence in
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diffusion. In the study [10], discretized collocation methods on piecewise polynomial spaces are proposed
for the solution of equations by examining a class of tempered fractional differential equations with extreme
value problems. In addition, regularity results are built on weighted spaces and the order of convergence is
examined, examples are given and compared with other methods. In the study [13], they investigated the
existence of infinite eigenvalues and eigenfunctions for the tempered fractional Sturm-Liouville problem,
showed that the set of eigenfunctions for different eigenvalues was orthogonal and presented an example
where eigenvalue bounds were obtained for classical and tempered cases. In the study, [14], by defining the
tempered Ψ−Caputo fractional derivative, the Cauchy problem for fractional differential equations, and
some existence and uniqueness results are examined. A Henry-Gronwall type inequality is presented for
the tempered fractional integral and integral inequality. Many mathematicians have worked on tempered
fractional calculation [11, 12, 18–21]. The Dirac equation was found in the first quarter of the 20th century
while searching for a relative covariant wave equation of the Schrödinger form, and it has an important
place today. When the literature is reviewed, it is seen that there is a need for new studies involving the
fractional Dirac system ([23, 24]). In the study [15], they investigated the properties of a regular q-fractional
Dirac type system and gave the existence and uniqueness condition of eigenfunctions using the fixed point
theorem. In the study [16], they dealt with the exponential Dirac system in the sense of Riemann-Liouville
and Caputo and the fractional Dirac system with Mittag-Leffler core and obtained the representations of
the solutions for Dirac systems by Laplace transforms. In the study [22], they investigated one-dimensional
fractional Dirac-type systems containing the Caputo and Riemann-Liouville fractional derivatives. In this
study, we examined the Dirac type system, which includes Riemann-Liouville tempered fractional integrals
and their derivatives, and the Dirac type system, which includes Caputo tempered fractional integrals and
derivatives. We show that the operator generated by the defined fractional Dirac type system is self-adjoint,
and its eigenfunctions are orthogonal. We also proved the existence and uniqueness theorem of the defined
system.

1. Preliminaries

In this chapter, we gave definitions and properties of tempered fractional derivatives and tempered
fractional integrals which are used in the other chapter. The definitions and the properties play the most
important role in the other chapter.

Definition 1.1. ([18]) Let α ∈ (0, 1), σ ≥ 0 be a fix parameter and ν(t) ∈ Lp(a, b) (p ∈ [1,∞)). The left and right
Riemann-Liouville tempered fractional integrals of the order α are defined as(

aIα,σt

)
ν(t) = (e−σt

aIαt eσt)ν(t) =
1
Γ(α)

∫ t

a

e−σ(t−s)ν(s)
(t − s)1−α ds, t > a, (1)

and(
tIα,σb

)
ν(t) = (eσt

tIαb e−σt)ν(t) =
1
Γ(α)

∫ b

t

e−σ(s−t)ν(s)
(s − t)1−α ds, t < b, (2)

where Γ(α) is a Euler’s gamma function, the expressions aIαt ν(x) and tIαb ν(x) are Riemann-Liouville
fractional integrals (([17])).

Definition 1.2. ([18]) Let α ∈ (0, 1), σ ≥ 0 be a fix parameter and ν(t) ∈ Lp(a, b)(p ∈ [1,∞)). The left and right
Riemann-Liouville tempered fractional derivatives of order α are defined as(

aDα,σ
t

)
ν(t) = (e−σt

aDα
t eσt)ν(t) =

e−σt

Γ(1 − α)
d
dt

∫ t

a

eσsν(s)
(t − s)α

ds, t > a, (3)

and(
tDα,σ

b

)
ν(t) = (eσt

tDα
b e−σt)ν(t) =

−eσt

Γ(1 − α)
d
dt

∫ b

t

e−σsν(s)
(s − t)α

ds, t < b. (4)
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The tempered fractional derivatives (3) and (4) are the Riemann-Liouville fractional derivatives aDα,σ
t ν(t)

and tDα,σ
b ν(t) for σ = 0 ([17]).

Definition 1.3. ([18]) Let α ∈ (0, 1), σ ≥ 0 be a fix parameter and ν(t) ∈ Lp(a, b)(p ∈ [1,∞)). The left and right
Caputo tempered fractional derivatives of order α are defined as(

C
a Dα,σ

t

)
ν(t) = (e−σt C

a Dα
t eσt)ν(t) =

e−σt

Γ(1 − α)
d
dt

∫ t

a

[eσsν(s)]
′

(t − s)α
ds, t > a, (5)

and(
C
t Dα,σ

b

)
ν(t) = (eσt C

t Dα
b e−σt)ν(t) =

−eσt

Γ(1 − α)
d
dt

∫ b

x

[e−σsν(s)]
′

(−s − t)α
ds, t < b. (6)

The tempered fractional derivatives (5) and (6) are the Caputo fractional derivatives C
a Dα,σ

t ν(t) and
C
t Dα,σ

b ν(t) for σ = 0 ([17]).

Proposition 1.4 ([19, 20]). Let α > 0 and ν(t) ∈ Lp(a, b)(p ∈ [1,∞)).

1. For α1, α2 > 0 and σ ≥ 0, the tempered fractional integral operators satisfy following

aIα1,σ
t aIα2,σ

t ν(t) =a Iα1+α2,σ
t ν(t)

tIα1,σ
b tIα2,σ

b ν(t) = tIα1+α2,σ
b ν(t).

2. For α > 0, σ ≥ 0 and any function ν(t) ∈ Lp(a, b),

aDα,σ
t aIα,σt ν(t) = ν(t)

tDα,σ
b tIα,σb ν(t) = ν(t).

3. If ν(t) is continuous on [a, b] then for α > 0 and σ ≥ 0,

C
a Dα,σ

t aIα,σt ν(t) = ν(t)
C
t Dα,σ

b tIα,σb ν(t) = ν(t).

4. Let α ∈ (0, 1) and σ ≥ 0, for ν(t) ∈ AC[a, b] (where AC[a, b] stands for absolutely continuous functions
on [a, b]),

aIα,σt
C
a Dα,σ

t ν(t) = ν(t) − e−σ(t−a)ν(a) (7)

tIα,σb
C
t Dα,σ

b ν(t) = v(t) − e−σ(t−b)ν(b). (8)

5. Let α1 > α2 > 0, σ ≥ 0 and t ∈ [a, b] then

aDα2,σ
t aIα1,σ

t ν(t) =a Iα1−α2,σ
t ν(t)

tDα2,σ
b tIα1,σ

b ν(t) =t Iα1−α2,σ
b ν(t)

6. Let ν(t) ∈ AC[a, b] and υ(t) ∈ Lp(a, b) (p ∈ [1,∞)), then for α ∈ (0, 1) and for σ ≥ 0,∫ b

a
ν(t)aDα,σ

t υ(t)dt =
∫ b

a
υ(t)C

t Dα,σ
b ν(t)dt + ν(t)aI1−α,σ

t υ(t)|t=b
t=a (9)

7. For α > 0, σ ≥ 0 and p ≥ 1, aIα,σt is bounded on Lp(a, b), i.e.∥∥∥aIα,σt ν(t)
∥∥∥

Lp ≤Mα

∥∥∥eσtν(t)
∥∥∥

Lp , Mα =
(b − a)α

Γ(α + 1)
. (10)
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2. Tempered Fractional Dirac Type System

In this chapter, including α ∈ (0, 1) ; we examined the Dirac type system which includes α order right
and left Riemann-Liouville tempered fractional integrals and derivatives, and the Dirac type system which
includes α order right and left Caputo tempered fractional integrals and derivatives.

Let p(t) and r(t) are real-valued continuous functions defined on [a, b] , and let

𭟋y =
(

0 aDα,σ

CDα,σ
b 0

) (
y1(t)
y2(t)

)
+

(
p (t) 0

0 r (t)

) (
y1(t)
y2(t)

)
=

(
aDα,σy2(t) + p (t) y1(t)
CDα,σ

b y1(t) + r (t) y2(t)

)
.

The fractional Dirac system is:

𭟋yλ = λωyλ, a ≤ t ≤ b < ∞. (11)

where λ is a complex spectral parameter, yλ(t) =
(

yλ1(t)
yλ2(t)

)
, and ω(t) =

(
ω1 (t) 0

0 ω2 (t)

)
are real-valued

continuous functions defined on [a, b] and ωi (t) > 0,∀t ∈ [a, b] , (i = 1, 2) . We consider the boundary
conditions

c11y (a) + c12 aI1−α,σy (a) = 0, (12)

c21y (b) + c22 aI1−α,σy (b) = 0, (13)

with c2
11 + c2

12 , 0 and c2
21 + c2

22 , 0. This problem is worked out at ([22]) for σ = 0. Now, we introduce
convenient Hilbert space L2

ω((a, b); E)
(
E := C2

)
of vector-valued functions using the inner product

⟨y, z⟩ =
∫ b

a
y1(t)z1(t)ω1(t)dt +

∫ b

a
y2(t)z2(t)ω2(t)dt,

where

y(t) =
(
y1(t)
y2(t)

)
, z(t) =

(
z1(t)
z2(t)

)
,

and yi, zi (i = 1, 2) are real-valued continuous functions defined on [a, b].

Theorem 2.1. The operator Π = ω−1𭟋 generated by fractional Dirac type system defined by (11)-(13) is formally
self-adjoint on L2

ω ((a, b) ; E) .

Proof. Let y (.) , z (.) ∈ L2
ω ((a, b) ; E) . Then we get

⟨Πy, z⟩ − ⟨y,Πz⟩ =
∫ b

a

(
aDα,σy1(t) + r (t) y2(t)

)
z2(t)dt

+

∫ b

a

(
CDα,σ

b y2(t) + p (t) y1(t)
)

z1(t)dt

−

∫ b

a
y1(t)

(
CDα,σ

b z2(t) + p (t) z1(t)
)

dt

−

∫ b

a
y2(t)

(
aDα,σz1(t) + r (t) z2(t)

)
dt

=

∫ b

a

(
aDα,σy1(t)

)
z2(t)dt +

∫ b

a
r (t) y2(t)z2(t)dt



Y. Yalçınkaya / Filomat 37:27 (2023), 9135–9144 9139

+

∫ b

a

(
CDα,σ

b y2(t)
)

z1(t)dt +
∫ b

a
p (t) y1(t)z1(t)dt

−

∫ b

a
y1(t)

(
CDα,σ

b z2(t)
)
dt −

∫ b

a
p (t) y1(t)z1(t)dt

−

∫ b

a
y2(t)(aDα,σz1(t))dt −

∫ b

a
r (t) y2(t)z2(t)dt

=

∫ b

a

(
aDα,σy1(t)

)
z2(t)dt +

∫ b

a

(
CDα,σ

b y2(t)
)

z2(t)dt

−

∫ b

a
y1(t)

(
CDα,σ

b z2(t)
)
dt −

∫ b

a
y2(t)(aDα,σz1(t))dt.

Since ∫ b

a

(
CDα,σ

b y2(t)
)

z1(t)dt =
∫ b

a
y2(t)

(
aDα,σz1(t)

)
dt − y2(t)aI1−α,σz1(t)|ba

and ∫ b

a
y1(t)

(
CDα,σ

b z2(t)
)
dt =

∫ b

a

(
aDα,σy1(t)

)
z2(t)dx − z2(t)aI1−α,σy1(t)|ba,

we get

⟨Πy, z⟩ − ⟨y,Πz⟩ =
[
y, z

]
b −

[
y, z

]
a , (14)

where[
y, z

]
t = y2(t)aI1−α,σz1(t)|ba − z2(t)aI1−α,σy1(t)|ba.

The equality ⟨Πy, z⟩ = ⟨y,Πz⟩ for any y (.) , z (.) ∈ L2
ω ((a, b) ; E) . We have

[
y, z

]
b = 0 and

[
y, z

]
a = 0 from the

boundary (12)-(13). Consequently, we get

⟨Πy, z⟩ = ⟨y,Πz⟩. (15)

Theorem 2.2. All eigenvalues of the problem (11)-(13) are real.

Proof.

⟨ f , 𭟋y⟩ =
∫ b

a
f1(t)

(
CDα,σ

b y2(t) + p (t) y1(t)
)

dt +
∫ b

a
f2(t)

(
aDα,σy1(t) + r (t) y2(t)

)
dt

=

∫ b

a
f1(t)CDα,σ

b y2(t)dt +
∫ b

a
f1(t)p (t) y1(t)dt +

∫ b

a
f2(t)aDα,σy1(t)dt +

∫ b

a
f2(t)r (t) y2(t)dt

=

∫ b

a
y2(t) aDα,σ f1(t)dt − f1(t)aI1−α,σy2(t)|ba +

∫ b

a
f1(t)p (t) y1(t)dt +

∫ b

a
y1(t)CDα,σ

b f2(t)dt

+ f2(t)aI1−α,σy1(t)|ba +
∫ b

a
f2(t)r (t) y2(t)dt
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Let λ be an eigenvalue of (11)-(13) and y(t) =
(
y1(t), y2(t)

)T be the corresponding eigenfunction. Then y and

its complex conjugate y(t) =
(
y1(t), y2(t)

)T
satisfy

𭟋y(t) = λω(t)y(t) (16)

c11y1(a) + c12 aI1−α,σy2(a) = 0 (17)

c21y1(b) + c22 aI1−α,σy2(b) = 0 (18)

and

𭟋y(t) = λω(t)y(t) (19)

c11y1(a) + c12 aI1−α,σy2(a = 0 (20)

c21y1(b) + c22 aI1−α,σ y2(b) = 0 (21)

with c2
11 + c2

12 , 0 and c2
21 + c2

22 , 0. Then we obtain

(λ − λ)⟨y, y⟩ = ⟨λy, y⟩ − ⟨λy, y⟩
= ⟨𭟋y, y⟩ − ⟨𭟋y, y⟩

= y(b)
[

c22 aI1−α,σy (b) c21y (b)
−c22 aI1−α,σy (b)c21y (b)

]
+y(a)

[
c12aI1−α,σy (a)c11y (a)
−c12aI1−α,σy (a) c11y (a)

]
.

From boundary conditions (17), (18), (20) and (21), we have

(λ − λ)⟨y, y⟩ = 0

since y(t) is nontrivial and ω > 0, we have λ = λ.

Lemma 2.3. If λ1 and λ2 are two different eigenvalues of the Fractional Dirac system defined by (11)-(13), then the
corresponding eigenfunctions yλ1 and yλ2 are orthogonal in the space L2

ω ((a, b) ; E) .

Proof. Assume λ1 and λ2 are distinct eigenvalues of (11)-(13) and yλ1 and yλ2 be the eigenfunctions. Then
we have

𭟋yλ1 (t) = λ1ω(t)yλ1 (t) (22)

c11yλ11 (a) + c12 aI1−α,σyλ12 (a) = 0 (23)

c21yλ11 (b) + c22 aI1−α,σyλ12 (b) = 0 (24)

and

𭟋yλ2 (t) = λ2ω(t)yλ2 (t) (25)

c11yλ21 (a) + c12 aI1−α,σyλ22 (a) = 0 (26)

c21yλ21 (b) + c22 aI1−α,σyλ22 (b) = 0 (27)

Then we obtain,

(λ1 − λ2)⟨yλ1 , yλ2⟩ = y(b)
[

c22aI1−α,σyλ2 (b) c21yλ1 (b)
−c22aI1−α,σyλ1 (b)c21yλ2 (b)

]
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+ y(a)
[

c12aI1−α,σyλ1 (a) c11yλ2 (a)
−c12aI1−α,σyλ2 (a) c11yλ1 (a)

]
.

From the boundary conditions (23), (24), (26) and (27), we have that

(λ1 − λ2)⟨yλ1 , yλ2⟩ = 0

and hence as λ1 , λ2, ⟨yλ1 (t), yλ2 (t)⟩ = 0.

Theorem 2.4. The Wronskian of any solution of Eq. (11) is independent of t.

Proof. Assume that v(t) and ω(t) be two solutions of Eq. (11). From Green’s formula (14), we get

⟨Πy, ω⟩ − ⟨y,Πω⟩ =
[
y, ω

]
(b) −

[
y, ω

]
(a).

𭟋v = λv and 𭟋ω = λω, we get

⟨λv, ω⟩ − ⟨v, λω⟩ = [v, ω] (b) − [v, ω] (a),

(λ − λ)(v, ω) = [v, ω] (b) − [v, ω] (a).

Since λ ∈ R, we have [v, ω] (b) = [v, ω] (a) =W(v, ω)(a), i.e. the Wronskian is independent of t.

Theorem 2.5. Any two solutions of the Eq. (11) are linearly dependent if and only if their Wronskian is zero.

Proof. Let y(t) and ω(t) be two linearly dependent solutions of Eq. (11). Thus, for the constant η > 0, we
infer that y(t) = η.ω(t). Then, we have

W(y, z) =
∣∣∣∣∣ y1(t) aI1−α,σy2(t)
ω1(t) aI1−α,σω2(t)

∣∣∣∣∣ = ∣∣∣∣∣ ηω1(t) η aI1−α,σω2(t)
ω1(t) aI1−α,σω2(t)

∣∣∣∣∣ = 0.

Conversely, if the Wronskian W(y, ω)(t) is zero for some t in [a, b] then we see that y(t) = η.ω(t). From
this, it can be seen that y(t) and ω(t) are linearly dependent on [a, b].

Further, the general solution of the equation 𭟋 ψ = 0, i.e.,(
0 CDα

b
aDα 0

) (
ψ1(t)
ψ2(t)

)
=

(CDα
bψ2(t)

aDαψ1(t)

)
=

(
0
0

)
is given by

ψ(t) =
(
ς1e−σt (t−a)α−1

Γ(α)

−ς2eσt

)
where

Ψ(α, a, t) = eσt (t − a)α−1

Γ(α)
(28)

Lemma 2.6. Let

∆ = c11c22 − c21c12
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and

Yλ(y) = {λω − ϑ)yλ (29)

where ϑ(t) =
(

p(t) 0
0 r(t)

)
.Assume∆ , 0. Then, on the space C[a, b], the fractional Dirac system defined

by (11)-(13) is equivalent to the integral equation

yλ(t) = −NYλ(t) +Q(t)P + S(t)R,

where the matrix N is
(

0 aIα,σ

Iα,σb 0

)
.

Proof. Using fractional composition rules and (29), we can rewrite the equation (25) as follows:

𭟋
[
yλ(t) +NYλ(y)

]
= 0.

Then, we obtain

yλ(t) +NYλ(y) =
(
ς1e−σxΨ(α, a, t)

ς2eσt

)
yλ(t) = −NYλ(y) +

(
ς1e−σtΨ(α, a, t)

ς2eσt

)
(30)

If we rewrite ςi (i = 1, 2) to the values ai j (i, j = 1, 2) in the boundary conditions (12)-(13), from Eq. (30), we
get

Φyλ(t) = −ΦNYλ(y) + Φ
(
ς1e−σtΨ(α, a, t)

ς2eσt

)

where Φ =
(

aI1−α,σ 0
0 1

)
. Then we have

(
aI1−αyλ1 (t)

yλ2 (t)

)
=

(
−aI1Yλ2 (y)

−I1
bYλ1 (y)

)
+

(
ς1e−σt

ς2eσt

)
By (26) and (27), we conclude that

aI1−αyλ1 (a) = −ς1e−σt

aI1−αyλ1 (b) = −aI1Yλ2 (y)|t=b + −ς1e−σt

yλ2 (a) = −Iαb Yλ1 (y)|t=a + ς2eσt

yλ2 (b) = ς2eσt.

From the above equations, the following system is obtained:

c11ς1e−σt + c12ς2eσt = c12Iαb Yλ1 (y)

c21ς1e−σt + c22 ς2eσt = c21aI1Yλ2 (y).

Let Iαb Yλ1 (y) = P and aI1Yλ2 (y) = R. Then

c11ς1e−σt + c12ς2eσt = c12P



Y. Yalçınkaya / Filomat 37:27 (2023), 9135–9144 9143

c21ς1e−σt + c22 ς2eσt = c21R.

Since c11c22 − c21c12 , 0, the solution for coefficients ςi (i = 1, 2) is unique;

ς1 =
eσtc12(c22P − c21R)

c11c22 − c21c12
=

eσtc12(c22P − c21R)
∆

ς2 =
c21(c11R − c12P)

eσt(c11c22 − c21c12)
=

e−σtc21(c11R − c12P)
∆

Now, we shall prove the existence and uniqueness of the eigenfunction of the regular fractional Dirac
system defined by (11)-(13).

Let

φ(t) =
(
(aIα1)(t)
(Iαb 1)(t)

)
, Q = ∥Q(t)∥C , S = ∥S(t)∥C , Gφ =

∥∥∥φ(t)
∥∥∥

C ,

where

Q(t) =
( eσtc12c22Ψ(α,a,t)

∆

−
eσtc12c21
∆

)
,

S(t) =
(
−

e−σtc21c12Ψ(α,a,t)
∆

e−σtc21c11
∆

)
.

and ∥.∥C denotes the supremum norm on the space C([a.b,E]).

Theorem 2.7. Let α ∈ (0, 1) and assume that ∆ , 0. Then unique continuous function yλ for the regular fractional
Dirac system defined by (11)-(13) corresponding to each eigenvalue obeying

∥λω − ϑ∥C ≤
1

Gφ +Q
∥∥∥φ(a)

∥∥∥
C + S(b − a)

(31)

exists and such eigenvalue is simple.

Proof. Let us define the mapping L : C([a.b],E)→ C([a.b],E) by the formula

Lρ = −NYλ(ρ) +Q(t)P(ρ) + S(t)R(ρ)
Lτ = −NYλ(τ) +Q(t)P(τ) + S(t)R(τ)

Now, we show that Eq. (11) can be interpreted as a fixed point condition on the space C([a.b],E). Using
the following estimate∥∥∥Yλ(ρ) − Yλ(τ)

∥∥∥
C ≤

∥∥∥ρ − τ∥∥∥C ∥λω − ϑ∥C ,

we conclude that∥∥∥Lρ − Lτ
∥∥∥ = −N

(
Yλ(τ) − Yλ(ρ)

)
−Q(t)

(
P(τ) − P(ρ)

)
− S(t)(R(τ) − R(ρ))

≤

∥∥∥ρ − τ∥∥∥C ∥λω − ϑ∥C Gφ +Q
∥∥∥ρ − τ∥∥∥C

∥∥∥φ(a)
∥∥∥

C ∥λω − ϑ∥C + S(b − a)
∥∥∥ρ − τ∥∥∥C ∥λw − ϑ∥C
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=
∥∥∥ρ − τ∥∥∥C ∥λω − ϑ∥C

(
Gφ +Q

∥∥∥φ(a)
∥∥∥

C + S(b − a)
)

= Λ
∥∥∥ρ − τ∥∥∥C ,

where

Λ = ∥λw − ϑ∥C
(
Gφ +Q

∥∥∥φ(a)
∥∥∥

C + S(b − a)
)
.

By the condition (31), the mapping L is a contraction on the space C([a.b],E) so it has a unique fixed point.
Therefore, such an eigenvalue is simple.

3. Conclusion

This study investigated the Dirac-type system including tempered fractional integrals and their deriva-
tives. First, the definitions and properties of tempered fractional derivatives and tempered fractional
integrals are given. Then, it is shown that the operator of the related eigenvalue problem is a self-adjoint
operator and its eigenfunctions are orthogonal. Finally, the existence and uniqueness theorem of the defined
system is proved.
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