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Abstract. The main goal of the current study is to establish some new Milne’s rule type inequalities
for single-time differentiable convex functions in the setting of quantum calculus. For this, we establish
a quantum integral identity and then we prove some new inequalities of Milne’s rule type for quantum
differentiable convex functions. These inequalities are very important in Open-Newton’s Cotes formulas
because, with the help of these inequalities, we can find the bounds of Milne’s rule for differentiable convex
functions in classical or quantum calculus. The method adopted in this work to prove these inequalities
are very easy and less conditional compared to some existing results. Finally, we give some mathematical
examples to show the validity of newly established inequalities.

1. Introduction

The Hermite-Hadamard inequality is the first result given between convex functions and integrals. This
inequality was introduced by Hermite [1]] in 1883 which was later proved by Hadamard [2] in 1893. This
inequality has the following mathematical form:

b b
15t [ e <010

where f is a convex function. This inequality also holds in the reverse direction for concave functions.

This inequality has many advantages, especially in approximation theory, it is used a lot. Because of its
great applications, mathematicians started working on it and came up with many new results. For example,
Dragomir and Agarwal [3] found the boundaries of the trapezoidal formula by taking the difference between
the middle and right parts of this inequality and using differentiable convexity in the whole process. Later,
Kirmaci [4] gave the boundaries of the midpoint formula, which were formed from the same inequality, he
took the difference of the middle part from the left part and he also derived his results by using differentiable
convexity. Qi and Xi [5] took the difference between the middle part of this inequality and the average of
the left and right parts to establish a new inequality that we know as Bullen’s.
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In [6], Milne’s type inequality was established for the four times differentiable functions over a real open
interval (a, b):

‘(2f(3a+b) f(a;b)Jrzf(aZ%))‘ﬁfﬂbf(x)dxg

On the side which is the main motivation of this paper, Alp et al. [7] used quantum calculus and proved
the following new version of Hermite-Hadamard inequality (T):

7(b-a) @
———— su (x)]. 2)
23040 .5 [ @)

Theorem 1.1. For a convex function f : [a,b] — R, the following inequalities hold for q € (0, 1):

f(qu+b) f £ adx qf a)+qf(b) 3)

1+g
Burmudo et al. [8] used a different approach to prove the following versions in quantum calculus of the
Hermite-Hadamard inequality (T):

Theorem 1.2. For a convex function f : [a,b] — R, the following inequalities hold for q € (0, 1):

2+ @) +af®)
f(l+q) ffx) bd,x v o
and
b 1 b b b
f(a; )Szw—a)u F® ﬂdq“fuf(x) bdqx]sw. 5

Alp et al. [7] found the bounds of the midpoint formula in quantum calculus by taking the difference
between the middle part and the right part of the inequality (3) and used g-differentiable convexity in the
whole process. Later, Noor et al. [9] gave the bounds of the trapezoidal formula in quantum calculus,
which was formed from the same inequality (3), they took the difference of the middle part from the left
part and he also derived his results by using differentiable convexity. Budak used the same approaches in
[10] to find the bounds of midpoint and trapezoidal formulas in quantum calculus using the inequality (4).
Some more bounds of midpoint and trapezoidal formulas in quantum calculus were established using the
inequality (5) in [11].

After an interesting study of quantum integral inequalities, Ali et al. [12] gave the following version in
quantum calculus of Hermite—-Hadamard inequality (T):

Theorem 1.3. If f : [a,b] — R be a convex function, then we have

(555 aUmf(x) dx+f £, ] SlAs ©

Another new version of Hermite-Hadamard inequality (1) in quantum calculus was established by
Sitthiwirattham et al. [[13]]:

Theorem 1.4. If f : [a,b] — R be a convex function, then we have

f(a;b)-b Umf(xw qx+f £ s ] 1010, %
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In [12]], Ali et al. also found some bounds of midpoint and trapezoidal formulas in quantum calculus
using the inequality (6) with the same approaches already discussed. For some bounds of midpoint and
trapezoidal formulas in quantum calculus associated with (7), one can consult [13]. For more recent
inequalities of Simpson’s and Newton’s type in quantum calculus, one can consult [14} [15] and references
cited therein. For some more interesting inequalities, we suggest to read [16-18].

Inspired by the ongoing studies, we prove some dual Simpson’s type inequalities in quantum calculus.
For this, we prove a new quantum integral identity and then use it to establish desired inequalities for
g-differentiable convex functions in the framework of quantum calculus. These inequalities can be helpful
in finding the error bounds for dual Simpson’s formula in quantum and classical calculus. As we know,
classical Milne’s type inequality (2) has already been proved, and we need a function that is four times
differentiable, but in the results proved here only the first differentiability of the functions is required, and
one can obtain the bounds for Milne’s formula.

2. Preliminaries

In this section, some basics of quantum calculus are given for the better understanding of the new
readers.

Tariboon and Ntouyas [19] introduced the left or g,-derivative and integral concepts in 2013. They also
discuss their properties, here we recall the following definitions from their work:

Definition 2.1. [19] Let f : [a,b] — R be a continuous function. Then the q,-derivative of f at x € (a, b] is defined
by

fx) - fla+q(x—a))
1-g)x-a)

The q,-integral is defined by

oD yf(x)=

f f(t) udqt = (1 - ‘1)(95 - a) Z qnf (11 + qn (x - 11))
a n=0

In 2020, some new definitions of quantum derivative and integral using a different approach were
introduced by Bermudo et al. [8], namely right or g’derivative and integral. They also discussed some
basic properties of the given operators, here we recall the following definitions from their work:

Definition 2.2. [8] Let f : [a,b] — R be a continuous function. Then the q°-derivative of f at x € [a, b) is defined by

flb+q(x-b)-fx)
A-q-x

The gb-integral is defined by

quf(x) =

b o
[ 0t =a-pe-0Y ¢ 6+ - )
X n=0

In [14] and [15], the authors provide the following formulas of g-integration by parts:

Lemma 2.3. For continuous functions h, f : [a,b] — R, the following equality holds:

f Ch(t)aDq Fa+tb—a) odyt
0

_ h)f(a+t(b—a)
B b-a

o b i 7 I) f(a+qt(b—a)) oDgh(t) od,t. ®8)
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Lemma 2.4. For continuous functions h, f : [a,b] — R, the following equality holds:

f Ch(t) "Dyf(b+t(a— b)) odgt
0

h(t)f(b+t(@a—Db))|

1 C
- L fo b+ 10 = ) oDy oyt - L]

3. New Identities for Quantum Integrals

In this section, by using quantum differentiable functions, we prove the main equalities which will help
us to obtain the desired results.

Lemma 3.1. Let f : [a,b] — R be a g-differentiable function. If "D, f(t) is g-integrable on [a, b], then the following
equality holds:

ﬁfabf(x)bdqx_ % [Zf(?)azb)_f(a;b)ﬂf(ﬂ zsb)}

:(b—ﬂ)[11+12+13+14], (10)
where
L = quthqf(b+t(a—b))dqt
0
L = f;(qt—%)quf(b+t(a—b))dqt
I = f;(qt—%)quf(bH(a—b))dqt
1
L = f(qt—l)quf(b+t(a—b))dqt.

Proof. By the definition of g-integral, we have

I

f (qt - %)quf(b +t(a—b))dyt

- jj (qt_ %)quf(b+f(a—b))dqt_,/0‘i (qt_ %)quf(b”(”_b))df’t

foz qthqf(b+t(a—b))dqt—§j;2 PD,f (b+t(a— b)) dyt

—f4qthqf(b+t(a—b))dqt+gf4quf(b+t(a—b))dqt,
0 3 0

and similarly

I = j;(qt—%)quf(b+t(a—b))dqt

]0‘4 qthqf(b+t(a—b))dqt_%‘fo\;lquf(b"l't(ﬂ—b))dqt
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—fzqthqf(b+t(a—b))dqt+1fszqf(b+t(a—b))dqt
0 3 0

and

1
I, = j;(qt—l)quf(b+t(a—b))dqt

1 1
f(;qthqf(b+t(a—b))dqt—j(;quf(b+t(a—b))dqt

—f4 qt”qu(b+t(a—b))dqt+f4 PD,f (b + t(a — b)) dt.
0 0
Then it follows that
L+Lh+I3+1,
1 !
= fqthqf(b+t(a—b))dqt+§f quf(b+t(a—b))dqt
0 0

1

: 2
_5fo bDyf (b +t(a — b)) dgt +

3
3 f "D, f (b +t(a— b)) d,t
0
1
—f "Dyf (b+t(a—b))d,t.
0
By Lemma[2.4] we have
1
f gDy f (b + t(a — b)) dyt
0

1 tf(b+t@-b)[
= biﬂfoquqf(qta+(1—qt)b)dqt—W

0

— 2:2 ;qml'f(qnﬂa +(1 _qn+1)b) _ bzaf(a)

1-9 « 1
- b_Z;q"ﬂq"am—q”)b)—mf(a)

b
_ (b_la)z f f@dye - f@).

On the other hand, by Lemma.4] we get

f4quf(b+t(“—b))dqt . Seriesh)
: 0

-2l

1 1
1

Similarly,

: 1 b
j; "Dyf (b+t(a - b)) dyt = —— »f(%)—f(b)],

i 1 [ (3a+0b
fObD"f(bH(a_b))dqt:_m_f( a; )—f(b)]

9123

(11)

(12)

(13)

(14)

(15)
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and

1
[ "Duf o+ o=t = 5 r@ - g0 (16)

If we substitute the equalities (12)-(16) in (1T), then we have

I +12+13+I4

1 b 1 3a+b a+b a+3b
- (b—a)2faf(x)bdqx_?)(b—a)[zf( 2 )_f( 2 )+2f( 1 )]

which completes the proof. [

4. Milne’s Inequalities

In this section, we establish some Milne’s type inequalities in quantum calculus for differentiable convex
functions. For the sake of brevity, we will use the following notation of quantum numbers:

1_qn n-1
-9 =

[n]; =

Theorem 4.1. Assume that the assumptions of Lemma 3.1 hold. If "D, f| is convex on [a,b], then the following
inequality holds:

b
[ S () ) "
36 — 79— 7¢
64[2],[3], )
—-284% + 1019 — 28 )]
192 3], ’

<(b-a ||quf(a)I (A1(t7) +

H®MW@MH

where

m@=£i

20-374-374
192121,131;
—340+477q+4774"
1728[21,13],
—20+374+37¢2
9212,31, *

;o1
73

dyt =

wino ok O

and

—4+9¢+9¢>—444°
192[2],[3],
g ) A1957-1957 64y’
gt = 1728121, 3],
4-99—9q%+44¢°

IA
— WIN Ol

~

Axm=jfa—nh—§

A A A
o S S
IA

wWIN vk O
A

Proof. By Lemma[3.1} we have

19212181,
b
o [

< w—MLLWWDJw+tw—WMw
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"Dy f (b +t(a — b))| dgt

2 2
+ . qt—g

3

4t_1
773
2

"Dyf (b +t (a—b))| dyt

1
+ f gt = 1| |'Dyf (b + t (a = b)) dqt} .
Since Iqu flis convex on [a, b], therefore
I"Dyf (b + t(a = )| < tPD, f(a)] + (1 - H)'D, f(D)I-
Substituting (19) in (18), we obtain

ot [ 2 o2

1

<(b-a) l fo gt [H' Dy f@)] + (1 = D, f(b)] dyt

1
2
+f
1
4

+ f E \qt - %\ [HPDy f(@)] + (1 = )P Dy f(b)] it

2| [i#Duf@1+ (0 = D]yt

1
+ f gt =1 [tlqu f@l+@Q-tI'D, f(b)|] dqt}

(b—a{quf(a)l[ftzdt+f ’qt——
+ﬁ4 ft)qt—l|dt}

+ "D, f(b)| Mﬁ gt —t)dqt+ﬁ (1-1 ‘qt—% dgt

+]j(1—t)‘qt—% j;l(l—t)|qt_1|dqt]]‘

By calculating the quantum integrals, we have

ot [ 2 o2

8+qg+
<b-a) [quf (@) [64[3]q + 64[21,[31
28 —9q — 94°
64[2],[3], ]
3q + 3q% + 4¢° . 8 + 25g + 25¢* — 4¢°
64[2],[3], 192[2],[3],

qf—g

+A1(q) +

+ |quf(b)|

9125

(19)
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+A(q) +

~12 + 139 + 134 — 124°
64[2],[3], ”
36 —7q — 7¢*
64[2],[3], )
~2842 +101q — 28
1923, )]

=b-a) [Iqu f(@) (Al(bn +

+D, f(D) (Azw) +

Here we use the equalities

[+

t° = ,

0 64[3],
5

I
%

1 28 — 99 — 9¢°
j; t(1—qgt)dgt = ETERERE

4

8+q+q°
64[2],[31;°

qt—% dgt =

1

i 3+ 3q + 44?
fl—tdt=—,
fo( Mot = 1.3,

8 + 254 + 25¢* — 4q°

z 2
(1—t)'qt—— dgt =
fi 311 192[2],[3],
and
1 —12 + 139 + 134% - 12¢°
fi (11—t (1—qgt)dst = ARl
O

Corollary 4.2. If we take the limit as ¢ — 1~ in Theorem then we obtain the following inequality:

o [ o) 12 o)

5(0-a) ., ,
<—g WF@+1fol.

9126

(20)

(21)

(22)

(23)

(24)

(25)

Theorem 4.3. Assume that the assumptions of Lemma 3.1\ hold. If |"D,f|" is convex on [a, b] and % +1 =1 with

p,r > 1, then the following inequality holds:

it [ S5 ()

oot ) (D@ + G+ Dy s
N+, 16[2],

<

(26)
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t——

(

+(ﬁ (1 — gty dgt

t——

1

p

==

31D, (@)l + (1 + 4q) Iquf(b)Ir)i

16[2],

5I"Dyf@) + (=1 +4q) "Dy fO)I

16[2],
7D, f@) + (=3 + 49) |'D, f(b)I"

16[2],

Proof. By using g-Holder inequality in (18), we have

< (b-a) {Uo (qt)pdqt) [fo |quf(b+t(a—b))(rdqt]

P

qt—% dyt

A
1
+(ﬁl(l—qt)pdqt

4

1P

qt— 5 dqt

1
P

j:z "D, f (b +t(a—b))| dqt]

f 'D,f (0 +t@a—b)| dqt]

1 7
ﬁ 'Dyf (b +t(a~ b))|rdqt] ]

Since |° D, fI" is convex on [a, b], we have

f; "Dy f (b +t(a—-b))| dgt

Similarly,

f "Dyf (0 +t(a b))ldt_16[2] "Dy fGa)l” + 16[2 Dy fO),

f 'Dyf (b +t(a—b)| dyt < ———["D, f(a)’ M, o)
9 _16[2] 1 16[2] g

and

' r 7 , —3+4q .
f ["Dyf (b +t(a - b)) dgt < mV’qu(a)l * Temr "Dy fb)I".

f [ty f@r + - t)lquf(b)Ir] dyt

- L D far+

16[2], 16[2]

On the other hand, we also have the equality

P

: q
P [
L o= gy

]3.
|

ff(X)bdx——[Zf(?’aer) f(””?) 2f(a+3b

Dyf @)l

By substituting (28)-(32) in (27), then we obtain the desired result.

9127

(27)

(28)

(29)

(30)

(31)

(32)
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Corollary 4.4. If we take the limit as ¢ — 1~ in Theorem then we obtain the following inequality:

i [ P () (]

1 7 IF @I +71F B\
= (b‘”K4wwp+1J ()

+( ! )wafWW+mfwwy

1204 (p+1)  6r*1(p+1) 32

+( 511 y(sv«mr+3v«wvy
1271 (p+1) 6Pt (p+1) 32

o -rad (regrey |

Theorem 4.5. Assume that the assumptions of Lemma 3.1 hold. If |"D,f|" is convex on [a,b] for r > 1, then the
following inequality holds:

=) )]

6o (1 P (21| 'Dof @) + (39 + 3% + 4°) | "Dy f )]’
16[2], 64[2],[3],

8—q ’
(i)

+(A@)' 7 (4@ "Dyf @] + Ax@)] "Dy f (
4-3g\77
+hﬂﬂ)

where Ay, A, are defined as in Theorem [4.1jand

IA

192[2],[3],

3(8 +q+ qz) | "Dy f @)] + (8 + 250 + 254> — 4q3) |'D, f (b)|r]1

1
T);

(3+3q+44%) | "Dy f @) +(-12 +13q + 134> - 12¢°)| 'D, f (b)|’]1

64[2],[3],

4-11g 4

3 . 48[2],17 0<gq<3,

—28+5 q 4 2

As(q) = j; qt — 3 dat = T, 9 <95

2 —4+11q 2 1
w3 <4<

Proof. By utﬂizing g-power mean inequality in , we have

ff(x)bdx——[Zf(?)aer) f(a+b) Zf(a+3b)]' 34)
< (b-a) '[fo qtazqt]11 UO gt |quf(b+t(a—b))|’azqt]1

1 1-1 1
3 b 2
+ . q L qt— 5

;2
73

el

I'Dyf (b +t(a—b)| dqt]y
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3 1-1 3
1 ’ 1 1
ALt (7
z1 1_7 :
+(ﬁ (1—qt)dqt] (f (1-qt) 'Dyf (0 +t@a-b))| dt”
1

Since |? D, f|" is convex on [a, b], then by the equalities and , we have

gt — % I'Dyf b+t -b)| dqt)

fo ! qt|’Dyf (0 +t(a - b))| dt (35)

IA

f; gt [t|"Dof @) + (1= )| "Dy f )] ] dyt

q121;| "Dy f @)| + (3 + 39 + 4¢%)| 'D, f (b)|
64[3],

Similarly, by convexity of |"D, f|" and the equalities obtained in the proof of Theorem we have

1
jl\
4

3(8+ 9+ 42)|"Dyf @) + (8 + 259 + 2502 — 4¢°)| "D, f ®)f

qt—— 'Dyf (0 +t(a—b))| dyt (36)

<
= 192[2],[3],

f ' ’qt - % "Dy f (b +t(a—b))| dgt (37)
<A@ |"Dof @] +Axlq) | 'Dyf ®)f

and
1

ﬁ (1-qt) |'Dyf (0 +t(a—b)| dgt (38)

< (28 99— 99%)| *D, f (@)| + (~12 + 13q + 13¢% - 12¢°) | "D, f (b)|

64[2],[3],
We also have the following equalities

1

2 1
fo t= —16[2]q' (39)

(40)

1 4-3g
ﬁ (=) dyt = 7L 1)
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If we substitute (35)-(1) in (34), we have the inequality

s [ s (| “

q )l_1 [q[Z]q 2Dy f @) + (30 + 39+ 4¢°) "D )] )

64[2],[3],

8-\t (3(8+ 9+ ) "Dof @] + (8:+250 + 2502 - 47) | "D, f ] |
* ( ) 192[2],[3],

1
r

+(As@)' 7 (M@ | "Dy f @) + Ax@) | "Dy f )]')

(4 _ 3q)1—1 [(3 +3q +497) | 'Dy f (@)| + (=12 + 139 + 1347 - 124°) | 'D, f (b)|’]1

+
16[2], 64[2],[3],
This completes the proof. O

Corollary 4.6. If we take the limit as ¢ — 1~ in Theorem[4.5] then we obtain the following inequality:

‘blTafabf(x)dx_%[2f(3a;b)_f(a;b)+2f(ﬂ-;3b)

_ -0 20 @[ + 10 @Y (10 @[ +2|F B Y
Y B * B

| (43)

1
r

7w —a)|(5]F @ +9|f ® 9f%mr+5f%mr%
AT 14 * 14 '

5. Examples

Now, we give some examples of our main results to demonstrate our theorems.

Example 5.1. Let f : [0,1] — R be a function defined by f(x) = x>. Then f is g-differentiable. Moreover, for g

37 5 1
b _nn — 2, - -
"Dy f(x)] = | D%f(x)l— 16x + 8x+ T

is convex on [0, 1]. By applying Theorem to the function f(x) = x>, we have
1 3a+b a+b a+3b
s[5 )
1 1 1 3
= 5[ (3)-s(3)+2 ()

and
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1 3
SINGIEE)
1v (3 3\" 3\2 (33"
—12(1) (1‘3(1) +3(3) - (3) )

1 48 192 256
-7[4-F+ 5 - =)

4 7 37 175
= 0.2173.

Thus, the left-hand side of (I7) is
|0.2173 — 0.25| = 0.0327.

Next, we consider

"Dy f(@) = 'D; £(0) = 1— ~ 0.0625

D D, f(b)| = ! Dgf(l)l 3

3
A (Z) — 0.0368
and
3

Ar (ZL) =0.0138.

Hence, the right-hand side of (17)) is

64[21,[3],
b -284% +101q — 28
+| qu(b)l(Az(Q) + 192[3], )]

= 0.0625 (0.0368 + 0.1035) + 3 (0.0138 + 0.0721)
= 0.2665.

(b—a) [Iquf @I (AM) +

It is clear that
0.0327 < 0.2665,

which demonstrates the result described in Theorem

9131

Example 5.2. Let f : [0,1] — R be a function defined by f(x) = x> and p = r = 2. Then f is g-differentiable.

3

Moreover, for q = %,

"Da fx)P = | 'Ds f(x)P = (37x2 x4 —

is convex on [0, 1]. By applying Theorem 4.3} we have the left hand side of is 0.0327.

Since

I'D; f(0)|2 0.0039,
'Ds f(1)P =9
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¢ i :
— | =|—%—— | =0.1233,
1 p+1], 16(1+32+ 2)

% 277 % 9 5 4
j; qt - 5 dqt = j}; (Bt —t+ §)d%t = 0.0306,

i 1P ir9 b1
_ - - P24 =0.0107
f;qt 3| it £(16t 2+9)d%t 0.010

and

1 ) 19 3
ji‘ (1 - E]t) dqt = L (Et - Et + 1)d%t = 0.0156,
the right hand side of [26)) is

tl? b 7 b ,
b —a) {(4“1 qv [I D, f(a)l" + (3 +4q) "D, f ()] )

[p+1], 16[2],
[

1 I3 b r _ b Ny
+( " -y | (2L +§6[32L 49) PDf0) ] ]

1
;

1
;

= =

14

dt

s 2 3D, f(@)" + (1 +49) I'D, f(b)r)
3

16[2],

1
v

- 1 pd t ; 5'D, f(@)l" + (=1 + 4q) I'D, f(b)I"
T3] % 16121,

1 1
0.0039 + 54)2 ) [3 % 0.0039 + 36]2

= 0.1233 — | +(0.0306) -
16(1 +2) 16(1 + 2)

3 1
+(0.0107)} [ X009 I8\ g 158 | 7 20089 £ 0
16(1+3) 16(1+3)

= 0.1712 + 0.1984 + 0.0830 + 0.0039
= 0.4565.

It is clear that
0.0327 < 0.4565,

which demonstrates the result described in Theorem

9132

Example 5.3. Let f : [0,1] — R be a function defined by f(x) = x> and r = 2. Then f is g-differentiable. Moreover,

forqg=13,

37, 5 1Y
b 2 _ 1 2_ (97 2 2 1
"Dy fF = 'D; f(x)] _(16x +8“16)

is convex on [0, 1]. By applying Theorem 4.5 we have the left hand side of is 0.0327.

Since

|1D% F(0)* = 0.0039,
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Dy F)F =
A (2) = 0.0368,

3
A, (Z) = 0.0138,

and
3
Aj (4_1) = 0.0506,

the right hand side of 33) is

b g (2] PDuf @] + (304 39+ 40°)'Duf O Y

( 8-q ) F(3(8+ 9+ )| "Dyf @ + (8 + 259 + 257 - 47) | Dy )] Y
48[2], 192[2],[3],

+(As@) (Ai@)] "Dy @[ + Axg)| "Dy f ) )’
(4 _ 3q)1—1 [(3 +3q +49%) | 'Dy f @)| + (=12 + 139 + 1347 - 124°) | 'D, f (b)|’]1

6412],3],

EI

B 3( 3)% 0.0039 +9(2 + 7+2—g)%
) 16(1+§ 64(1+3)(1+2+2)
83 3(8+3+3)x0.0039+9(8+ 75+%—%)%
(1+ 192(1+3)(1+ 3+ 2)
00368><00039+9><00138)2
L 4-d : (3+z+z)><0~0039+9(—12+1—9+%—%)%
16(1+§) 64(1+§)(1+§+%)

= 0.3273 x 0.4421 + 0.2938 x 0.6733 + 0.2249 x 0.3526 + 0.25 x 0.0106
= 0.4245.

It is clear that
0.0327 < 0.4245,

which demonstrates the result described in Theorem

6. Conclusion

In this paper, we established some inequalities to find the error bounds for Milne’s rule in the framework
of quantum and classical calculus. To prove these inequalities, we established a quantum integral identity
involving differentiable functions and then used convexity for differentiable functions. These inequalities
are very important in Open-Newton’s Cotes formulas because with the help of these inequalities, we can
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find the bounds of Milne’s rule for differentiable convex functions in classical or quantum calculus. The
method adopted in this work to prove these inequalities is very easy and less conditional compared to
some existing results. It is an interesting and new problem that the upcoming researchers can obtain similar
inequalities for different integral operators and different kinds of convexity in their future work.
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