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Abstract. In this paper, we define the sequence spaces ki, A M, p) Jho (Ag’ D Mou, p) and /1o, (AS,"’), Mu, p)
resulting from the infinite Hilbert matrix and the Musielak-Orlicz function. We give some topological prop-
erties and inclusion relations of these newly created spaces. We also identified a—, f— and y—duals of the
spaces. Finally, we tried to characterize some matrix transformations between these spaces.

1. Introduction and Preliminaries:

Hilbert defined the Hilbert matrix in 1894. The Hilbert matrix played both several branches of mathe-
matics and computational sciences.The n X n matrix H = (h,-,]-) = W+1 (i, j € IN) is a Hilbert matrix [1]. We
consider the infinite Hilbert matrix H as follows:

1 1/2 1/3 1/4

1/2 1/3 1/4
1/3 1/4
H=| 1/4

and it can be showed in integral form as follows:

1
H = (hi;) = f X2y
0

The inverse of Hilbert matrix H™! is defined by

H—l:(h71)=(_1)i+j(i+j_1)( n+i—.1 )( n+j—.1 )( i-ij]‘—l )2
Y n—j n—i i-1
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forall7,j € IN.

Let us we denote the space of all real or complex sequence with w. We write the sequence spaces of
all convergent, null and bounded sequences by ¢, cy and /., respectively. Also we will denote the space
of all bounded, convergent and absolutely convergent series with bs, cs, and I; respectively. Let A = (a.x)
be an infinite matrix of real or complex numbers and X, Y be subsets of w. We write A, (x) = Y ; aux, and
Ax = A, (x) for n,k € IN. For a sequence space X, the matrix domain of an infinite matrix A is defined by

Xa={x=(xx) ew: Ax € X}

which is also a sequence space. We denote with (X, Y) the class of all matrices A such thatA: X — Y.

A matrix A = (a,) is called a triangle if a,x = 0 for k > n and a,,, # 0 for all n € IN. For the triangle
matrices A,B and a sequence x, A(Bx) = (AB)x holds. We remark that the triangle matrix A uniquely has an
inverse matrix A~! = B and the matrix B is also triangle.

Let X be a normed sequence space. A sequence (b,) in X is called a Schauder basis for X if for every
x € X there is a unique sequence () of scalars such that

=0.

lim
n

n
X — Z akbk
k=0

A B-space is a complete normed space. A topological sequence space in which all coordinate functionals
Tk, Tk (X) = X, are continuous is called a K-space. A BK-space is defined as a K-space which is also a B-space,
that is, a BK-space is a Banach space with continuous coordinates. For example, the space [,(1 < p < o) is

1
BK-space with |[x[|, = (Z,fio kalp)” and ¢, ¢y and I, are BK-space with [|x|l., = sup [x] .
k
Kizmaz [2] was firstly introduced the concept of the difference operator in the sequence spaces. Further

Etand Colak [3] generalized the idea of difference sequence spaces of Kizmaz.Besides this topic was studied
by many authors ([4], [5]) . Now, the difference matrix A = (6,) defined by

5. = 1", n-1<k<n)
k= 0, O<n-lorn>k).

The difference operator order m is defined A™ : w — w, (A(l)x)k = (xp — xp1) and Ay = (A(l)x)k o (A(m‘l)x) )
form > 2.
The triangle matrix A™ = (6::)) defined by

5 _ (—1>”‘k( o ) (max{0, 1 — m} <k < n)
nk
0, (0 <k <max{0,n —m} orn > k)

for all k,n € IN and for any fixed m € IN.
Let v = (v) be any fixed sequence of nonzero complex numbers. We define operators A™ : w — w by

m e N, A%x = vexe, Apx = (exk — vec1xiee1) , Ax = A" Dy — A"V, 1 and so that

m
| m
Ay = Z(—l)z( ; )Uk—ixk—i

i=0

Polat [6] and Kirisci and Polat [7] have defined some new sequence spaces using Hilbert matrix. Let i, hy
and h., be convergent Hilbert , null convergent Hilbert and bounded Hilbert sequence spaces, respectively.
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An Orlicz function is a function M : [0, ) — [0, o) which is continuous, non-decreasing and convex
such that M (0) = 0, M (x) > 0 for x > 0 and M (x) — oo as x — oo. Lindenstrauss and Tzafriri [8] used the
idea of Orlicz function to construct the following sequence space

KM:{xew:ZM(%)<oo, forsomep>0}

k=1

Im is a Banach space with the norm

Ix]] = inf{p >0: ZM(@) < 1}
k=1 p

which is called an Orlicz sequence space. A sequence M = (M) of Orlicz functions is called the Musielak-
Orlicz function (see [9], [10]). For more details on sequence spaces, see ([11], [12], [13]) and the references
there in.

LetX be a linear metric space. A function p : X — R s called a paranorm, if

(Pl)p(x) =0forxe X,

(P2)p(—x) =p(x)forallx € X,

P3)p(x+y)<p@) +p(y)forallx,ye X,

(P4) If (A,) is a sequence of scalars with A, — A as n — oo and (x,) is a sequence of vectors with
p(x, —x) > 0asn — oo, thenp (A,x, — Ax) > 0asn — oo.

A paranorm p for which p (x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a
total paranormed space. It is well known that the metric of any linear metric space is given by some total
paranorm (see ([9], Theorem 10.4.2, page 183)).

2. Main Results

In this section we define the sequence spaces h, (AS}”), Mu, p) ,ho (Aﬁ,’”), Mu, p) and heo (A(;”), Mu, p) and
give some relations between them. These sequence spaces are linear and BK-spaces. We prove that the new
Hilbert sequence spaces h, (Ag"), Mu, p) Ll (A;m), Mu, p) and fie, (Agf"), Mu, p) are isometrically isomorphic
to the space ¢, ¢y and ., respectively.

Definition 2.1. Let M=(Mj) be a sequence of Orlicz functions, v = (vx) be any fixed sequence of non-zero
complex numbers. Also, let p = (px) and u = (uy) be the bounded sequence and sequence of positive real
numbers, respectively and H = (h,; j) be an infinite Hilbert matrix. In the present paper we have defined the
following sequence spaces:

. 1 [ |ukA(m)xk| I8
I (Agﬂ), Mu, p) = {x =) ew: ’P_I’E"kz‘ o — My ; exists, for some p > 0} ,
=1 |
n [ (m) 1Px
. 1 Uy xy
ho(AS;m),M,M,P)Z{XZ(Xk)Gwir}l_{I(}ok P M | ; | =0, forsomep>0},
-1 |

n

1 wA™x P
hoo(A;’"),M'u,p)z{x=(xk)€w:sup;n+i_1[Mk{| k ; k|]:| < oo, forsomep >0;.
=1

If we take My (x) = xforallk € Nand (v;) = (1,1, ...), My (x) = x for all k € IN, we obtain that &, (Ag,m), u, p) ,
ho (Aﬁ,’"’, u, p), heo (Aﬁ,’”% u, p) and /. (A(’”), u, p) L ho (A(’”), u, p), oo (A(’”), u, p), respectively. Also if (1) = (1) and
(px) = (1), for all k € N, we obtain h, (A(vm), M) , ho (Agm), M) and e, (AS,’”), M) .



D. Barlak, C. A. Bektag / Filomat 37:27 (2023), 9089-9102 9092

We define the sequence y = (y,) which will be frequently used, as the HAY-transform of a sequence as
follows:

() = (HAg) "7
- 1 |k X (1) (e [
:kzzlln+k—1[Mk( o @1

for each k,m,n € IN.
We will use the following inequality throughout the paper. If 0 < px < suppr = H, D = max (1,2H‘1) ,
then

lax + bl < D {laglP + bl (2.2)

for all k and ay, by € C.
Theorem 2.2. Let M=(M}) be a sequence of Orlicz functions, v = (vx) be any fixed sequence of non-zero
complex numbers. Also, let p = (p) and u = (ux) be the bounded sequence and sequence of positive real

numbers, respectively. Then h, (Afj”), Mu, p) ,ho (Aﬁ,’”), Mu, p) and he (Ag"), Mu, p) are linear spaces over
the complex field C.
Proof. We shall prove the assertion for /i, (Aﬁ,””, Mu, p) only and others can be proved similarly. Let

x=),y= (W) € heo (A;m), Mu, p) and a, § € C. Then there exist positive numbers p; and p; such that

s

n (m)
1 |ukAv xk)
su M < 00,
nP I;‘ n+k-1 _ k p1 |
n (m) 1P*
1 |MkAv ]/k|
M < oo,
s‘ip kZ:; n+k—1| % P2 0

for some pq, p2 > 0. Let p3 = max (2 ol p1,2 "8| pz). Since M = (M) is a non-decreasing and convex, using
(2.2) inequality, we have

(m) Pk
., 1 Ay (ax + BYyr)
RS T

n+k-1 P3

! 1 )ukA;m)axk| (ukA;m)ﬁyk) &

= Sgp;nJrk—l[Mk( 03 * 03

n 1 u A;m)x &
< Dsng o — [Mk[| k - k)]l

n 1 u A(m)y Pk
+Dsgpzn+k—1 Mk[) ksz k‘]}

k=1

< oo,

Thus, it becomes ax + By € he (AS,'"), Mu, p). This proves that fie (AS,"’), Mu, p) is linear space. Similarly, it

can be proved that £, (Aﬁ,’”), Mu, p) and hg (Aﬁ,””, M,u, p) are linear spaces.
Theorem 2.3. Let M=(M}) be a sequence of Orlicz functions, v = (vx) be any fixed sequence of non-zero
complex numbers. Also, let p = (px) and u = (uy) be the bounded sequence and sequence of positive real

numbers, respectively. Then /., (As,m), Mu, p) is a paranorm space with the following paranorm,
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el fom sz 1 [ EENY 21 rsome s
g(x) =inf{(p)¢ :|sup, [ vy | Mi|— <1, forsome p >0},

where 0 < p < suppr = H and G = max (1, H).

Proof. (i) Clearly g (x) > 0 for x = (x;) € heo (A;””, Mu, p). Since My (0) = 0, we get g (6) = 0.
(ii) g (—=x) = g (x) is trivial.

(iii) Let x, y € heo (AE,"”, M,u, p). Then there exist pozitive numbers p1, p; such that

n [ (m) 1P*
1 |ukAv xk)
su M <1

n [ (m) 1Px
1 |ukAv yk|
su E M <1
npk:1n+k—1_ k[ P2 |

Let p = p1 + p2. Then by using Minkowski’s inequality, we have

m Pk
- 1 )MkA; (i + yk)(
R W
k=1
Pk
. 1 lukA;’”) (x + )|
- Sgp;n+k—1[Mk( p1+p2
n (m) Pk
P 1 |ukAzz xkl
< su M,
p1+p2 np;nka—l{ k[ P1
n (m) Pk
P2 1 |MkAv yk)
+ M
p1+pzsgp;n+k—1[ k[ P2
<1
and thus,
1 u AS”) X + a%
glx+y) = inf{(P)%:{SUPZn_‘_i_l[Mkp ‘ ;k yk)|]l <1, for some p >0
k=1

IA

. % . 1 (ukﬁ(vm) (o + yk)| "\
mf{(Pl) : [strllp ; P [Mk[ o <1, for some p >0
n (m) P
. B 1 |ukAv (xx + yk)|
+inf {(Pz) : (Slip ; P I:Mk [—pz

Therefore, g (x + y) < g (x) + g ().
Finally, we prove that the scalar multiplication is continuous. Let A be any complex number. By
definition,

Q=

<1, for some p > 0}.
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n (m) P\ ©
i 1 A" ()|
= i G - [ - — > = <
g (Ax) inf{(p)° : {st;p k; P —] [Mk[ P <1, for some p >0
1
n (m) P
, Lk 1 | AT ()|
= N <
inf{(JA|B)© : [sgp k; P ] [Mk( " <1, for some p >0
where t = % > 0. Since |A* < max (1, |[A]P"PP¥), we have

1IAFPY) infd (1) c Ly fuat” ol ) 1, f 0
< SUPPE) i ¢ < .
g (Ax) < max (1, |A] ).inf<{ (£) Sgpkz_;n+k—1 X " <1, for some p >

So the fact that scalar multiplication is continuous is due to the above inequality. This completes the proof
of the theorem.

Theorem 2.4. Let M = (M) be a sequence of Orlicz functions, u = (uy) be a sequence of positive real
numbers and v = (vx) be any fixed sequence of non-zero complex numbers. If foreachk, 0 < px < gx < o0, p =

(px) and g = (gx) are bounded sequences of positive real numbers, then (Aﬁ,’”), Mu, p) Chy (Ag,m), Mu, q) .
Proof. Let x € hy (A;m), Mu, p) .Then

n A(vm) Pk
R NE) B

P
Mk(‘ukAg;) (xk)|]rk -1

for large enough k values. Since M is increasing and py < gx, we have as n — oo

Ak n (m) Pk
1 AT ()|
<Y o

k=1

This means that

1
n+k-1

n

1 | AS” ()|
Z n+k-1 [Mk( p ]

k=1

Thus x € hy (A('”), M,u, q). This completes the proof.
Theorem 2.5. Let M = (M) be a sequence of Orlicz functions, v = (v;) be any fixed sequence of non-zero

Mc® 6. Then ho (A, Mo, p) o (AT, u,p).

Proof. Let ¢ > 0 to prove that g (Ag,m),M,u, p) C ho (Ag,m), u, p) . From the definition of ¢, M (t) > ¢ (£),
for all t > 0. Since ¢ > 0, we have f < gl,,Mk (t) forall t > 0.

Let x = (x¢) € hy (Aﬁ,’“), Mu, p). Thus, we have

| A" ()| S 1 | AT ()| "
P = Z n+k-1 My p

complex numbers and ¢ = lim

t—oo

n

1
Zn+k—1

k=1

k=1
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which means that x = (xx) € hy A;m), u,p). This completes the proof.
p p p

Theorem 2.6. Let M = (Mk) and M’ = (Mk) be sequences of Orlicz functions and v = (vx) be any fixed
sequence of non-zero complex numbers, then

(A;m)’M ", p) ﬂho( M, p) C hy (A;m),(/\/(' +M”),u,p).

Proof. Let x = (x¢) € o (A, M u,p) 0 ho (AY”, M, u, p). Therefore,

oo [ (A @]
Z—n+k 1»Mk(—|k P k|] asn — oo

=

asn — o9,
k=1

1 [ (Al o)) &
— M | ———=
n+k—-1 P

Then, we have

; 1 , o (A ()| "
Zk=1m[(Mk+Mk) T

e
(gt

Thus,

S |ukA<’"> @\

p

Therefore, x = (x¢) € ho (A™, (M +M") ,u,p) and this completes the proof.
P P P

Theorem 2.7. Let M = (Mk) and M’ = (Mk) be sequences of Orlicz functions and v = (vx) be any fixed
sequence of non-zero complex numbers, then

ho (A(U’”), M u, p) C hy (A;m), (M o M) u, p)

Proof. Let x = (x;) € hy (AS,"’), M u, p) . Then we have

n U A(m X,
lim L 11\/1 [l £ m']} - 0.
n—oco n+k-1 p

k=

Let ¢ > 0 and choose 6 > 0 with 0 < 6 < 1 such that My (f) < ¢, for 0 <t <.
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weA™ (x

d id.
oyl LY 5 and consider

n

Y Mol = Y M (ol + ) M (yoT”
1 2

k=1

where the first summation is over yx < 6 and the second summation is over y, > 6. Since M;, is continuos,
we have

Z [Mi (gl < € 2.3)

1
and for yx > 0, we use the fact that
Yk Yk

< .
Yk < 5 <1+ 5

From the definition, we have for y; > 0

Mk (]/k) < 2Mk (1) %

Hence,

Z [Mi ()] < max (1, (2M, (1) 6’1)H) Z [ye]™ (2.4)
1

1

From the equation (2.3) and (2.4), we have

ho (A;m), M, p) C hy (A(vm), (M o M) u, p).

Theorem 2.8. Hilbert sequence spaces h. (A;m),M,u, p) , ho (A(v’"), Mu, p) and he, (A(D’"), Mu, p) are iso-
metrically isomorphic to the space ¢, ¢y and I respectively, that is, k. (A;”’), M,u, p) = hy (Ag,m), M, u, p) =~
co and Moo (AE,"’), Mu, p) = ..

Proof. We'll just do the proof for hy (Ag,m),/\/(,u, p) = ¢y for the others it can be done similarly. To
demonstrate the theorem, we must show that there is linear bijection between the space hg (A;"”, Mu, p)

and ¢g. For this, we consider the transformation T defined by the notation (2.1), from kg (A;m), Mu, p) to cp
by x — y = Tx. The linearity of T is obvious. Moreover, when Tx = 0 it is trivial that x = 6 = (0,0, 0...) and
hence T is injective. Next, let y = () € ¢y and the sequence x = (x,) is defined as follows:

x”zv’;li{i( m+in_—ki—1 )h;cl}]/k

k=1 Lk=1

where /1! is defined by (2.1). Then,
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] ”
Mu,, n 1 u A(m) (xk)
lim (HAg,m)x) oo im Y —— My M
n—oo n n—oo0 - n +k_ 1 p
= lim Y 1 >Mk |”k Yo (=1) (’?)xk—ivk—i)]rk
n—>°°k:1n+k—1» p
- ~ y
v [ (e R e s )
oot 4 k=1 [ F 0
k=1 i
= iy =0

9097

Thus, x € hy (Ag,m), M,u, p). As a result, it is clear that T is surjective. Since it is linear bijection,

hy (Aﬁ,'"), Mu, p) and cp are linear isomorphic. This completes the proof.

Remark 2.9. It is well known that the spaces c,cy and I are BK-spaces. Let us considering the fact
that A™ is a triangle, we can say that the Hilbert sequence spaces . (Ag,m),M,u, p) , ho (AE,"”, Mu, p) and

heo (Aﬁ,’“), Mu, p) are BK-spaces with the norm defined by

Mu, Mup
Iy = |[Hag" ],
n m im Pk
1 |t S (1) (1) xe—iici]
= M
e
Corollary 2.10. Define the space d® = (dﬁ,k) (AE,””, Mu, p))neN
L mrn—i=-1) N
U Zi:k n— i hik Uk
n
9 (A, M p) = | Tk | M ; oz
0/ n<k

for every fixed k € IN. The following statements hold:

(2.5)

(i) The sequence d;k) (A(Um), Mu, p) is a basis for the space hy (AS}”’, Mu, p) and every x € hy (Ag,m), Mu, p)

has a unique representation of the form

Mu,
x= Zk" (HAY %)™ a®

(ii) The set {t, A0 g, } is a basis or the space h, (A;’"% Mou, p) and every x € h, (Ag,m),M,u, p) has a

unique representation of the form

x =st+ Z [(HAS,m)x):/{'u'p - s] d®
k
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Pk
U Nily

m+n—i-1) |
. hg{vk
n—i

Mu,p
B .

wheret = t, (Ag;m)/ Mu, P) = Y1 [ M forallk € Nands = lim (HAS")x)

P k—co
Corollary 2.11. The Hilbert sequence spaces hy (ASJ’”, Mu, p) and h, (Aﬁ,’”), Mu, p) are separable.

3. Characterizations of Matrix Transformation and a—, f— and y—duals

Let A = (a,) be an infinite matrix of complex numbers, X and Y be subsets of the sequence space w.
Let x = (xx) and y = (yx) be two sequences. Thus, we can write xy = (xyx), X' *Y = facw:ax €Y}
and M(X,Y) = Nyex1 * Y = {a € w :ax € Y, for all x € X} for the multiplier space of X and Y. In the special
cases of Y = {l1,cs,bs}, we write x* = x7 1« [, xf = x T xcs, ¥’ = x 1 +bsand X* = M(X,11), XP = M (X,cs),
XV = M (X, bs) for the a—dual, f—dual, y—dual of X. By A, = (a,x) we denote the sequence in the nt"—row of
A and write A, (x) = Yi0q auXx Yn € N and A (x) = (A, (x)), provided A, € xP for all n.

We shall begin with the lemmas due to Stieglitz ve Tietz [15] which will be used in the computation of
the f— and y—duals of the Hilbert sequence spaces.

Lemma 3.1. [16] Let X, Y be any two sequence spaces. A € (X : Y7) if and only if TA € (X : Y), where A
is an infinite matrix and T is a triangle matrix.

Lemma 3.2. (i) Let A, = (a4) be an infinite matrix. Then A € (¢ : L) if and only if

su |2,k < oo 3.1
1p Zk: k 3.1
(ii) A € (o : ¢) if and only if (3.1) holds with

limay exists for all k. (3.2)

(iii) A € (co : bs) if and only if

m
sup Y Y
Tk =0

(iv) A € (co : cs) if and only if (3.3) holds with

< oo, (3.3)

Z ay, convergent for all k. (3.4)
k

Lemma 3.3. (i) Let A, = (a,x) be an infinite matrix. Then A € (c : ¢) if and only if (3.1) and (3.2) hold with

lim A, exists.

n—o0

(ii) A € (I : ¢) if and only if (3.2) holds with
1151’1 Z |ax| = Z ug{}o Ank
k k

Lemma 3.4.(i) Let A, = (a,x) be an infinite matrix. Then A € (c : ¢s) if and only if (3.3), (3,4) hold and

. (3.5)
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Z Z ayr convergent. (3.6)
n ok

(ii) A € (I : cs) if and only if (3.2) holds and

m)

00

2 o

n=m

= (3.7)

Lemma 3.5. [17] Let U = (u,x) be an infinite matrix of complex numbers for all 7,k € N. Let BY = (b,x)
be defined via a sequence a = (ax) € w and inverse of the triangle matrix U = (u,;) by

n

bnk = Za]-ujk

=2

for all n,k € IN.Then,
X ={a=(@)ew:B" e (X: 1)},
Xﬂz{az(ak)ew:Bue(X:c)}

XY

p={a=(@)ew:BY e (X: 1)}

Theorem 3.6. The a—, f— and y-duals of the Hilbert sequence spaces defined as

P = =@ ew:Welo:h),
[hc (A(U"'),M,u, p)]a = fa=@)ew: We(:)},
)

[ (A M p)|" = fa=(a) ew:We (w:h)},
[0 (89, Mae,p)| = ta=@)cw: Wele:o),
[he (A, Ma,p)]| = ta=@)ew:We:o),

1 (A, Map)]| = ta=(@) ew: Welu:0),
' = =@ ew:Welo: o),
[ = =@ew:We:lo),
fa=(@@)ew: We (s :lo)l.

2

g
g
=

N—

—
Il

Proof. We shall only compute the a—, f— and y-duals of kg (Ag,m),M,u, p) sequence space. Let /! is
defined by (2.1). Let us take any a = (a;) € w. We define the matrix W = (w,x) by

Pk

u
n k n—i

wnk=Z M P

k=1

m+n—i—1
Z?_k( ) )h;{lanv‘l
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Consider the equation

n n

Z ax = Z (k0" (@ee)

k=1 k=1
m+k—j—11Y\, _ e
" Uy Zf:l {21;{_1' ( k— ]] )hijl} akvklyi‘

:Z M, ;

k=1

-~
Uk

=

k k m+k—j—l 1.1
y et {Z]‘:i( k—j )hi]’ aiv; " ¢ Y
= k

= P

= (W}))n : _ (3.8)

Using (3.8), we haveax = (axx) € csorbswheneverx = (xi) € hy (A;m), Mu, p) ifandonlyif Wy € I3, corle
whenever y = (i) € ¢o. Then, from Lemma 3.1 and Lemma 3.5, we obtain thata = (a) € [ho (Ai,’”), Mu, p)]a ,
a = (a) € [ (AY”, Moy, p)]ﬂ ora = (@) € [h (A", Ma,p)|” if and only if W € (co: 1), W € (co: ) or
W € (co : l), which is required result.

Therefore, the a—, — and y-duals of Hilbert sequence spaces will be helpful in the characterization of
matrix transformations. Let X and Y be arbitrary subsets of w. We will show that the characterization of
the classes (X : Y1) ve (X7 : Y) can be reduced to (X, Y), where T is a triangle. Since if the sequence spaces
ho (A;m),M,u, p) and ¢ are linearly isomorphic, then the equivalence class x € hg (Ag"), Mu, p) & Yy e
holds. So using Lemma 3.1 and 3.5, we get the desired result.

Theorem 3.7. Let us consider the infinite matrices A = (a,x) and B = (bx). These matrices get associated
with each other by the relations:

Pk

b= Y, | M (3.9)

for all k,m, n € IN. Then the following statements are true:

(i) A € (o (AY”, M, p) - Y) if and only if (.} en € [0 (AL, Mo, p)]ﬁ foralln € Nand B € (c, Y) ,where
Y be any sequence space;

(i) A € (hc (A;m),M,u, p) : Y) if and only if {a,lren € [hc (AS,’"),M,u, p)]ﬁ foralln € Nand B € (c,Y),
where Y be any sequence space;

(iii) A € (oo (AT, Mo, p) : Y) if and only if {auchen € [ (AY”, Mos, p)]ﬁ foralln € N and B € (I, Y),
where Y be any sequence space.

Proof. We suppose that the relation in (3.9) holds between A = (a,x) and B = (b,x).The spaces
ho (Ag,m),M,u, p) and ¢ are linearly isomorphic. Let A € (ho (A;m),/\/(,u, p) : Y) and y = (yx) € co.Then

BHA™ exists and (a,) € [ho (AE}”), Mu, p)]ﬁ for all k € IN, it means that (b,x) € ¢o for all k,n € N. Hence, By
exists for each y € ¢g.Thus, if we take m — oo in the equality,
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Pk

+k—j-1
m m Ug [Z?:l Z?:i( " k— ]] )hi‘jl] ap vt

Zﬂnkxk = Z My = Z bk
k=1 P k

k=1

for all m,n € IN which conclude that B € (¢, Y) . On the contrary, let (a,x)ren € [ho (Ag,m),/\/(,u, p)]ﬁ for each

keINandB € (¢, Y) and x = (x¢) € hg (A§,"”, Mu, p). Then it is clear that Ax exists. Thus, we attain from the
following equality for alln € N

Z bukyx = Z Ak X
% %

as m — oo that Ax = By and it is easy to show that A e(ho (Aﬁ,’"), M,u, p) : Y). This completes the proof.

Theorem 3.8. Let us assume that components of the infinite matrices A = (a,x) and E = (e,) are
connected with the following relation

,_k _ Pk
|uk2';:k(—1>f ("o’

enk=22n+]_ ; (3.10)

k=1 j=k

for all m,n € IN and X be any given sequence space. Then the following statements are true:
(i) A = (an) € (X : 1o (A, M, p)) if and only if E € (X : co);
(i) A = (au) € (X : he (AY”, My, p) )if and only if E € (X : 0);
(ii)) A = (@) € (X : heo (A", M, p)) if and only if E € (X : L)

Proof. Let us suppose that z = (z;) € X. Using the relation (3.10), we have

- B Pk
m ‘uk [Z;’Izk (_1)] ¢ (ka)ajkvkl] Zk|

ZEnka—Z ZZH+]— 0 (3.11)

k=1 k=1 | k=1 j=k

for all m,n € IN. Then, for m — co equation (3.11) gives us that (Ez), = {HAS,"Z) (Az)}n. Thus, we can obtain

that Az € hy (AE}”), Mu, p) if and only if Ez € ¢p. This completes the proof.
Now, we give some conditions:

liinank =0foralln, (3.12)
lim laux| = (3.13)
hm Z )ank a, k+1) = (3.14)

sup Z (ank - an,]ﬁ_l‘ < o0, (3.15)
Tk



Z_

Z_
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likm (ank — anx+1) exists for all k, (3.16)

,}g{}o Z 'ank - an,k+1| = Z r}g{}o (ank - an,k+1) ’ (3~17)
3 3

sup 1}1_1;21011,1;{ < o0, (3.18)

Corollary 3.9. Let A = (a,) be an infinite matrix and X = hy (AE}”), Mu, p), Y = ( A Mou, p) and

Heo (A(m), Mu, p) . Then, the following statements hold:
(@) A = (an) € (X, 1) if and only if (3.1) holds with by instead of a,;
(b) A = (an) € (X, bs) if and only if (3.3) holds with b, instead of a,;
(c) A = (au) € (Y, cs) if and only if(3.3), (3.4) and (3.6) hold with b, instead of a,;
(d) A = (au) € (Z,¢) if and only if (3.2) and (3.5) hold with by instead of a,;
(e) A = (ank) € (Z, cs) if and only if (3.7) holds with b, instead of a,;
(f) A = (a) € (X, c) if and only if (3.1) and (3.2) hold with b, instead of a,;
(9) A = (a) € (X, ¢s) if and only if (3.3) and (3.4) holds with b, instead of a,.

Corollary 3.10. Let A = (a,x) be an infinite matrix and X = hy ( A;’”), M.u, p), Y = h, (A;m), Mu, p) and

Neo (Aﬁ,’”’, Mu, p) . Then, the following statements hold:
(@) A = (an) € (lo, X) if and only if (3.13) holds with e, instead of a,;
(b) A = (an) € (bs, X) if and only if (3.12) and (3.14) hold with e, instead of a,;;
(c) A = (an) € (bs,Y) if and only if (3.12), (3.16) and (3.17) hold with e, instead of a,;;
(d) A = (an) € (cs,Y) if and only if (3.15) and (3.2) hold with e, instead of a,y;
(e) A = (an) € (bs, Z) if and only if (3.12) and (3.15) hold with e, instead of a;
(f) A = (au) € (cs, Z) if and only if (3.15) and (3.18) hold with e, instead of a,;
(9) A = (au) € (cs, X) if and only if (3.2) and (3.15) hold with e, instead of .
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