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Abstract. In the present paper, we have considered a cubic (α, β) metric which is an special class of p-power
Finsler metric, and obtained the conditions under which the Finsler space with such special metric will
be projectively flat. Further, we also obtain in which case this Finsler space will be a Berwald space and
Douglas space.

1. INTRODUCTION

Let Mn be an n-dimensional C∞ manifold and TxM denotes the tangent space of Mn at x. The tangent
bundle of Mn is the union of tangent spaces TM = ∪xϵMTxM. We denote the elements of TM by (x, y), where
y ϵTxM. Let TM0 = TM − {0}.

Definition 1.1. A Finsler metric on Mn is a function L : TM→ [0,∞) with the following properties:

1. L is C∞ on TM0,
2. L is positively 1-homogeneous on the fibers of tangent bundle TM, and

3. the Hessian of L2 with element 1i j =
1
2
∂2L2

∂yi∂y j is regular on TM0, i.e., det
(
1i j

)
, 0.

The pair (Mn,L) is then called a Finsler space. L is called fundamental function and 1i j is called fundamental tensor.

An n-dimensional Finsler space Fn = (Mn,L) is known as a locally Minkowski space [15] if the mani-
fold Mn is covered by coordinate neighbourhood system (xi) in each of which the metric L is a function of
yi only. Further the Finsler space Fn is known as projectively flat if Fn is projective to a locally Minkowski
space. Further Matsumoto [16] gave a condition for a Finsler space with Randers metric and Kropina metric
to be projectively flat. The projective flatness property for the Finsler space with various important (α, β)−
metric was studied by various authors [6, 8, 9, 14, 17, 18, 20, 21] and obtained interesting results in field of
Finsler geometry.
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A Finsler space is called Berwald space if the Berwald connection BΓ = (Gi
jk,G

i
j, 0) is linear. On the

basis of berwald connection Basco and Matsumoto [19] introduced the notion of Douglas space as a gener-
alization of the Berwald space from the view point of geodesic equations in the year 1997. The condition
for a Finsler space with an (α, β)-metric to be Douglas type was studied by many authors [2, 3, 7, 17].

The concept and importance of (α, β) metric in Finsler space was introduced and explained by
Matsumoto [12] in details and the metric L = L(α, β) in a n-dimensional manifold Mn is defined as a
positively homogeneous function of degree one in α and β, where α is a regular Riemannian metric

α =
√

ai j(x)yiy j, i.e., det(ai j) , 0 and β is a one-form β = bi(x)yi which was an generalization of Rander’s
metric L = α + β. Other than Rander’s metric there are several important (α, β)-metrics, namely Kropina
metric L = α2

β , Matsumoto metric α2

α−β , generalized Kropina metric L = αn+1

βn and Z. Shen’s square metric

L = (α+β)2

α , infinite series metric β2

β−α and many more metric was studied by many authors [2, 6, 10, 13–
15, 21] and obtained variours landmarks in the field of Finsler geometry. Further, a generalized form of an
(α, β)-metric on an n-dimensional manifold Mn defined as

L = α(1 +
β

α
)p, (1)

is known as the class p-power (α, β)- metrics [5], where p , 0 is a real constant. If p = 1 then equation (1)
reduces to Rander’s metric which has important and interesting curvature properties and firstly introduced
by Ingarden in 1957. If p = 2 then it becomes square metric and it also known as Z. Shen’s square metric. If
p = −1 it reduces to Matsumoto type metric which can be used in measurement of slope of a mountain. If
p = 1/2 it reduces to square root metric i.e. L =

√
α(α + β), this metric detailed studied by [5] and so on.

In the present paper, we considered p = 3 in equation (1) and get special class of (α, β)- metric in the
form of

L =
(α + β)3

α2 , (2)

and named as cubic (α, β)- metric in an n-dimensional manifold Mn and a n-dimensional Finsler Fn space
equipped with cubic (α, β)- metric is known as Finsler space with cubic (α, β)- metric. Further, we investigate
projectively flatness property of the Finsler space Fn and under which conditions it will be Berwald and
Douglas space.

2. Projectively flat Finsler space with cubic (α, β)-metric

In present section, we have obtained the condition for a Finsler space Fn with a cubic (α, β)-metric
defined in equation (2) to be projectively flat.

Matsumoto [14] considered γi
jk represent the Christoffel symbols in the Riemannian space (Mn, α)-

metric and defined following notations which are used by us in the present paper are given below:

ri j =
1
2

{
bi; j + b j;i

}
, ri

j = aihrhj, r j = biri
j,

si j =
1
2

{
bi; j − b j;i

}
, si

j = aihshj, s j = bisi
j, bi = aihbh, b2 = bibi.

where bi; j, is the covariant derivative of the vector field bi with respect to Riemannian connection γi
jk, i.e.,

bi; j =
∂bi
∂x j − bkγk

i j.
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Further he proved that a Finsler space Fn = (Mn,L) with an (α, β)-metric L(α, β) is projectively flat if
and only if for any point of the manifold Mn there exists local coordinate neighbourhoods containing the
point such that the Christoffel symbols γi

jk in the Riemannian space (Mn, α) satisfies:

(γi
00 − γ000yi/α2)/2 + (αLβ/Lα)si

0 + (Lαα/Lα)(C + αr00/2β)(α2bi/β − yi) = 0, (3)

where a subscript ′0′ means a contraction by yi and C is given by

C + (α2Lβ/βLα)s0 + (αLαα/β2Lα)(α2b2
− β2)(C + αr00/2β) = 0. (4)

By the homogeneity of L, we know that α2Lαα = β2Lββ, therefore equation (4) can be rewritten as{
1 + (Lββ/αLα)(α2b2

− β2)
}

(C + αr00/2β) = (α/2β)
{
r00 − (2αLβ/Lα)s0

}
. (5)

If 1 + (Lββ/αLα)(α2b2
− β2) , 0, then we can eliminate (C + αr00/2β) in (3) and it is written as in the form{

1 + Lββ(α2b2
− β2)/αLα

} {
(γi

00 − γ000yi/α2)/2 + (αLβ/Lα)si
0

}
+(Lαα/Lα)(α/2β)

{
r00 − (2αLβ/Lα)s0

}
(α2bi/β − yi) = 0.

(6)

Thus we have [6]

Theorem 2.1. If 1 + (Lββ/αLα)(α2b2
− β2) , 0, then a Finsler space Fn with an (α, β)-metric is projectively flat if

and only if (6) is satisfied.

It is known that if α2 contains β as a factor, then the dimension is equal to two and b2 = 0 [18].
Throughout this paper, we assume that the dimension is more than two and b2 , 0, that is, α2 . 0(modβ).
The partial derivative with respect to α and β of (2) are given by

Lα =
(α + β)2(α − 2β)

α3 , Lβ =
3(α + β)2

α2 , Lαα =
6β2(α + β)
α4 , Lββ =

6(α + β)
α2 . (7)

If 1 + (Lββ/αLα)(α2b2
− β2) = 0, then we have

{
α2(1 + 6b2) − αβ − 8β2

}
= 0, which leads a contradiction. Thus

theorem 2.1 can be applied.
Substituting (7) into (6), we get

(α2(1 + 6b2) − αβ − 8β2)
{
(α2γi

00 − γ000yi)(α − 2β) + 6α4si
0

}
+6α2

{
r00(α − 2β) − 6α2s0

}
(α2bi

− yiβ) = 0.
(8)

The above equation can be rewritten as polynomial of degree six in α expressed as

p6α
6 + p4α

4 + p2α
2 + α(p5α

4 + p3α
2 + p1) = 0, (9)

where
p6 = 6

{
si

0(1 + 6b2) − 6s0bi
}
,

p5 = α4γi
00 + 6α4b2γi

00 − 6α4βsi
0 + 6α4r00bi,

p4 = −3α4βγi
00 − 12α4βb2γi

00 − 48α4β2si
0 − 12α4βr00bi + 36α4βyi,

p3 = −α2γ00yi
− 6α2b2γ000yi

− 6α2β2γi
00 − 6α2βr00yi,

p2 = 3α2βγ000yi + 12α2βb2γ000yi + 16α2β3γi
00 + 12α2β2r00yi,

p1 = 6β2γ000yi,
p0 = −16β3γ000yi

.
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Since p6α6 + p4α4 + p2α2 + p0 and p5α4 + p3α2 + p1 are rational and α is irrational in yi, we have

p6α
6 + p4α

4 + p2α
2 + p0 = 0, (10)

p5α
4 + p3α

2 + p1 = 0. (11)

The term which does not contain β in (10) is p6α6. Therefore there exist a homogeneous polynomial V6 of
degree six in yi such that

6
{
si

0(1 + 6b2) − 6s0bi
}
α6 = βV6.

Since α2 . 0(modβ), we must have a function ui = ui(x) satisfying

6
{
si

0(1 + 6b2) − 6s0bi
}
= uiβ. (12)

Transvecting (12) by bi, we have

6s0 = uiβbi, (13)

that is, 6s j = uibib j. Furthermore transvecting this equation by b j, we have uibib2 = 0, that is, uibi = 0.
Substituting this equation into (13), we have s0 = 0, Therefore from (12), we get

6(1 + 6b2)si j = uib j, (14)

which implies uib j+u jbi = 0. Transvection this equation by b j, we have uib2 = 0 by virtue u jb j = 0. Therefore
we get ui = 0. Hence, from (14), we have si j = 0.

On the other hand, from (11), we have 1-form v0 = vi(x)yi such that

γ000 = v0α
2. (15)

Substituting s0 = 0, si
0 = 0 and (15) into (8) , we have{

α2(1 + 6b2) − αβ − 8β2
}

(γi
00 − v0yi) + 6r00(α2bi

− yiβ) = 0, (16)

by virtue of (α − 2β) , 0. Then the equation (16) is written in the form Pα +Q = 0, where

P = −β(γi
00 − v0yi),

Q =
{
α2(1 + 6b2) − 8β2

}
(γi

00 − v0yi) + 6r00(α2bi
− yiβ).

Since P and Q are rational and α is irrational in yi, we have P = 0 and Q = 0.

First it follows from P = 0 that

γi
00 − v0yi = 0, (17)

that is,

2γi
jk = v jδ

i
k + vkδ

i
j, (18)

which shows that the associated Riemannian space (Mn, α) is projectively flat.

Next, from Q = 0 and (17), we have

6r00(α2bi
− βyi) = 0. (19)

Transvecting (19) by bi, we have 6r00(α2b2
− β2) = 0, from which we get r00 = 0 that is ri j = 0. From si j = 0

and ri j = 0 we have bi; j = 0.
Conversely, if bi; j = 0, then we have r00 = si

0 = s0 = 0. So (8) is a consequence of (17). Thus we have

Theorem 2.2. A Finsler space Fn equipped with a cubic (α, β)-metric is projectively flat if and only if bi; j = 0 and the
associated Riemannian space (Mn, α) is projectively flat.
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3. Berwald Space for cubic (α, β)-metric

In the present section, we obtained the condition that a Finsler space Fn with cubic (α, β)-metric to be
a Berwald space.

A Finsler space is called Berwald space if the Berwald connection BΓ = (Gi
jk,G

i
j, 0) is linear. In [10], the

function Gi of a Finsler space with an (α, β)-metric are given by 2Gi = γi
00 + 2Bi, then we have Gi = γi

0 j + Bi
j

and Gi
jk = γ

i
jk + Bi

jk where Bi
jk = ∂̇kBi

j and Bi
j = ∂̇ jBi. Thus a Finsler space with an (α, β)-metric is a Berwald

space iff Gi
jk = Gi

jk(x) equivalently Bi
jk = Gi

jk(x). Moreover on account of [13] Bi
j is determined by

LαBt
jiy

jyt + αLβ(Bt
jibt − b j;i)y j = 0, where yk = aikyi. (20)

Substituting (7) in (20) we have,

(α − 2β)Bt
jiy

jyt + 3α2(Bt
jibt − b j;i)y j = 0. (21)

Assume that Fn is a Berwald space i.e., Bi
jk = Bi

jk(x). Separating (21) in rational and irrational terms of yi as

3α2(Bt
jibt − b j;i)y j

− 2βBt
jiy

jyt + αBt
jiy

jyt = 0, (22)

which yields two equations

3α2(Bt
jibt − b j;i)y j

− 2βBt
jiy

jyt = 0, (23)

and

Bt
jiy

jyt = 0. (24)

Substituting (24) in (23), we have

3α2(Bt
jibt − b j;i)y j = 0. (25)

Case (i) If (Bt
jibt − b j;i)y j = 0, we have

Bt
jibt − b j;i = 0, (26)

which gives bi; j = 0.
Case (ii) If 3α2 = 0
=⇒ α = 0, which is a contradiction. Conversely, If bi; j = 0, then Bt

ji = 0 are uniquely determined from (21).
Hence we conclude the following

Theorem 3.1. A Finsler space Fn equipped with a cubic (α, β)-metric is a Berwald space if and only if bi; j = 0.

4. Douglas Space for cubic (α, β)-metric

In this section, we obtained the condition for a Finsler space Fn with a cubic (α, β)-metric to be of
Douglas type.

Douglas [11] introduced a curvature which always vanishes for a Riemannian metrics and this curva-
ture known as Douglas curvature. Douglas metric is a Finsler metric in which Douglas curvature vanishes
and the space equipped with Douglas metric is known as Douglas space. Matsumoto and Basco character-
izes [19] that a Douglas space as a Finsler space for which Bi j = Biy j

− B jyi are homogeneous polynomials
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of degree 3, in short we write Bi j is hp(3).

In view of [13], if β2Lα + αγ2Lαα , 0, then the function Gi(x, y) of Fn with an (α, β)-metric is written in
the form

2Gi = γi
00 + 2Bi,

where

Bi =
αLβsi

0

Lα
+ C∗

{
βLβyi

αL
−
αLαα

Lα

(
yi

α
−
αbi

β

)}
C∗ =

αβ(r00Lα − 2s0αLβ)
2(β2Lα + αγ2Lαα)

,

and
γ2 = b2α2

− β2.

The vector Bi(x, y) is called the difference vector. Hence Bi j is written as

Bi j =
αLβ
Lα

(si
0y j
− s j

0yi) +
α2Lαα
βLα

C∗(biy j
− b jyi).

Substituting (7) in above equation, we get

[α2(1 + 6b2) − αβ − 8β2][(α − β)Bi j
− 3α2(si

0y j
− s j

0yi)]

−3α2[r00(α − 2β) − 6s0α
2](biy j

− b jyi) = 0.
(27)

If Fn is a Douglas space, then Bi j are homogeneous polynomials of degree 3. i.e., Bi j is hp(3). Arranging
the rational and irrational terms of equation (27), we have

[3α2β + 12α2b2β − 16β3]Bi j + 3α2[α2(1 + 6b2) − 8β2](si
0y j
− s j

0yi)

−[6α2βr00 + 18α4s0](biy j
− b jyi)

+α[α2(1 + 6b2) − 6β2]Bi j + 3α2β(si
0y j
− s j

0yi) − 3α2r00(biy j
− b jyi) = 0.

(28)

Separating rational and irrational terms of yi in (28), we have the following two equations

[3α2β + 12α2b2β − 16β3]Bi j + 3α2[α2(1 + 6b2) − 8β2](si
0y j
− s j

0yi)

−[6α2βr00 + 18α4s0](biy j
− b jyi) = 0,

(29)

[α2(1 + 6b2) − 6β2]Bi j + 3α2β(si
0y j
− s j

0yi) − 3α2r00(biy j
− b jyi) = 0. (30)

Eliminating Bi j from (29) and (30), we have

P(si
0y j
− s j

0yi) +Q(biy j
− b jyi) = 0, (31)

where

P = α2(−51β2
− 18β2b2 + 3α2 + 18α2b2 + 108β2b4

− 108β2b2) + 192β4, (32)

Q = α2[3βr00 − s0(18α2
− 108α2b2

− 108β2)] − 12β3r00. (33)

Contracting of (31) by biy j leads to

Ps0α
2 +Q(b2α2

− β2) = 0. (34)
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Since the term −12β5r00 of (34) seemingly do not contain α2, we must have hp(5)v5 such that

−12β5r00 = α
2v5. (35)

Let us discuss the following two cases :
(i) v5 = 0
(ii) v5 , 0, α2 . 0(modβ).
Case (i) : v5 = 0
In this case of v5 = 0, we have r00 = 0 from (35), and (34) is reduced to

s0

{
P +Q1(b2α2

− β2)
}
= 0, (36)

where,

Q1 = −(18α2
− 108α2b2

− 108β2). (37)

If P + (b2α2
− β2) = 0 in (36) then the term of (36) which does not contain α2 is 84β4. Therefore there exist a

hp(2)v2, such that 84β4 = α2v2. Since we suppose α2 . 0(modβ), we have v2 = 0 which leads to contradicton.
Therefore P + Q1(b2α2

− β2) , 0 and we obtain s0 = 0 from (36). Substituting s0 = 0 and r00 = 0 in (31), we
have

P(si
0y j
− s j

0yi) = 0. (38)

If P = 0, (32) implies

α2(−51β2
− 18β2 + 3α2 + 18α2b2 + 108β2b4

− 108β2b2) + 192β4 = 0. (39)

The term of (39) which seemingly does not contain α2 is 192β4. Thus there exist hp(2)v2, such that 192β4 =
α2v2. In this case we have v2 = 0 which leads to contradiction. Therefore P , 0 and we otain from (38),

(si
0y j
− s j

0yi) = 0. (40)

Contracting above equation by y j, we get si
0 = 0 which implies ri j = si j = 0, i.e., bi; j = 0.

Case (ii) : v5 , 0, α2 . 0(modβ).
From (35), there exists a function h = h(x) such that

r00 = hα2. (41)

Substituting (41) in (34), we have

Ps0 + [(3α2β − 12β3)h − s0(18α2
− 108α2b2

− 108β2)](b2α2
− β2) = 0. (42)

In (42), the term which seemingly do not contain α2 are 84β4s0 − 12β5h. Therefore there exists a hp(3)v3 such
that 12β4(7s0 − βh) = α2v3. Since α2 . 0(modβ),we have v3 = 0. Thus

7s0 − βh = 0, (43)

which implies 7si − hbi = 0. By contracting this by bi, we get b2 = 0.
For b2 = 0, (42) is reduced to

s0(−33α2β2 + 3α4 + 174β4) − h(3α2β3 + 15β5) = 0, (44)

which implies s0 = 0 and h = 0. Thus we have s0 = r00 = 0.
Therefore for both the cases v5 = 0 and v5 , 0, we have s0 = r00 = 0. Hence (31) is reduced to P(si

0y j
−s j

0yi) = 0.
Since P , 0, we have si

0y j
− s j

0yi = 0 and contraction by y j gives si
0 = 0, which implies ri j = si j = 0. i.e, bi; j = 0.

Conversely, if bi; j = 0, then we get Bi j = 0 from (31). Hence Fn is Douglas space. Thus we have

Theorem 4.1. A Finsler space Fn equipped with a cubic (α, β)-metric is a Douglas space if and only if bi; j = 0.
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5. Conclusion

In the present paper, we have characterize a special (α, β)-metric which is an special class of p-power

Finsler metric in the form of L = (α+β)3

α2 and named as cubic (α, β)-metric. Further, we examine the projective
flatness property and prove that in theorem (2.2) that the Finsler space Fn equipped with cubic (α, β)-metric
will be projectively flat iff bi; j = 0 and the associated Riemannian space (Mn, α) is projectively flat. In the
last two article we have found the condition which stated in theorem (3.1) and (4.1) for the Finsler space
Fn to be a Berwald and Douglas space respectively. In future, we can also find the condition for Weakly
Berwald /Landsberg space and results related to conformal change in the Finsler space Fn with the cubic
(α, β) - metric which is defined in equation (2).
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