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Abstract. Let X, be a finite CW complex with cohomology type (4, b), characterized by an integer n > 1
[20]. In this paper, we show that if G = (Z,)" acts freely on the product Y = []", X, where X/, are finite
CW complexes with cohomology type (a,b), a and b are even for every i, then g < m. Moreover, for n even
and a = b =0, we prove that G = (Z,)7 (7 < m) is the only finite group which can act freely on Y. These are
generalizations of the results which says that the rank of a group acting freely on a space with cohomology
type (a,b) where a and b are even, is one and for n even, G = Z, is the only finite group which acts freely on

spaces of cohomology type (0,0) [17].

1. Introduction

Let G be a finite group and p be a prime. The rank of G is defined by rk(G) = max {q | (Z,)7 C
G as a subgroup}. One of the interesting problems in topological transformation groups is to find rk(G)
when G acts freely on a space X. P.A. Smith [16] and R.G. Swan[19] showed that if a finite group G acts
freely on a sphere " then rk(G) = 1. Conner [7] proved that if a finite group G acts freely on 5" X 5" then
rk(G) = 2. Heller [14] proved the same result for arbitrary product of two spheres 5" x §". In this direction,
Benson and Carlson [5] arise the following conjecture: If a finite group G acts freely on X = []/%; $" then
rk(G) < m. So far this conjecture has been proved in the following cases: Carlsson [6] proved the result
forp =2 and n; = np = -+ = ny, with the condition that the induced action of G is trivial on the mod
2-cohomology algebra of X. Adem and Browder [1] proved this result forny =n; =--- =nyandn #1,3,7.
Hanke [13] proved Carlsson conjecture for all primes p > 3(1; + --- + ng). Okutan and Yalcin [15] proved
this result for dimensions n; which are higher compared to the differences |1; — n;| among all dimensions.

Cusick [8] proved that if G acts freely on X = []iZ; RP" and the induced action of G on the mod 2
cohomology algebra of X is trivial then rk(G) = v(m1) + - - - + v(n,,), where

0 ifniseven
v(n) =41 ifn=1(mod4)
2 ifn=3(mod 4).
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Adem and Yalcin [2] improved this result without the assumption of trivial induced action on the mod 2
cohomology algebra of X. Cusick [9] shown that if X = [];Z; CP" then rk(G) = v(11) + - - - + v(1,,), where

V() = 0 ifniseven
T 11 ifn=1(mod 4).

Allday [4] put the following conjecture: If G acts freely on X = []i., L;”i_l, where p an odd prime, then
rk(G) = m. Yalcin [18] proved this conjecture when n; = --- = n,,. This conjecture is still open for general
case.

In this paper, we have showed that the rank of a finite group G acting freely on the product [T, Xi,
where X, are the spaces of type (a,b), a and b are even for each i, is atmost m. Moreover, for n even, we
have proved that if a finite G acts freely on []}*; X!, where X/, are spaces of type (0,0) then G = (Z,)7, where
qg<m.

2. Preliminaries

Given two integers a and b, a space X is said to have cohomology type (4, b) if H/(X; Z) = Z for j = 0,n,2n
and 3n only, and the generators x € H'(X; Z), y € H*'(X; Z) and z € H*(X; Z) satisfies x* = ay and xy = bz.
It is denoted by X,,. For example, §" x $°" has type (0, 1), CP® and QP? have type (1, 1), CP? v $° has type
(1,0) and $" v §" v §%" has type (0, 0). Such spaces were first investigated by James [10] and Toda [20]. Let
Y be [T, Xi,, where X, is a finite CW-complex with cohomology type (4,b). The cohomology algebra of Y
is given by

H(Y;Zy)=Zs[x1, -, Xms Y1, s Yms 21, 1 Zm] /1,

where [ is a graded ideal generated by a set A = {xl.2 —ay, yf,ziz,x,-yi — bz, yizi, xizi|l <i<m}and degx;=mn,
degyi=2nand degz; =3nforalll1 <i<m.

The Borel construction on X is defined as the orbit space X¢ = (X X Eg)/G, where the compact Lie group
G acts diagonally (and freely) on the product X X Eg. The projection X X E¢ — Eg gives a fibration Xg — Bg
with fiber X. We will use the Leray-Serre spectral sequence associated to the Borel fibration X <= Xs - Bg.
If 711(Bg) acts trivially on H*(X; R) (R is a field) then the system of local coefficient is simple and E,-term of
the spectral sequence of the fibration X < Xg 5 Bg is given by E’;” = H*(Bg; R) ® H'(X; R). Note that for
G = (2,)1,H(Bg; Z2) = Zs[t, t2...,t;], where deg t; = 1 forall 1 <i <gq.

For the results in spectral sequences, we refer [11]. Throughout this paper, cohomologies are Cech
cohomology with coefficient in Z,. Now, we recall some results which were used in this paper.

Proposition 2.1. ([3]) Let G = (Z,)7 act on a finitistic space X and H'(X) = 0 for all i > n. Then H'(X/G) = 0 for
alli > n.

The following results are proved by G. Carlsson [6]:

Proposition 2.2. ([6]) Suppose {fi, ..., fi} are elements of H"(B(z,y; Z»), regarded as homogeneous polynomials
of degree n in q variables. Then they have a nontrivial common zero in (Z)7 if and only if there exist a inclusion
i:Zy — (Z2)7 such that i*(f;) = 0 for all j.

Proposition 2.3. ([6]) Let {f1, ..., fv) be an ideal generated by homogeneous polynomials f; in Z, [tl, cee, tq] which
is invariant under the action of the Steenrod algebra. If q > k, then there exists nontrivial common zero to f1, ..., fi.

3. Main theorems

In this section, our aim is to determine an elementary abelian 2-group, which can act freely on a finite
product of spaces of type (a,b). We show that the rank of elementary 2-abelian groups which acts freely on
Y will not exceed m. This generalizes Theorem 3.2 [17].
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Theorem 3.1. Let G = (Z,)7 act freely on a space Y = [, X', where X', is a finite CW-complex with cohomology
type (a,b), a and b are even for every i. If G acts trivially on H*(Y) then q < m.

Proof. As G acts trivially on H*(Y), E’;l = H*(Bg) ® H'(Y). Let x; € H*(Y), y; € H*(Y) and z; € H*(Y) be
generators of the cohomology algebra of H*(Y).

First, we prove that d,,1(1®x;) = 0forall 1 <i < m. Let d,.1(1®x;) = v; ® 1 for some i. Consider
d1(1®y;) = Y jWij ® aijxj, where «;; € {0,1}. By the multiplicative property of spectral sequence, we
have 0 = d,11(1®xyi) =v;iQyi + ), j2i Wi j ® @ jXjXi, a contradiction. This implies that d,,+1(1 ® x;) = 0 for all
1 <i < m. Therefore, d,(1®x;) =0 foralliand r > 2.

Next, we have observed that both d,41(1 ® ;) and d,+1(1 ® z;) can’t be trivial simultaneously for all i.
For that, if d,+1(1 ® yi) = dys1(1 ® z;) = 0 for all i then, E;’;H = E;". Clearly, doys1(1®y;) = 0 for all i. So,
d,(1®y;) = 0foralliand forall r > 2. If dp,41(1 ®2;) # 0 for some i then dy,41(1 ®z) = ijl u;; ® @ jx; where
@;j € {0,1}. Then 0 = dy;41(1 ® zix;) = Z#i u;j®a;jxj. Thus, a;; =0forall j #iand a;; = 1 for j = i. Let
don1(1®z) = v;®@x; forall 1 <i <k (< m). Then, we get E;;H =~ E;’;+2 = (E;’* - 5)/Q, where S is a graded
ideal generated by {1®z;, ..., 1®z} and graded ideal Q is generated by {v;®x;, f|forall 1 <i<kandf € A}.
Clearly, d3p1(1®2z;)) =0forallk+1<i<mandsod(1®z;)=0forallk+1<i<mandforallr>3n+1.
Therefore, d, = 0 for all > 3n + 1. So, E;: o = E;, which contradicts Proposition 2.1. Thus, the following
three cases are possible:

(i) dpr1(1 ® y;) # 0 for some i and d,,4+1(1 ® z;) = 0 for all i.

(ii) dpr1(1 ® y;) = O for all i and d,41(1 ® z;) # 0 for some i.

(iii) dy+1(1 ® y;) # 0 for some i and d,,41(1 ® zj) # 0 for some ;.

Case (i). Let d,+1(1 ® y;) # 0 for some i and d,41(1 ® z;)) = 0 for all i. If d,11(1® ;) # 0 thend,i(1®@ i) =
Z]- u;; ® a; jxj, where u;; € H"1(Bg) and a;; € {0,1}. We have 0 = d,1(1 ® x;1;) = Z#i u;; ® a; jxjx;. This
implies a;; = 0 for all j # i and a;; # 0. Therefore, d,s1(1® i) = u;; ® x;. Let dyi(1 ® i) = u;; ® x; for
all 1 < i < m, where {u;;} is linearly independent subset of H"(Bg), and d,4,1(1 ® z;) = 0 for all i. Then
A1 (1®X1 .. X1 YiXin1 -+ X)) = Ui ®X1 ... Xi—1XiXi31 . . . X fOr @ll i. Now, consider the submodule Q generated
by {u;; ® x1...Xi-1XiXis1... x| forall 1 < i < m} of acyclic module {& ® x1 ... x_1XiXjs1... X @ € H(Bg)} =
H*(Bg) (as a H*(Bg)-module). By definition of Steenrod square in E;, we have, Sqi(ui,i®x1 XXX 4] e X)) =
Uij @ Sq;(xl ... Xi—1XiXi+1 - . - Xp), Where Sq; is an Steenrod square defined on H*(Y). By Cartan’s formula of
Steenrod square, we have ng(xl v Xis1XiXip1 ... Xy) = 0 for all i > 0. Therefore, Q is invariant under the
action of the Steenrod algebra. By Propositions 2.2 and 2.3, we get g < m.

Case (ii). Let d,n1(1® y;) = 0 for all i and d,+1(1 ® z;) # O for some i. Let dy,1(1 ® y;) = 0 for all i,
di1(1®z) =v; Q@ Yi + Z]-# Ui j ® @ jXiX; forall 1 <i < k(< m), where v;, Ujj € H"+1(Bg) and ajj € {0,1} and
dp1(1®z) =0 forallk+1<i<m(k<m). Then, wegetE)  =E", =(E;—5)/Q, where S is a graded
ideal generated by {1®z3,...,1®z} and Q is generated by {v; ® y; + Zj;&i u;j®a;xixj, |1 <i<kandp € A}.
Clearly, d,(1®y;) = O foralliand r > 2. If dp,11(1®2z;)) = 0 for all k+1 < i < m then as above, we get
d, = 0 for all ¥ > n + 2, which contradicts Proposition 2.1. If dp,+1(1 ® z;) # 0 for all k + 1 < i < m then
dons1(1® z;) = w; ® x;. Thus, we have Ey,1p = (Ezu1 — S)/I, where S" and I are graded ideals generated by
1®zk41,...,1®zy) and {Wir1 ® Xs1, - - ., Wi ® Xy}, respectively. Clearly, d, = 0 for all r > 2n + 2, which is a
contradiction. So, we letd,;;1(1®2z;) = ), ji Wij ® Qi jXiXj, where for all 1 < i < m and a;; are not all zero. If
a,j is not equal to zero for some j = ji, thend, 1(1®2z1X2 ... Xj,1Xj,41. .. Xp) = U1j; ®X1X2 ... Xy Similarly as
above, Q is generated by {u; ; ® x1 ... Xi-1XiXis1 . .. x| for all 1 < i < m} which is invariant under the action of
the Steenrod algebra. Note that {u; ;} are linearly independent. This implies that g < m.

Case (iii). Let d,,+1(1® y;) # 0 for some i and d,41(1 ®z;) # 0 for some j. Consider d,,41(1® y;) = u; ® a;x; and
di1(1®2z) =v; ®Yiyi+ Z]-# Wi, j ®ﬁ,-,]-x,-x,- for all i, where u;, v;, wij € H"+1(BG) and «;, Vis ﬁj/]' € {0,1}. Note that
if a; # 0 for some i then y; = 0. Suppose a; # 0forall1 <i<kanda; =0forallk+1<i<m. Theny;, =0
foralll<i<k.

If B; j is not equal to zero for some j = j;, then d, 1 (1® (X1 ... X 1YiXit1 o X + X1+ Zi oo Xjm1 Xt 1+ o2 X)) =
(Ui + w;j) ® x1x2... X, for all 1 < i < kand dyp1(1 ® (X1 X1 ZiXit1 + o X Xjyy -+ Xin) = Wij; @ X1X2 ... Xy
fork+1 < i< m,if y; = 0and B;; # 0 for some j = j;. Consider the graded ideal Q generated by
(i +w;j)®x1x2...xy forall1 <i<kand w;j; ® x1x2...x, fork+1 < i < m. Asin Case (1), Q is invariant
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under the action of the Steenrod algebra. We have chosen u; + w; ;, forall1 <i<kand w;; fork+1<i<m
such that they are linearly independent. Consequently, we have g <m. [

From the above theorem, it is clear that if G acts freely on Y = []; X/, and trivially on H*(Y), then
rk(G) < m. For spaces of cohomology type (0,0), we have following result:

Theorem 3.2. Let X, be a finite CW complex with cohomology type (0, 0), for every i. Let G be a finite group acting
freely on a space Y = [, Xi,. If nis even and G acts trivially on H'(Y) then G = (Z,)1 and q < m.

Proof. Let p be an odd prime and p||G| then by the Flyod’s formula, x(X®) = 22"(mod p). This gives that the
fixed point set is nonempty. Therefore, the order of G is a power of 2. Suppose H is a cyclic subgroup of G
of order 4 and K is a subgroup of H of order 2. Note that H*(By) = Z,[t] ® A(s), where deg t = 2 and deg
s =1,and H*(Bx) = Z,[t'], wheredeg t = 1. Leti* : H(By) — H*(Bx) be the homomorphism induced by the
inclusion map i : K < H. Then i*(s) = 0 and () = 2. Since fibrations X — Xy — By and X < Xy — Bk
have simple system of local coefficient, so E’;l = H*(By) ® H'(X) and E};’l = H*(Bx) ® H'(X). By the naturality
of the spectral sequence, we have the following commutative diagram

d, _
EI:, 1 _)) E]:-H’, I+1-r

la la

= d, = —
EI;, 1 N E}:-H’, I+1-r

where @ = i*®1 in Ex-term. Asi*(s) = 0, we have d,+1(1®y:) = dy11(a(1®Yy;)) = a(dn1(1®y;)) = 0. Therefore,
dy1(1®y;) = 0 for all i. Similarly, d,+1(1 ® z;) = 0 for all i. By the proof of above theorem, we know that
dp+1(1® ;) and d41(1 ® z;) can’t be trivial simultaneously for all i. Thus G contains no element of order 4.
The result follows from Theorem 3.1. [

The above result generalizes Theorem 3.8 [17].

An example of free action of G = Z, on spaces of cohomology type (0, 0), and the cohomological structure
of orbit space has been discussed in [12]. Here, we give an example of orbit space of free involution on
spaces of cohomology type (0,0).

Example 3.3. Consider the antipodal action of Z, on $*' and $*", where n > 1. Then, $"! c $*" N &>"
is invariant under this action. So, we have a free Z,-action on X,, = $*"* Ug.1 $°" which is obtained by
attaching the spheres $*" and $°" along $"~!. We have shown that X, is a space of type (0,0) [17]. It is
easy to show that X,,/Z; is homeomorphic to Y = RP?" Ugpu-) RP?", which is obtained by attaching the
real projective spaces RP?" and RP*" along IRP"~!. Now, we determine the cohomology structure of X,,/Z,.
As X, is connected, H'(X,,/Z,) = Z,. Note thati : $" < X, is a Zp-equivariant map, therefore, u' # 0
for all i < 3n and u € H'(X,,/Z,) is the characteristic class of the principal Z,-bundle X,, — X, /Z,. By the
Gysin-sequence of the principal Z,-bundle X,, — X, /Z,, we have H{(X,/Z,) = Z,, for alli < n—1and
H(X,/Z5) = Zy ® Z; for all n < i < 2n—1. Also, H(X,/Z,) is generated by u’ forall 1 <i < n -1 and
H"(X,,/Z>) is generated by u"* and u'v for all 0 < i < n — 1, where v € H*(X,,/Z,) such that *(v) = x. If
1 H*(X,,/Zy) — H*(X,) is nontrivial, then H(X,,/Z,) = Z, ® Z, ® Z, for all 2n < i < 3n. This implies
that H3*1(X,,/Z;) # 0, a contradiction. Therefore, * : H**(X,,/Z,) — H?*(X,) must be trivial. We have
H¥ (X, |Z) = Zp & Zy, H(X,/Zs) = Z for all 2n +1 < i < 3n and H(X,,/Z,) = 0 for all i > 3n. Also,
for 2n < i < 3n, H'(X,/Z,) is generated by u'. Clearly, u®"*! = v + au®" + Bu"v = u"lo + pu?*! = (,
where a, 8,7 € {0, 1}. Therefore, H'(X,,/Z2) = Zs[u, v]/(u*"*1, 0% + Bu"v, u" v + yu?"*1), where deg u = 1 and
deg v = n. This realizes Theorem 4.1 [12].

Next, we observe that G acts trivially on H*(Y). Let Y = X, X - - - X X, (m times) and g be a generator of G.
Note that the diagonal action of above action on Y gives free G = Z; action. Let 0 = (01,...,0m) : A" = Y
be a n-simplex. Then, go = (go1,...,90m) = —(01,...,0,). Thus g acts trivially on H*(Y). Similarly, g* acts
trivially on H2*(Y) and H*>'(Y). Therefore, g* acts trivially on H*(Y).

We conclude with the following generalizations:
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Conjecture 3.4. Let G act freely on a space Y = []i~, Xy, where Xy, is a finite CW complex with cohomology type
(a,b), characterized by an integer n; and a and b are even for every i. Then rk(G) < m.
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