

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some properties of s-paratopological groups

Zhongbao Tanga, Mengna Chena

^aSchool of mathematics and statistics, Minnan Normal University, Zhangzhou 363000, P. R. China

Abstract. A paratopological group G is called an s-paratopological group if every sequentially continuous homomorphism from G to a paratopological group is continuous. For every paratopological groups (G, τ) , there is an s-coreflection $(G, \tau_{S(G,\tau)})$, which is an s-paratopological group. A characterization of s-coreflection of (G, τ) is obtained, i.e., the topology $\tau_{S(G,\tau)}$ is the finest paratopological group topology on G whose open sets are sequentially open in τ . We prove that the class of Abelian s-paratopological groups is closed with open subgroups. The class of s-paratopological groups being determined by PT-sequences is particularly interesting. We show that this class of paratopological groups is closed with finite product, and give a characterization that two T-sequences define the same paratopological group topology in Abelian groups. The s-sums of Abelian s-paratopological groups are defined. As applications, using s-sums we give characterizations of Abelian s-paratopological groups and Hausdorff Abelian s-paratopological groups, respectively.

1. Introduction

We denote by \mathbb{N} the set of all positive integers, \mathbb{Z} the set of all integers, and $\omega = \{0\} \cup \mathbb{N}$. Readers may consult [1, 9] for notations and terminology not given here. All spaces considered are assumed to be T_1 .

A paratopological group G is a group endowed with a topology such that the multiplication operation on G is jointly continuous. A topological group is a paratopological group G such that the inverse operation on G is continuous. Denote by \mathcal{N}_G the family of open neighborhoods of the unit e_G (briefly, e) of a paratopological group G.

Let $\mathbf{u} = \{u_n\}_{n \in \omega}$ be a non-trivial sequence in a group G. The following very important question has been studied by many authors, such as Graev [14], Nienhuys [19], Protasov and Zelenyuk [21, 25] et al.

Question 1.1. *Is there a group topology* τ *on* G *such that* $u_n \to e$ *in* (G, τ) ?

Protasov and Zelenyuk [21] obtained a criterion that gives the complete answer to this question for Abelian groups [21, Theorem 2.1.3] and countable groups [21, Theorem 3.1.4]. Following [21], we say that a sequence $\mathbf{u} = \{u_n\}_{n \in \omega}$ in a group G is a T-sequence if there is a group topology on G in which \mathbf{u} converges to e.

2020 Mathematics Subject Classification. Primary 54A20; Secondary 22A30, 54B15, 54C10

Keywords. s-paratopological group, sequentially continuous, *PT*-sequence, sequential coreflection, sequence-covering mapping Received: 08 December 2022; Revised: 14 May 2023; Accepted; 18 May 2023

Communicated by Ljubiša D.R. Kočinac

Email addresses: tzbao84@163.com (Zhongbao Tang), 1281853801@qq.com (Mengna Chen)

This research is supported by National Natural Science Foundation of China (No. 11901274), the Key Program of the Natural Science Foundation of Fujian Province (No: 2020J02043), the Program of the Natural Science Foundation of Fujian Province (No: 2021J01980), the Institute of Meteorological Big Data-Digital Fujian and Fujian Key Laboratory of Data Science and Statistics, and President's fund of Minnan Normal University (KJ18007).

Recall that a mapping $f: X \to Y$ between topological spaces X and Y is said to be *sequentially continuous* if $\{f(x_n)\}_{n\in\omega}$ converges to f(x) in Y whenever a sequence $\{x_n\}_{n\in\omega}$ converges to x in X. It is well known that the sequential continuity of a mapping is in general far too weak to imply its continuity. The following important notion was introduced by Noble [20], more results and historical remarks about s-groups can be found in [2, 12, 13, 15, 23, 24] etc.

Definition 1.2. ([20]) A topological group G is called an s-group if each sequentially continuous homomorphism from G to a topological group is continuous.

S.S. Gabriyelyan considered the following question, which is a generalisation of Question 1.1.

Question 1.3. ([12]) Let G be a group and S be a set of sequences in G. Is there a group topology τ on G in which every sequence of S converges to the unit e?

To answer Question 1.3, S.S. Gabriyelyan defined T_S -set of sequences.

Definition 1.4. ([12]) Let G be a group and S be a set of sequences in G. The set S is called a T_S -set of sequences if there is a group topology on G in which all sequences of S converge to e. The finest group topology with this property is denoted by τ_S .

Many properties are obtained in [12]. Especially, a topological group (G, τ) is an s-group if and only if there is a T_S -set S in G such that $\tau = \tau_S$, and every non-discrete s-group can be described as quotient of Graev free topological group over a sequential Tychonoff space.

By analogy with s-groups, the authors in [8] defined the s-paratopological groups and PT-sets of sequences.

Definition 1.5. ([8]) A paratopological group G is called an *s-paratopological group* if every sequentially continuous homomorphism from G to a paratopological group is continuous.

Definition 1.6. ([8]) Let G be a group and S be a set of sequences in G. The set S is called a *paratopologized set* (briefly, PT-set) in G if there is a paratopological group topology on G in which all sequences of S converge to the unit e of G. The finest paratopological group topology on G with this property is denoted by τ_S .

They established that a paratopological group (G, τ) is an *s*-paratopological group if and only if there is a *PT*-set *S* in *G* such that $\tau = \tau_S$, and *G* is an *s*-paratopological group if and only if it is topologically isomorphic to a quotient group of a free paratopological group on a sequential space.

Recently, F. Lin defined *PT*-sequence in Abelian groups [16].

Definition 1.7. ([16]) A sequence $\{a_n\}_{n\in\omega}$ of elements of group G is called a PT-sequence if there is a paratopological group topology on G in which $\{a_n\}_{n\in\omega}$ converges to 0. Denote by $P(G|\{a_n\}_{n\in\omega})$ the group G endowed with the finest paratopological group topology in which $\{a_n\}_{n\in\omega}$ converges to 0. We say that a paratopological group τ on G is determined by a PT-sequence $\{a_n\}_{n\in\omega}$ if $(G,\tau) = P(G|\{a_n\}_{n\in\omega})$.

Note that we can also define PT-sequence in non-Abelian groups which is a PT-set containing a single sequence. If \mathbf{u} is a PT-sequence on a group G, we denote by $\tau_{\mathbf{u}}$ the finest paratopological group topology on G in which $\mathbf{u} = \{a_n\}_{n \in \omega}$ converges to e. It follows from definitions that every T-sequence is a PT-sequence. And if \mathbf{u} is a T-sequence, then $\tau_{\mathbf{u}}$ is Hausdorff. It is clear that, if S is a PT-set, then S' is a PT-set for every non-empty subset S' of S, and every sequence $\mathbf{u} \in S$ is a PT-sequence. Evidently, $\tau_S \subseteq \tau_{S'}$. Also, if S contains only trivial sequences, then S is a PT-set and τ_S is discrete. By definition, $\tau_{\mathbf{u}}$ is finer than τ_S for every $\mathbf{u} \in S$. Thus, if U is open in τ_S , then it is open in $\tau_{\mathbf{u}}$ for every $\mathbf{u} \in S$. So, by definition, we obtain that $\tau_S \subseteq \bigwedge_{\mathbf{u} \in S} \tau_{\mathbf{u}}$, where $\bigwedge_{\mathbf{u} \in S} \tau_{\mathbf{u}}$ denotes the intersection of the topologies $\tau_{\mathbf{u}}$, i.e., U is open in $\bigwedge_{\mathbf{u} \in S} \tau_{\mathbf{u}}$ if and only if $U \in \tau_{\mathbf{u}}$ for every $\mathbf{u} \in S$.

Many properties of Abelian paratopological groups being determined by *PT*-sequences are obtained [16]. He proved that if *G* is an Abelian paratopological group, which is endowed with the finest paratopological

group topology being determined by a PT-sequence, then (1) G is a sequential non-Fréchet-Urysohn space; and (2) G does not admit a T_1 -complementary Hausdorff paratopological group topology on G. The class of countable paratopological groups (not necessary being Abelian) which is determined by a PT-sequence is also discussed in [16].

In this paper, using the methods established in [12, 13] for s-topological groups, we investigate properties of s-paratopological groups, which is also a continuous work of [8] and [16]. Let (G, τ) be a paratopological group, and $S(G, \tau) = \{\mathbf{u} = \{u_n\}_{n \in \omega} : u_n \to e \text{ in } \tau\}$. It is worth noting that $S(G, \tau)$ is a PT-set. We call the paratopological group $(G, \tau_{S(G,\tau)})$ is the s-coreflection of (G,τ) . In Section 3, some basic properties of s-paratopological groups, which are not considered in [8], are established. A characterization of s-coreflection of $S(G,\tau)$ is obtained, i.e., the topology $\tau_{S(G,\tau)}$ is the finest paratopological group topology on G whose open sets are sequentially open in τ . We also show that the class of s-paratopological groups is closed with open subgroups.

In Section 4, we consider some properties of the class of *s*-paratopological groups being determined by *PT*-sequences. We mainly show that this class of *s*-paratopological groups is closed with finite product, and give a characterization that two *T*-sequences define the same paratopological group topology in Abelian groups.

In Section 5, the *s*-sums of Abelian *s*-paratopological groups are discussed. As applications, using *s*-sums we give characterizations of Abelian *s*-paratopological groups and Hausdorff Abelian *s*-paratopological groups, respectively. More precisely, (G, τ) is an *s*-paratopological group if and only if every continuous sequence-covering homomorphism from an *s*-paratopological group onto (G, τ) is quotient; and a Hausdorff paratopological group (G, τ) is an *s*-paratopological group if and only if (G, τ) is a quotient group of the *s*-sum of a nonempty family of copies of $(\mathbb{Z}_0^\omega, \tau_e)$.

2. Notation and terminology

Let X be a space. For every $P \subseteq X$, the set P is a sequential neighborhood of x in X if every sequence converging to x is eventually in P. The set P is a sequentially open subset of X if P is a sequential neighborhood of each point in P. The set P is a sequentially closed subset of X if $X \setminus P$ is sequentially open. A space X is said to be a sequential space [10] if each sequentially open subset is open in X. For each space X is sequential coreflection [11] of X, X, denoted X, X, or X, is given by X if and only if X is sequentially open in X. As it is well known, X is a sequential space [11, p. 52]; also, X and X have the same convergent sequences [5, p. 678].

The following description of a neighborhood base at the identity of a paratopological group is well known.

Lemma 2.1. Let G be a paratopological group and N be a base at the identity e of G. Then the family N has the following five properties.

- (1) for every $U, V \in \mathcal{N}$, there exists $W \in \mathcal{N}$ with $W \subseteq U \cap V$;
- (2) for every $U \in \mathcal{N}$, there exists $V \in \mathcal{N}$ such that $VV \subseteq U$;
- (3) for every $U \in \mathcal{N}$ and $g \in U$, there exists $V \in \mathcal{N}$ such that $gV \subseteq U$;
- (4) for every $U \in \mathcal{N}$ and $g \in G$, there exists $V \in \mathcal{N}$ such that $gVg^{-1} \subseteq U$;
- (5) $\{e\} = \bigcap N$.

Conversely, if N is a family of subsets of an abstract group G containing the identity e of G and satisfying (1)-(5), then G admits the unique topology τ that makes it a paratopological group with N being a base at e.

- For every $n \in \mathbb{N}$, \mathbb{S}_n denotes the group of all permutations on the set $\{0, 1, ..., n-1\}$. Let G be a group.
- By $\mathcal{F}(G)$ we denote the set of all functions f from $\omega \times G$ into ω which satisfy the condition:

$$f(k,q) < f(k+1,q), \forall k \in \omega, \forall q \in G.$$

• If $\{A_m : m \le n\}$ is a family of non-empty subsets of G for $n \in \mathbb{N}$. $A_1...A_n$ denotes the set $\{a_1 \cdots a_n : a_m \in A_m, m \le n\}$.

• Let $\{A_n\}_{n\in\omega}$ be a sequence of non-empty subsets of G. Following [21, Definition 3.1.3], we write

$$SP_{m \le n}A_m = \bigcup_{\sigma \in S_{n+1}} A_{\sigma(0)}A_{\sigma(1)}...A_{\sigma(n)}$$

and

$$SP_{n\in\omega}A_n = \bigcup_{n\in\omega} SP_{m\leq n}A_m = \bigcup_{n\in\omega} \bigcup_{\sigma\in \mathbb{S}_{n+1}} A_{\sigma(0)}A_{\sigma(1)}...A_{\sigma(n)}.$$

• If $\{a_n\}_{n\in\omega}$ is a sequence of elements of G. For each $n\in\omega$, put $A_n=\{a_m:m\geq n\}$, $A_n^*=\{a_m:m\geq n\}\cup\{e\}$ and

$$A(k,m) = \{g_0g_1 \cdots g_k : g_0, g_1, ..., g_k \in A_m^*\}.$$

If *G* is Abelian, for an increasing sequence $0 \le n_0 < n_1 < \dots$ one puts

$$\sum_{k\in\omega}A_{n_k}=\bigcup_{k\in\omega}(A_{n_0}+A_{n_1}+\cdots+A_{n_k}).$$

3. Basic properties of s-paratopological groups

By categorical methods, B. Batíková and M. Hušek proved that the product of non-sequentially many of s-paratopological groups is an s-paratopological group [6, Corollary 14]. In this section, we consider some basic properties of s-paratopological groups. We first give an internal characterization of s-coreflection of a paratopological group (G, τ).

The following two results will be frequently used.

Lemma 3.1. ([8, Lemma 2.5]) Let $S = \{S_i : i \in I\}$ be a PT-set of sequences in a group G, where $S_i = \{x_n^i\}_{n \in \omega}$ for each $i \in I$, and let p be a homomorphism from (G, τ_S) to a paratopological group H. Then p is continuous if and only if the sequence $p(S_i) = \{p(x_n^i)\}_{n \in \omega}$ converges to the identity e_H in H for each $i \in I$.

Theorem 3.2. ([8, Theorem 2.8]) Let S be a PT-set of sequences in a group G, H be a closed normal subgroup of (G, τ_S) and let π be the natural projection from G onto the quotient group G/H. Then $\pi(S)$ is a PT-set of sequences in G/H and $(G, \tau_S)/H \cong (G/H, \tau_{\pi(S)})$.

Proposition 3.3. Let S be a PT-set of sequences in a group G. Then $\tau_S = \tau_{S(G,\tau_S)}$. In particular, if (G,τ) is an s-paratopological group, then $\tau = \tau_{S(G,\tau)}$.

Proof. Since $S \subseteq S(G, \tau_S)$, it follows from the definition of the topology τ_S that $\tau_S \supseteq \tau_{S(G,\tau_S)}$. Let $id_G : (G, \tau_{S(G,\tau_S)}) \to (G, \tau_S)$ be the identity map. For every $\mathbf{u} = \{u_n\}_{n \in \omega} \in S(G, \tau_S)$ we have that $id_G(u_n) = u_n \to e$ in τ_S . By Lemma 3.1, id_G is continuous. Then $\tau_S \subseteq \tau_{S(G,\tau_S)}$. Thus $\tau_S = \tau_{S(G,\tau_S)}$. \square

Lemma 3.4. Let (G, τ) be a paratopological group. Then

- (1) $S(G, \tau_{S(G,\tau)}) = S(G, \tau);$
- (2) A set U is sequentially open in $\tau_{S(G,\tau)}$ if and only if U is sequentially open in τ , i.e., $\sigma_{\tau_{S(G,\tau)}} = \sigma_{\tau}$.

Proof. (1) Since $\tau \subseteq \tau_{S(G,\tau)}$, it follows that $S(G,\tau_{S(G,\tau)}) \subseteq S(G,\tau)$. Conversely, if $\mathbf{u} \in S(G,\tau)$, then $\mathbf{u} \in S(G,\tau)$, then $\mathbf{u} \in S(G,\tau)$ by the definition of $\tau_{S(G,\tau)}$. Therefore, $S(G,\tau_{S(G,\tau)}) = S(G,\tau)$.

(2) Since $\tau \subseteq \tau_{S(G,\tau)}$, it suffices to prove that $\sigma_{\tau_{S(G,\tau)}} \subseteq \sigma_{\tau}$. Suppose that U is sequentially open in $\tau_{S(G,\tau)}$, and a sequence $\mathbf{u} = \{u_n\}_{n \in \omega}$ converges to $g \in U$ in τ . Since (G,τ) is a paratopological group, the sequence $g^{-1}\mathbf{u} = \{g^{-1}u_n\}_{n \in \omega}$ converges to e. Thus $g^{-1}\mathbf{u} \in S(G,\tau)$. By (1), $g^{-1}\mathbf{u} \in S(G,\tau_{S(G,\tau)})$. Note that the translation $l_{g^{-1}}: G \to G$ defined by $l_{g^{-1}}(x) = g^{-1}x$ is a homeomorphism. Thus $g^{-1}U$ is also sequentially open in $\tau_{S(G,\tau)}$. Hence there is $n_0 \in \omega$ such that $g^{-1}u_n \in g^{-1}U$ for all $n > n_0$. Therefore, $u_n \in U$ for all $n > n_0$. Hence U is sequentially open in τ , and then $\sigma_{\tau_{S(G,\tau)}} \subseteq \sigma_{\tau}$. \square

Now we can give a characterization of *s*-coreflection of a paratopological group (G, τ) using sequentially open sets.

Theorem 3.5. Let (G, τ) be a paratopological group. Then the topology $\tau_{S(G,\tau)}$ is the finest paratopological group topology on G whose open sets are sequentially open in τ .

Proof. By Lemma 3.4 (2), we have to show only the minimality of $\tau_{S(G,\tau)}$. Let τ' be an arbitrary paratopological group topology on G whose open sets are sequentially open in τ . According to the definition of $\tau_{S(G,\tau)}$, it is enough to prove that any $\mathbf{u} = \{u_n\}_{n \in \omega} \in S(G,\tau)$ converges to the unit in τ' . Assume the converse, then there is an open neighborhood U of the unit in τ' that does not contain infinitely many terms $\{u_{n_k}\}_{k \in \omega}$ of some \mathbf{u} . Let $\mathbf{v} = \{u_{n_k}\}_{k \in \omega}$, then $\mathbf{v} \in S(G,\tau)$ and $\mathbf{v} \cap U = \emptyset$. Hence U is not sequentially open in τ , which is a contradiction. Therefore, $\tau' \subseteq \tau_{S(G,\tau)}$. The proof is completed. \square

A space X is called a k-space [9, p. 152] if, for every $A \subseteq X$, the set A is closed in X if and only if the intersection of A with any compact subspace K of the space X is relatively closed in K.

Proposition 3.6. Every non-discrete paratopological group (G, τ) without infinite compact subsets is neither an *s*-paratopological group nor a *k*-space and $\tau_{S(G,\tau)}$ is discrete.

Proof. Since every compact subset in (G, τ) is finite, every convergent sequence in (G, τ) is trivial. Thus the topology $\tau_{S(G,\tau)}$ is discrete, and (G,τ) is not an s-paratopological group.

Assuming that (G, τ) is a k-space. Let A be an arbitrary subset of G, then for every compact subset K of (G, τ) the intersection $A \cap K$ is finite and hence closed in K. Since (G, τ) is a k-space, it follows that A is closed in (G, τ) . Note that A is arbitrary, hence (G, τ) is discrete, which contradicts the assumption of the proposition. Thus (G, τ) is not a k-space. \square

We will assume that all groups are Abelian in the rest of this section.

Theorem 3.7. ([16, Theorem 5.14]) For each PT-sequence $\{a_n\}_{n\in\omega}$ on any group G, the paratopological group $P(G|\{a_n\}_{n\in\omega})$ is sequential.

Lemma 3.8. Let (G, τ) be a paratopological group, then $\sigma_{\tau} = \bigwedge_{\mathbf{u} \in S(G, \tau)} \tau_{\mathbf{u}}$.

Proof. Let $U \in \bigwedge_{\mathbf{u} \in S(G,\tau)} \tau_{\mathbf{u}}$. We will show that U is sequentially open in τ . Suppose that a sequence $\{u_n\}_{n \in \omega}$ converges to $g \in U$ in τ . Since (G,τ) is a paratopological group, $g^{-1}u_n \to e \in g^{-1}U$. Therefore, $\mathbf{v} = \{g^{-1}u_n\}_{n \in \omega} \in S(G,\tau)$. It follows that $U \in \tau_{\mathbf{v}}$. Note that $(G,\tau_{\mathbf{v}})$ is a paratopological group. Thus the translation $l_{g^{-1}}: G \to G$ defined by $l_{g^{-1}}(x) = g^{-1}x$ is a homeomorphism. Thus $g^{-1}U$ is also open in $\tau_{\mathbf{v}}$, and then there is $n_0 \in \omega$ such that $g^{-1}u_n \in g^{-1}U$ for all $n > n_0$. Therefore all but finitely many members of $\{u_n\}_{n \in \omega}$ are contained in U, which shows that U is sequentially open in τ .

Conversely, let U be sequentially open in τ . Then U is sequentially open in $\tau_{\mathbf{u}}$ for each $\mathbf{u} \in S(G, \tau)$. In fact, if $v_n \to g \in U$ in $\tau_{\mathbf{u}}$, then $v_n \to g \in U$ in τ . Since U is sequentially open in τ , almost all v_n are contained in U. Thus U is sequentially open in $\tau_{\mathbf{u}}$. By Theorem 3.7, U is open in $\tau_{\mathbf{u}}$. \square

It is worth mentioning that the class of all sequential paratopological groups is not stable under finite products [4, Theorem 6], On the other hand, the class of *s*-paratopological groups is stable under finite products. Thus there is an *s*-paratopological group which is not sequential. However, we have the following result.

Theorem 3.9. Let (G, τ) be a paratopological groups. The following statements are equivalent:

- (1) $(G, \tau_{S(G,\tau)})$ is sequential;
- $(2) \tau_{S(G,\tau)} = \bigwedge_{\mathbf{u} \in S(G,\tau)} \tau_{\mathbf{u}};$
- (3) σ_{τ} is a paratopological group topology.

- *Proof.* (1) \Rightarrow (2). Let $(G, \tau_{S(G,\tau)})$ be sequential. By the definition of sequential spaces and Lemma 3.8, we have that $\tau_{S(G,\tau)} = \sigma_{\tau_{S(G,\tau)}} = \bigwedge_{\mathbf{u} \in S(G,\tau)} \tau_{\mathbf{u}}$.
- (2) \Rightarrow (3). It follows from Lemma 3.8 and the hypothesis that $\sigma_{\tau} = \tau_{S(G,\tau)}$, which shows that σ_{τ} is a paratopological group topology.
- (3) \Rightarrow (1). By Theorem 3.5 and the hypothesis, $\tau_{S(G,\tau)} = \sigma_{\tau}$. According to Lemma 3.6 (2), we have $\sigma_{\tau} = \sigma_{\tau_{S(G,\tau)}}$. Therefore, $\tau_{S(G,\tau)} = \sigma_{\tau_{S(G,\tau)}}$, which shows that $(G, \tau_{S(G,\tau)})$ is sequential. \square

To conclude this section, we show that the class of *s*-paratopological groups is closed with open subgroups.

Theorem 3.10. Let (G, τ) be a paratopological group, and H be an open subgroup of G. Then (G, τ) is an sparatopological group if and only if so is H.

Proof. Assume that (G, τ) is an s-paratopological group. Put $S_1 = S(G, \tau)$, $S_2 = S(H, \tau|_H)$, then $\tau_{S_2} \supseteq \tau|_H$. We will show that $\tau_{S_2} \subseteq \tau|_H$. By Lemma 2.1, N_H satisfies the conditions of Lemma 2.1. Since G is Abelian, N_H is also satisfies the conditions of Lemma 2.1 in G. Therefore, G admits the unique topology τ_1 that makes it a paratopological group with N_H being a base at e. For each $\mathbf{u} = \{u_n\}_{n \in \omega} \in S_1$, since H is an open subgroup of G, there is $n_0 \in \omega$ such that $\mathbf{v} = \{u_{n_0+n}\}_{n \in \omega} \in S_2$. Thus \mathbf{u} is convergent in τ_1 . Note that (G, τ) is an s-paratopological group, we have that $\tau \supseteq \tau_1$. It follows that $\tau_{S_2} = \tau_1|_H \subseteq \tau|_H$. So $\tau_{S_2} = \tau|_H$, which shows that $(H, \tau|_H)$ is an s-paratopological group.

Conversely, suppose that $(H, \tau|_H)$ is an s-paratopological group. We will show that $\tau_{S_1} \subseteq \tau$. For each $\mathbf{u} \in S_2$, it is clear that $\mathbf{u} \in S_1$. Therefore, \mathbf{u} is convergent in $(H, \tau_{S_1}|_H)$. By hypothesis that $(H, \tau|_H)$ is an s-paratopological group, it follows that $\tau|_H = \tau_{S_1}|_H$. Since H is an open subgroup of G, we can conclude that $id : (G, \tau) \to (G, \tau_{S_1})$ is continuous at e. Thus $id_G : (G, \tau) \to (G, \tau_{S_1})$ is continuous. Therefore, $\tau_{S_1} \subseteq \tau$. Hence $\tau = \tau_{S_1}$, which shows that (G, τ) is an s-paratopological group. \square

However, the following question is unknown.

Question 3.11. Let (G, τ) be an s-paratopological group. Which closed subgroups of (G, τ) are s-paratopological groups as well?

4. s-paratopological groups determined by PT-sequences

In this section, we consider a special class of *s*-paratopological groups, that is the *s*-paratopological groups which are determined by *PT*-sequences. Firstly, We first show that this class of *s*-paratopological groups is closed with finite product. Then we consider the following interesting question in the rest of this section.

Question 4.1. Let G be an Abelian group. When do two PT-sequences define the same paratopological group topologies on G?

Note that the corresponding question for groups in fact is formulated in Exercise 2.1.2 of [21]. We give a characterization that two *T*-sequences define the same paratopological group topologies in Abelian groups, which give a partial answer to Question 4.1.

By Lemma 3.2, we have the following corollary.

Corollary 4.2. Let $\mathbf{u} = \{u_n\}_{n \in \omega}$ be a PT-sequence in a group G, H be a closed normal subgroup of $(G, \tau_{\mathbf{u}})$ and let π be the natural projection from G onto the quotient group G/H. Then $\pi(\mathbf{u})$ is a PT-sequence in G/H and $G/H \cong (G/H, \tau_{\pi(\mathbf{u})})$.

A criterion for a set to be a *PT*-set in an abstract group was given in [8, Theorem 2.4]. For the case of a *PT*-sequence, that is a *PT*-set of one sequence, by [8, Theorem 2.4] we have the following corollary.

Corollary 4.3. Let $\mathbf{u} = \{u_n\}_{n \in \omega}$ be a sequence in a group G. Then the following statements (a), (b), and (c) are equivalent.

- (a) The topology $\tau_{\mathbf{u}}$ on G exists;
- (b) **u** is a PT-sequence in G;
- (c) $\bigcap_{f \in \mathcal{F}(G)} SP_{n \in \omega} A_n(f) = \{e\}.$

Moreover, if one of the statements (a), (b) or (c) holds, then the family $\{SP_{n\in\omega}A_n(f): f\in\mathcal{F}(G)\}$ is a base at the identity e in $(G, \tau_{\mathbf{u}})$.

Theorem 4.4. Let $\mathbf{u} = \{u_n\}_{n \in \omega}$ and $\mathbf{v} = \{v_n\}_{n \in \omega}$ be PT-sequences in groups G and H, respectively. Set $\mathbf{d} = \{d_n\}_{n \in \omega}$, where $d_{2n+1} = (u_n, e_H)$ and $d_{2n} = (e_G, v_n)$. Then \mathbf{d} is a PT-sequences in $G \times H$ and $\tau_{\mathbf{d}} = \tau_{\mathbf{u}} \times \tau_{\mathbf{v}}$.

Proof. It is clear that **d** converges to the unit in $(G \times H, \tau_{\mathbf{u}} \times \tau_{\mathbf{v}})$. So **d** is a *PT*-sequence in $G \times H$ and $\tau_{\mathbf{u}} \times \tau_{\mathbf{v}} \subseteq \tau_{\mathbf{d}}$. To prove that $\tau_{\mathbf{u}} \times \tau_{\mathbf{v}} = \tau_{\mathbf{d}}$, by Corollary 4.3 it is enough to show that every basic neighborhood $W = SP_{n \in \omega} A_n(f)$, $f \in \mathcal{F}(G \times H)$, of the unit in $\tau_{\mathbf{d}}$ contains a set of the form $W_{\mathbf{u}} \times W_{\mathbf{v}}$, where $W_{\mathbf{u}} \in \tau_{\mathbf{u}}$ and $W_{\mathbf{v}} \in \tau_{\mathbf{v}}$.

For each $f \in \mathcal{F}(G \times H)$, put $f^{\mathbf{u}}(k,g) = f(2k,(g,e_H))$, $f^{\mathbf{v}}(k,h) = f(2k+1,(e_G,h))$ for every $k \in \omega, g \in G, h \in H$. Then $f^{\mathbf{u}} \in \mathcal{F}(G)$ and $f^{\mathbf{v}} \in \mathcal{F}(H)$, and

$$\begin{split} A^{\mathbf{u}}_{f^{\mathbf{u}}(k,g)} \times \{e_{H}\} &= \{e_{G}, u_{f^{\mathbf{u}}(k,g)}, \cdots\} \times \{e_{H}\} = \{(e_{G}, e_{H}), (u_{f^{\mathbf{u}}(k,g)}, e_{H}), \cdots\} \\ &= \{(e_{G}, e_{H}), (u_{f(2k,(g,h))}, e_{H}), \cdots\} \subseteq A^{\mathbf{d}}_{f(2k,(g,e_{H}))}, \\ \{e_{G}\} \times A^{\mathbf{v}}_{f^{\mathbf{v}}(k,h)} &= \{e_{G}\} \times \{e_{H}, v_{f^{\mathbf{v}}(k,h)}, \cdots\} \times = \{(e_{G}, e_{H}), (e_{H}, v_{f^{\mathbf{v}}(k,g)}), \cdots\} \\ &= \{(e_{G}, e_{H}), (e_{G}, v_{f(2k+1,(e_{G},h))}), \cdots\} \subseteq A^{\mathbf{d}}_{f(2k+1,(e_{G},h))}. \end{split}$$

Thus

$$A_k(f^{\mathbf{u}}) \times \{e_H\} \subseteq A_{2k}(f) \text{ and } \{e_G\} \times A_k(f^{\mathbf{v}}) \times \{e_H\} \subseteq A_{2k+1}(f).$$

For every $n \in \omega$ and σ' , $\sigma'' \in \mathbb{S}(n+1)$ put

$$\sigma(k) = 2\sigma'(k)$$
 and $\sigma(n + 1 + k) = 2\sigma''(k) + 1, 0 \le k \le n$.

Then $\sigma \in \mathbb{S}(2n+1)$ and

$$(A_{\sigma'(0)}(f^{\mathbf{u}})\cdots A_{\sigma'(n)}(f^{\mathbf{u}}))\times (A_{\sigma''(0)}(f^{\mathbf{v}})\cdots A_{\sigma''(n)}(f^{\mathbf{v}}))$$

$$= (A_{\sigma'(0)}(f^{\mathbf{u}})\times \{e_G\})\cdots (A_{\sigma'(n)}(f^{\mathbf{u}})\times \{e_G\})\cdot (\{e_G\}\times A_{\sigma''(0)}(f^{\mathbf{v}}))\cdots (\{e_G\}\times A_{\sigma''(0)}(f^{\mathbf{v}}))$$

$$\subseteq A_{\sigma(0)}(f)\cdots A_{\sigma(n)}(f).$$

Set $W_{\mathbf{u}} = SP_{n \in \omega} A_n(f^{\mathbf{u}}) \in \tau_{\mathbf{u}}$ and $W_{\mathbf{v}} = SP_{n \in \omega} A_n(f^{\mathbf{v}}) \in \tau_{\mathbf{v}}$. Then

$$W_{\mathbf{u}} \times W_{\mathbf{v}} = \bigcup_{n \in \omega} \bigcup_{\sigma', \sigma'' \in S_{n+1}} (A_{\sigma'(0)}(f^{\mathbf{u}}) \cdots A_{\sigma'(n)}(f^{\mathbf{u}})) \times (A_{\sigma''(0)}(f^{\mathbf{v}}) \cdots A_{\sigma''(n)}(f^{\mathbf{v}}))$$

$$\subseteq \bigcup_{n \in \omega} \bigcup_{\sigma \in S_{2n+1}} A_{\sigma(0)}(f) \cdots A_{\sigma(n)}(f) = W.$$

Therefore, we can conclude that $\tau_{\mathbf{u}} \times \tau_{\mathbf{v}} = \tau_{\mathbf{d}}$. \square

In the rest of this section, all groups are Abelian. By Corollary 4.3, we have the following result, which is also obtained in [16].

Corollary 4.5. Let $\mathbf{u} = \{u_n\}_{n \in \omega}$ be a sequence in a group G. Then the following statements (a), (b), and (c) are equivalent.

- (a) The topology $\tau_{\mathbf{u}}$ on G exists;
- (b) **u** is a PT-sequence in G;
- (c) $\bigcap \{\sum_{k \in \omega} A_{n_k} : \{n_k\}_{k \in \omega} \subseteq \omega \text{ with } 0 \le n_0 < n_1 < \ldots \} = \{e\}.$

Moreover, if one of the statements (a), (b) or (c) holds, then the family $\{\sum_{k \in \omega} A_{n_k} : \{n_k\}_{k \in \omega} \subseteq \omega \text{ with } 0 \leq n_0 < n_1 < \ldots \}$ is a base at the identity 0 in $(G, \tau_{\mathbf{u}})$.

Lemma 4.6. Let $\mathbf{u} = \{u_n\}_{n \in \omega}$ be a T-sequence in G. If the sequence $\mathbf{v} = \{v_n\}_{n \in \omega}$ converges to 0 in $(G, \tau_{\mathbf{u}})$, then for some $k, n_0 \in \omega$, $v_n \in A(k, 0)$ holds for all $n > n_0$.

Proof. Assuming the converse, we may assume (after passing to subsequences if required) that $v_n \notin A(n,0)$ for all $n \in \omega$. We shall construct a neighborhood of 0 in $(G, \tau_{\mathbf{u}})$ of the form $\sum_{m \in \omega} A_{n_m}^*$ not containing any value of the sequence $\mathbf{v} = \{v_n\}_{n \in \omega}$. Let $n_0 = 0$. Since $A_{n_0}^* = A(0,0)$ and $v_0 \notin A(0,0)$, $\{v_0\} \cap A_{n_0}^* = \emptyset$. Suppose that $n_0, \ldots, n_k \in \mathbb{N}$ have been chosen so that

$$\{v_0,\ldots,v_k\}\cap (A_{n_0}^*+\cdots+A_{n_k}^*)=\emptyset.$$

Assume that, for every $l \in \mathbb{N}$, we have

$$\{v_0,\ldots,v_k,v_{k+1}\}\cap (A_{n_0}^*+\cdots+A_{n_k}^*+A_l^*)\neq\emptyset.$$

Then we can choose sequences $\{x_l\}_{l\in\omega}$ and $\{y_l\}_{l\in\omega}$ such that $x_l\in A_{n_0}^*+\cdots+A_{n_k}^*$, $y_l\in A_l^*$ and $x_l+y_l\in \{v_0,\ldots,v_k,v_{k+1}\}$ for all $l\in\omega$. On passing to subsequence, without loss of generality, we may assume that the sequence $\{x_l\}_{l\in\omega}$ converges to some x. Since $\{y_l\}_{l\in\omega}$ converges to 0 and $(G,\tau_{\mathbf{u}})$ is a paratopological group, the sequence $\{x_l+y_l\}_{l\in\omega}$ converges to x. Note that $A_{n_0}^*+\cdots+A_{n_k}^*$ is compact and $(G,\tau_{\mathbf{u}})$ is Hausdorff, thus $A_{n_0}^*+\cdots+A_{n_k}^*$ is closed. It follows that $x\in A_{n_0}^*+\cdots+A_{n_k}^*$. Therefore,

$$\{v_0,\ldots,v_k,v_{k+1}\}\cap (A_{n_1}^*+\cdots+A_{n_k}^*)\neq\emptyset.$$

By the choice of $n_0, \ldots, n_k \in \omega$, we have $v_{k+1} \in A_{n_1}^* + \cdots + A_{n_k}^* \subseteq A(k,0) \subseteq A(k+1,0)$, which is a contradiction with the assumption $v_n \notin A(n,0)$ for all $n \in \omega$. Hence there is an $n_{k+1} \in \omega$ such that

$$\{v_0,\ldots,v_k,v_{k+1}\}\cap(A_{n_0}^*+\cdots+A_{n_k}^*+A_{n_{k+1}}^*)=\emptyset.$$

Therefore, by inductive construction, we can choose a neighborhood $\sum_{m \in \omega} A_{n_m}^*$ of 0 such that $\mathbf{v} \cap \sum_{m \in \omega} A_{n_m}^* = \emptyset$, which is a contradiction. \square

Lemma 4.7. Let $\mathbf{u} = \{u_n\}_{n \in \omega}$ be a T-sequence in G. Then a sequence $\mathbf{v} = \{v_n\}_{n \in \omega}$ converges to 0 in $(G, \tau_{\mathbf{u}})$ if and only if there is $m \in \omega$ and $n_0 \in \omega$ such that for every $n \geq n_0$ each member $v_n \neq 0$ can be represented in the form

$$v_n = a_1^n u_{k_1^n} + \dots + a_L^n u_{k_L^n}, \tag{a}$$

where $k_1^n < \dots < k_{l_n}^n, k_1^n \to \infty, a_k^n \in \mathbb{N}$ for all $k \in \{1, \dots, l_n\}$ and $a_1^n + \dots + a_{l_n}^n \le m + 1$.

Proof. If either **u** or **v** is trivial, the conclusion is evident. Assume that **u** and **v** are non-trivial. Since $(G, \tau_{\mathbf{u}})$ is a paratopological group, the sufficiency is clear. We will prove the necessity.

Since the subgroup $\langle \mathbf{u} \rangle$ of G is open in $\tau_{\mathbf{u}}$ and \mathbf{v} converges to 0, there is $n_1 \in \omega$ such that $v_n \in \langle \mathbf{u} \rangle$ for every $n \ge n_1$. By Lemma 4.6, there is $m \in \omega$ and $n_2 \in \omega$ such that $v_n \in A(m,0)$ for all $n > n_2$. Let $n_0 = \max\{n_1, n_2\}$. So, if $n > n_0$ and $v_n \ne 0$, then

$$v_n = a_1^n u_{k_1^n} + \cdots + a_{l_n}^n u_{k_l^n}$$
,

where $k_1^n < \cdots < k_{l_n}^n$, and $a_1^n + \cdots + a_{l_n}^n \le m + 1$. We can choose a representation of v_n of the form (a) with the minimal value of the sum $a_1^n + \cdots + a_{l_n}^n \le m + 1$. For this chosen representation of v_n , every sum of terms of the form $a_i^n u_k^n$ in (a) is non-zero. Therefore, $a_k^n \in \mathbb{N}$ for all $k \in \{1, \dots, l_n\}$.

Let us show that $k_1^n \to \infty$. Assuming the converse and passing to a subsequence we may suppose that $k_1^n = k_1$, $a_1^n = a_1$, and $a_1^n u_{k_1^n} = a_1 u_{k_1} \neq 0$ for every n. So

$$v_n = a_1^n u_{k_1^n} + \cdots + a_{l_n}^n u_{k_{l_n}^n} = a_1 u_{k_1} + w_n^1,$$

where $w_n^1 = a_2^n u_{k_2^n} + \dots + a_{l_n}^n u_{k_n^n}$. If $k_2^n \to \infty$, then w_n^1 converges to 0. Hence $v_n = a_1 u_{k_1} + w_n^1 \to a_1 u_{k_1} \neq 0$. This is impossible. Thus, there is a bounded subsequence of k_2^n . Passing to a subsequence we may suppose that $k_2^n = k_2, a_2^n = a_2$, and $a_2^n u_{k_2^n} = a_2 u_{k_2}$ for every n. So

$$v_n = a_1 u_{k_1} + a_2 u_{k_2} + \dots + a_{l_n}^n u_{k_{l_n}^n} = a_1 u_{k_1} + a_2 u_{k_2} + w_n^2,$$

where $w_n^2 = a_3^n u_{k_3^n} + \dots + a_{l_n}^n u_{k_{l_n}^n}$. By hypothesis, $a_1 u_{k_1} + a_2 u_{k_2} \neq 0$. Continuing this process and taking into account that

$$0 < a_1 < a_1 + a_2 < \cdots \le m + 1$$
,

after at most m+1 steps, we see that there is a fixed and non-zero subsequence of \mathbf{v} . Thus $v_n \to 0$, which is a contradiction. Thus $k_1^n \to \infty$.

Theorem 4.8. Let $\mathbf{u} = \{u_n\}$ and $\mathbf{v} = \{v_n\}$ be T-sequences in G. Then $\tau_{\mathbf{u}} = \tau_{\mathbf{v}}$ if and only if there are $m \in \omega$ and $n_0 \in \omega$ such that for every $n \ge n_0$ each $v_n \ne 0$ and $u_n \ne 0$ can be represented in the form

$$v_n = a_1^n u_{k_1^n} + \dots + a_{l_n}^n u_{k_{l_n}^n}, \tag{b}$$

$$k_1^n < \dots < k_{l_n}^n, k_1^n \to \infty, a_k^n \in \mathbb{N} \text{ for all } k \in \{1, \dots, l_n\}, \text{ and } a_1^n + \dots + a_{l_n}^n \le m + 1;$$

$$u_n = b_1^n v_{S_1^n} + \dots + b_{d_n}^n v_{S_{2n}^n}, \tag{c}$$

$$s_1^n < \dots < s_{q_n}^n, s_1^n \to \infty, b_i^n \in \mathbb{N} \text{ for all } i \in \{1, \dots, q_n\}, \text{ and } b_1^n + \dots + b_{q_n}^n \le m+1.$$

Proof. If $\tau_{\mathbf{u}} = \tau_{\mathbf{v}}$, then $v_n \to 0$ in $\tau_{\mathbf{u}}$. By Lemma 4.7, \mathbf{v} has representation (b) for some $m_1, n_1 \in \omega$. The same is true for the sequence \mathbf{u} , i.e., the sequence \mathbf{u} has representation (c) for some $m_2, n_2 \in \omega$. Putting $m = \max\{m_1, m_2\}$ and $n_0 = \max\{n_1, n_2\}$ we obtain (b) and (c).

Conversely, if $v_n \neq 0$ has representation (2), since $(G, \tau_{\mathbf{u}})$ is a paratopological group, we have that $v_n \to 0$ in $\tau_{\mathbf{u}}$. Thus, $\tau_{\mathbf{u}} \subseteq \tau_{\mathbf{v}}$ by the definition of \mathbf{v} . Analogously, $\tau_{\mathbf{v}} \subseteq \tau_{\mathbf{u}}$. Hence $\tau_{\mathbf{u}} = \tau_{\mathbf{v}}$.

Let $\{G_i\}_{i\in I}$ be a family of groups, where I is a non-empty set of indices. The direct sum of G_i is denoted by

$$\bigoplus_{i \in I} G_i = \{(g_i)_{i \in I} \in \prod_{i \in I} G_i : g_i = 0 \text{ for almost all } i\}.$$

We denote by j_k the natural inclusion of G_k into $\bigoplus_{i \in I} G_i$, i.e.

$$j_k(g) = (g_i)_{i \in I} \in \bigoplus_{i \in I} G_i$$
, where $g_i = g$ if $i = k$ and $g_i = 0$ if $i \neq k$.

Note that $\bigoplus_{i \in I} G_i$ is the coproduct of the family $\{G_i\}_{i \in I}$ in the category of all Abelian groups.

Let us denote by \mathbb{Z}_0^{ω} the derect sum $\bigoplus_{\omega} \mathbb{Z} \subseteq \mathbb{Z}^{\omega}$. The sequence $\mathbf{e} = \{e_n\} \subseteq \mathbb{Z}_0^{\omega}$, where $e_0 = (1, 0, 0, ...), e_1 = (0, 1, 0, ...), ...$, converges to zero in the topology induced on \mathbb{Z}_0^{ω} by the product topology on $(\mathbb{Z}_d)^{\omega}$, where \mathbb{Z}_d is the groups \mathbb{Z} endowed with the discrete topology. Thus \mathbf{e} is a T-sequence, and then a PT-sequence.

Let $f: X \to Y$ be a continuous onto map. f is *sequence-covering* if for each sequence $\{y_n : n \in \omega\}$ in Y converging to a point in Y, there is a sequence $\{x_n : n \in \omega\}$ in X converging to a point in X such that $f(x_n) = y_n$ for all $n \in \omega$ [18].

Theorem 4.9. Let $\mathbf{u} = \{u_n\}_{n \in \omega}$ be a T-sequence in G such that $G = \langle \mathbf{u} \rangle$. Then $(G, \tau_{\mathbf{u}})$ is a quotient group of $(\mathbb{Z}_0^{\omega}, \tau_{\mathbf{e}})$ under the sequence-covering homomorphism

$$\pi((n_0, n_1, \dots, n_m, 0, \dots,)) = n_0 u_0 + n_1 u_1 + \dots + n_m u_m,$$

where $m, n_0, n_1, \ldots, n_m \in \omega$.

Proof. It is clear that π is a surjective homomorphism. Since $\pi(e_n) = u_n \to 0$ in $\tau_{\mathbf{u}}$, π is continuous. By Corollary 4.2, the quotient group $(\mathbb{Z}_0^\omega; \tau_{\mathbf{e}})/\ker \pi$ is topologically isomorphic to $(G, \tau_{\mathbf{u}})$.

Let us show that π is sequence-covering. Since $G = \langle \mathbf{u} \rangle$, each number v_n can be represented in the form

$$v_n = a_1^n u_{k_1^n} + \cdots + a_1^n u_{k_1^n}$$
.

Let

$$z_n = a_1^n e_{k_1^n} + \dots + a_{k_n}^n e_{k_n^n}$$
 if $v_n \neq 0$, and $z_n = 0$ if $v_n = 0$.

If $\mathbf{v} = \{v_n\}_{n \in \omega} \in S(G, \tau_{\mathbf{u}})$. By Lemma 4.7, there is $m \in \omega$ and $n_0 \in \omega$ such that for every $n \geq n_0$, the representation of $v_n \neq 0$ can be enhanced that $k_1^n < \cdots < k_{l_n}^n, k_1^n \to \infty$, $a_k^n \in \mathbb{N}$ for all $k \in \{1, \ldots, l_n\}$ and $a_1^n + \cdots + a_{l_n}^n \leq m + 1$. Then $z_n \to 0$ and $\pi(z_n) = v_n$. This implies π is sequence-covering. \square

Two T_1 -topologies τ_1 and τ_2 on a set X are called T_1 -complementary if the intersection $\tau_1 \cap \tau_2$ is the cofinite topology and their supremum is the discrete topology on X [3, 22]. More information of this topic and resent advances can be found in [7, 16, 17]. As mentioned in Introduction, F. Lin proved that if G is an paratopological group, which is endowed with the finest paratopological group topology being determined by a T-sequence, then G does not admit a T_1 -complementary Hausdorff paratopological group topology on G. Thus the following question is natural.

Question 4.10. *Is there a Hausdorff s-paratopological group G admitting a* T_1 -complementary Hausdorff paratopological group topology on G?

5. The s-sum of s-paratopological groups

All groups considered in this section are assumed to be Abelian. We aim to define the *s*-sum of *s*-paratopological groups, and then give a characterization of *s*-paratopological groups using *s*-sums.

Proposition 5.1. Assume that $G_i = (G_i, \tau_i)$ is a family of paratopological groups. For every $i \in I$ fix $U_i \in \mathcal{U}_{G_i}$ and put

$$\bigoplus_{i \in I} U_i = \{(g_i)_{i \in I} \in \bigoplus_{i \in I} G_i : g_i \in U_i \text{ for all } i \in I\}.$$

Then the sets of the form $\bigoplus_{i\in I} U_i$, where $U_i \in \mathcal{U}_{G_i}$ for every $i \in I$, form a neighborhood basis at the unit of a paratopological group topology \mathcal{T}_b on $\bigoplus_{i\in I} G_i$.

Let $\mathbf{u} = \{g_n\}_{n \in \omega}$ be an arbitrary sequence in $S(G_i, \tau_i)$. Evidently, the sequence $j_i(\mathbf{u})$ converges to the unit in \mathcal{T}_b . Thus, the set $\bigcup_{i \in I} j_i(S(G_i, \tau_i))$ is a PT-set of sequences in $\bigoplus_{i \in I} G_i$. If (G_i, τ_i) is an s-paratopological group for all $i \in I$, we can define the s-sum of G_i .

Definition 5.2. Let $\{(G_i, \tau_i)\}_{i \in I}$ be a non-empty family of *s*-paratopological groups. The group $\bigoplus_{i \in I} G_i$ endowed with the finest paratopological group topology \mathcal{T}_s in which every sequence of $\bigcup_{i \in I} j_i(S(G_i, \tau_i))$ converges to zero is called the *s*-sum of G_i , and it is denoted by $\bigoplus_{i \in I}^{(s)} G_i$.

Proposition 5.3. Let $\{(G_i, \tau_i)\}_{i \in I}$ be a non-empty family of s-paratopological groups. Set $S = \bigcup_{i \in I} j_i(S(G_i, \tau_i))$ and $G = \bigoplus_{i \in I}^{(s)} G_i$. The topology τ_S on G coincides with the finest paratopological group topology τ' on G for which all inclusions j_i are continuous.

Proof. Fix $i \in I$. By construction, for every $\{u_n\}_{n \in \omega} \in S(G_i, \tau_i)$, $j_i(u_n) \to e_G$ in τ_S . By Theorem 3.1, the inclusion j_i is continuous. Thus $\tau_S \subseteq \tau'$. Conversely, if j_i is continuous with respect to τ' , then $j_i(S(G_i, \tau_i)) \subseteq S(G, \tau')$. Therefore, $S \subseteq S(G, \tau')$ and $\tau' \subseteq \tau_S$ by the definition of τ_S . \square

Theorem 5.4. Let (X, τ) be an s-paratopological group. Set $I = S(X, \tau)$. For every $\mathbf{u} \in I$, let $p_{\mathbf{u}} : (\langle \mathbf{u} \rangle, \tau_{\mathbf{u}}) \to X$, $p_{\mathbf{u}}(g) = g$, be the natural inclusion of $(\langle \mathbf{u} \rangle, \tau_{\mathbf{u}})$ into X. Then the natural homomorphism

$$p: \bigoplus_{\mathbf{u}\in I}^{(s)}(\langle \mathbf{u}\rangle, \tau_{\mathbf{u}}) \to X, \quad p((x_{\mathbf{u}})) = \sum_{\mathbf{u}\in I} p_{\mathbf{u}}(x_{\mathbf{u}}) = \sum_{\mathbf{u}} x_{\mathbf{u}},$$

is a quotient sequence-covering map.

Proof. Let

$$G = \bigoplus_{\mathbf{u} \in I} (\langle \mathbf{u} \rangle, \tau_{\mathbf{u}}), \qquad S = \bigcup_{\mathbf{u} \in I} j_i(S(\langle \mathbf{u} \rangle, \tau_{\mathbf{u}})).$$

Since each element of *X* can be regarded as the first element of some sequence $\mathbf{u} \in I$, *p* is surjective. By construction, *p* is sequence-covering.

Let $\mathbf{v} = \{v_n\}_{n \in \omega} \in S$. By construction, $p(v_n) = v_n \to 0$ in τ . According to Lemma 3.1, p is continuous. Let $H = \ker p$. By Theorem 3.2, $G/H \cong (X, \tau_{p(S)})$. Since $p(S) = S(X, \tau)$, we obtain $G/H \cong (X, \tau)$. Thus p is quotient. \square

Theorem 5.5. Let (X, τ) be a paratopological group. The following statements are equivalent:

- (1) (X, τ) is an s-paratopological group;
- (2) every continuous sequence-covering homomorphism from an s-paratopological group onto (X, τ) is quotient.

Proof. Let $I = S(X, \tau)$. For every $\mathbf{u} \in I$, put $X_{\mathbf{u}} = (\langle \mathbf{u} \rangle, \tau_{\mathbf{u}})$ and let $p_{\mathbf{u}} : (\langle \mathbf{u} \rangle, \tau_{\mathbf{u}}) \to X$, $p_{\mathbf{u}}(g) = g$, be the natural inclusion of $X_{\mathbf{u}}$ into X.

(1) \Rightarrow (2) Let $p: G \to X$ be a sequence-covering continuous homomorphism from an s-paratopological group (G, ν) onto X. Set $H = \ker p$. Since p is surjective, by Theorem 3.2, we have $G/H \cong (X, \tau_{p(S)})$. Note that p is a sequence-covering mapping, Proposition 3.3, $p(S(G, \nu)) = S(X, \tau)$ and $\tau = \tau_{S(X,\tau)}$. Thus $G/H \cong X$.

$$(2) \Rightarrow (1)$$
 Let $G = \bigoplus_{\mathbf{u} \in I}^{(s)} X_{\mathbf{u}}$ and

$$p:G\to X,\ p((x_{\mathbf{u}}))=\sum_{\mathbf{u}}p_{\mathbf{u}}(x_{\mathbf{u}})=\sum_{\mathbf{u}}x_{\mathbf{u}}.$$

By Theorem 5.4, p is continuous and sequence-covering. By hypothesis, p is quotient. Thus $(X, \tau) \cong G/\ker p$. According to Theorem 3.2, we have that $G/\ker p \cong (X, \tau_{\pi(S)})$. Thus $\tau = \tau_{p(S)}$, and (X, τ) is an s-paratopological group. \square

Proposition 5.6. Let $\{(X_i, v_i)\}_{i \in I}$ and $\{(G_i, \tau_i)\}_{i \in I}$ be non-empty families of s-paratop-ological groups and let $\pi_i : G_i \to X_i$ be a quotient sequence-covering map for every $i \in I$. Set $X = \bigoplus_{i \in I}^{(s)} X_i$, $G = \bigoplus_{i \in I}^{(s)} G_i$ and $\pi : G \to X$, $\pi((g_i)) = (\pi_i(g_i))$. Then π is a quotient mapping.

Proof. It is clear that π is surjective. Let

$$S_X = \bigcup_{i \in I} j_i(S(X_i, \nu_i))$$
 and $S_G = \bigcup_{i \in I} j_i(S(G_i, \tau_i)).$

Since π_i is sequence-covering, we have $\pi_i(S(G_i, \tau_i)) = S(X_i, \nu_i)$. Hence $\pi(S_G) = S_X$. By Lemma 3.1, π is continuous. By Theorem 3.2, $G/\ker \pi \cong (X, \tau_{\pi(S_G)})$. Since X is an s-paratopological group, $G/\ker \pi \cong X$ and π is quotient. \square

For Hausdorff paratopological groups, we have the following result.

Theorem 5.7. Let (X, τ) be a Hausdorff paratopological group. The following statements are equivalent:

- (1) (X, τ) is an s-paratopological group;
- (2) (X, τ) is a quotient group of the s-sum of a nonempty family of copies of $(\mathbb{Z}_0^{\omega}, \tau_{\mathbf{e}})$.

Proof. By definition of *s*-sum and Theorem 3.2, it is clear that (2) implies (1). We will show that (1) implies (2).

For every $\mathbf{u} \in I = S(X, \tau)$, put $G_{\mathbf{u}} = (\mathbb{Z}_0^{\mathbb{N}}, \tau_{\mathbf{e}})$, and let $\pi_{\mathbf{u}}$ be the unique group homomorphism from $G_{\mathbf{u}}$ onto $X_{\mathbf{u}}$ defined by $\pi_{\mathbf{u}}(e_i) = u_i$ for every $i \in \omega$. Since (X, τ) is a Hausdorff paratopological group, for every $\mathbf{u} \in S(X, \tau)$, $(X, \tau_{\mathbf{u}})$ is Hausdorff. By [16, Theorem 5.3], \mathbf{u} is a T-sequence. Therefore, each PT-sequence in $S(X, \tau)$ is a T-sequence. Then the result immediately follows from Theorems 4.9 and 5.4 and Proposition 5.6. \square

Acknowledgements

The authors would like to express their sincere appreciation to the reviewer for the detailed list of corrections, suggestions to the paper, and all her/his efforts in order to improve the paper.

References

- [1] A. V. Arhangel'skiĭ, M. G. Tkachenko, Topological Groups and Related Structures, Atlantis Press, Amsterdam/Paris, 2008.
- [2] A. V. Arhangel'skiĭ, W. Just, G. Plebanek, Sequential continuity on dyadic compacta and topological groups, Comment Math. Univ. Carolin. 37(1996), 775–790.
- [3] R. Bagley, On the characterization of the lattice of topologies, J. Lond. Math. Soc. 30 (1955), 247–249.
- [4] T. O. Banakh, Topologies on groups determined by sequences: answers to several questions of I. Protasov and E. Zelenyuk, Mat. Stud. 15 (2001), 145–150.
- [5] S. Baron, Sequential topologies, Amer. Math. Monthly, 73 (1966), 677–678.
- [6] B. Batíková, M. Hušek, Productivity numbers in paratopological groups, Topol. Appl. 193 (2015), 167-174.
- [7] A. Błaszczyk, M. Tkachenko, Transversal, T₁-independent, and T₁-complementary topologies, Topol. Appl. 230 (2017), 308–337.
- [8] Z. Cai, S. Lin, Z. Tang, Characterizing s-paratopological groups by free paratopological groups, Topol. Appl. 230 (2017), 283–294.
- [9] R. Engelking, General Topology (revised and completed edition), Heldermann Verlag, Berlin, 1989.
- [10] S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107–115.
- [11] S. P. Franklin, Spaces in which sequences suffice II, Fund. Math. 61 (1967), 51–56.
- [12] S. Gabriyelyan, Topologies on groups determined by sets of convergent sequences, J. Pure Appl. Algebra, 217 (2013), 786–802.
- [13] S. Gabriyelyan, On a generalization of Abelian sequential groups, Fund. Math. 221 (2013), 95–127.
- [14] M. Graev, Free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948) 278-324 (in Russian). Topology and Topological Algebra. Translation Series 1, 8 (1962), 305–364.
- [15] M. Hušek, Sequentially continuous homomorphisms on products of topological groups, Topol. Appl. 70 (1996), 155–165.
- [16] F. Lin, Transversal, T₁-independent, and T₁-complementary paratopological group topologies, Topol. Appl. **292** (2021), 107631.
- [17] F. Lin, Z. Tang, Transversality on locally pseduocompact groups, Frontiers of Mathematics in China, 16 (2021), 771–782.
- [18] S. Lin, Z. Yun, Generalized Metric Spaces and Mappings, Atlantis Studies in Mathematics, No. 6, Atlantis Press, Paris, 2016.
- [19] J. Nienhuys, Construction of group topologies on Abelian groups, Fund. Math. 75 (1972), 101–116.
- [20] N. Noble, The continuity of functions on Cartesian products, Trans. Amer. Math. Soc. 149 (1970), 187–198.
- [21] I. V. Protasov, E. G. Zelenyuk, Topologies on groups determined by sequences, Monograph Series, Math. Studies, vol. VNTL, L'viv, 1999.
- [22] A. K. Steiner, Complementation in the lattice of T₁-topologies, Proc. Amer. Math. Soc. 17 (1966), 884–886.
- [23] A. Shibakov, Sequential group topology on rationals with intermediate sequential order, Proc. Amer. Math. Soc. 124 (1996), 2599–2607.
- [24] V. V. Uspenskij, Real-valued measurable cardinals and sequentially continuous homomorphisms, arXiv: 2108.09839.
- [25] E. G. Zelenyuk, I. V. Protasov, Topologies on abelian groups, Math. USSR Izv. 37 (1991) 445-460. Russian original: Izv. Akad. Nauk SSSR. 54 (1990), 1090–1107.