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Abstract. In this paper, we present the expressions of the generalized inverses of the third-order 2 × 2
block tensor under the C-Product. Firstly, we give the necessary and sufficient conditions to present some
generalized inverses and the Moore-Penrose inverse of the block tensor in Banachiewicz-Schur forms. Next,
some results are generalized to the group inverse and the Drazin inverse. Moreover, equivalent conditions
for the existence as well as the expressions for the core inverse of the block tensor are obtained. Finally, the
results are applied to express the quotient property and the first Sylsvester identity of tensors.

1. Introduction

Operations with tensors, or multiway arrays, have become increasingly prevalent in recent years. A
complex tensorA can be regarded as a multidimensional array of date, which takes the form

A = (ai1i2...ip ) ∈ Cn1×n2×···×np , i j ∈ {1, ...,n j}, j = 1, 2, ..., p.

The order of the above tensor A is p. In general, vectors and matrices are considered as first-order and
second-order tensors, respectively. A third-order tensor can be regard as a “cube” of data. Notice that
the orientation of third-order tensors is not unique. So, it is necessary to refer to its slices, i.e., the two-
dimensional sections defined by holding two indices constant. We can use horizontal, lateral, and frontal
slices defined in [8] to specify the two indices holding constant. In this paper, we mainly focus on the frontal
slice, whose Matlab notation isA(:, :, i) and we denoteA(i) for short. Notice that there are several products of
tensors, such as the Einstein product which appears in the theory of relativity [3] and continuum mechanics
[10], the T-Product which is introduced in [12] and the C-Product which is defined in [7]. It is also indicated
that we can use the C-Product to study the discrete image blurring model and the image restoration model.
Moreover, the product can be applied in deep convolutional neural networks [24], image classification [15],
matrix networks [22], tensor robust principal component analysis [11] and so on.

Lately, the generalized inverse of tensors with the different tensor product have attracted a lot of study.
Sun et al. [23] defined the Moore-Penrose inverse and {i}-inverses of even order tensors with the Einstein
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product. Moreover, the explicit formulas of the Moore-Penrose inverse of some block tensors were obtained.
Miao et al. [13] presented the definition of generalized tensor function according to the tensor singular
value decomposition via the tensor T-Product. Also, the compact singular value decomposition of tensors
was introduced, from which the projection operators and Moore-Penrose inverse of tensors were obtained.
Miao et al. [14] focused on the tensor decompositions: T-polar, T-LU, T-QR and T-Schur decompositions
of tensors. The T-group inverse and T-Drazin inverse which can be viewed as the extension of matrix
cases were studied. Krushnachandra et al. [9] gave an expression for the Moore-Penrose inverse of the
product of two tensors via the Einstein product. Then a new generalized inverse of a tensor called product
Moore-Penrose inverse was introduced. A necessary and sufficient condition for the coincidence of the
Moore-Penrose inverse and the product Moore-Penrose inverse was also proposed. Stanimirović PS et
al. [21] investigated some basic properties of the range and null space of multidimensional arrays with
respect to Einstein tensor product. Computation of tensor outer inverse with prescribed range and kernel of
higher order tensors was considered. Results related with the (b, c)-inverses on semigroups were examined
in details in a specific semigroup of tensors with a binary associative operation defined as the Einstein
tensor product. Ji et al. [4] had a further study on the properties of even-order tensors with Einstein
product. The authors defined the index and characterize the invertibility of an even-order square tensor.
The notion of the Drazin inverse of a square matrix to an even-order square tensor were extended. An
expression for the Drazin inverse through the core-nilpotent decomposition for a tensor of even-order was
obtained. Jin et al. [5] established the Moore-Penrose inverse of tensors by using tensor equations with
the T-Product. Moreover, the least squares solutions of tensor equations were investigated. Behera et al.
[1] studied different generalized inverses of tensors over a commutative ring and a non-commutative ring.
The authors also proposed algorithms for computing the inner inverses, the Moore-Penrose inverse, and
weighted Moore-Penrose inverse of tensors over a non-commutative ring. Sahoo et al. [19] introduced
new representations and characterizations of the outer inverse of tensors through QR decomposition. An
effective algorithm for computing outer inverses of tensors was proposed and applied. The power of
the proposed method was demonstrated by its application in 3D color image deblurring. Sahoo et al.
[20] studied the definitions of the core and core-EP inverses of complex tensors. Some characterizations,
representations and properties of the core and core-EP inverses were investigated. The results were verified
using specific algebraic approach, based on proposed definitions and previously verified properties.

This paper mainly deals with the generalized inverses of the third-order block tensor with the C-Product.

1.1. The Definition of the C-Product
LetA ∈ Cn1×n2×n3 be a third-order tensor. Denote the ith frontal slice of tensorA asA(i). The operations

mat and ten are defined as follows [7]. Observe that mat(A) is the n1n3 × n2n3 block Toeplitz+Hankel
matrix:

mat(A) =


A

(1)
A

(2)
· · · A

(n3−1)
A

(n3)

A
(2)

A
(1)

· · · A
(n3−2)

A
(n3−1)

...
...

...
...

A
(n3−1)

A
(n3−2)

· · · A
(1)

A
(2)

A
(n3)

A
(n3−1)

· · · A
(2)

A
(1)


+


A

(2)
A

(3)
· · · A

(n3) O
A

(3)
A

(4)
· · · O A

(n3)

...
...

...
...

A
(n3) O · · · A

(4)
A

(3)

O A
(n3)

· · · A
(3)

A
(2)


,

where O is the n1 × n2 zero matrix. Notice that ten(mat(A)) = A, which means that ten(·) is the inverse
operation of the mat(·). Furthermore, the definition of the cosine transform product was given in [7].

Definition 1.1. [7] LetA ∈ Cn1×n2×n3 and B ∈ Cn2×n4×n3 . The cosine transform product, which is called C-Product
for short, is defined as

A⋆B = ten(mat(A)mat(B)).

From the definition, we can see that it is easy to compute mat(A)mat(B) by using the technical of the
matrices product. In order to compute the C-Product, we must deal with the operation “ten(·)”, which can
be realized by using the following algorithm.
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Algorithm 1.1: Compute ten(·) of a matrix
Input: n1n3 × n2n3 matrix X
Output: n1 × n2 × n3 tensorA

1. Take the bottom left n1 × n2 block of X 7→ A(n3).
2. for i = n3 − 1, . . . , 1

[i-th block of first block column of X]−A(i+1)
7→ A

(i)

end

There is an alternative method to compute the C-Product by using the face-wise product. The face-wise
product of two tensorsA ∈ Cn1×n2×n3 and B ∈ Cn2×n4×n3 is defined as

(A△B)(i) = A(i)
B

(i), i = 1, 2, ...,n3.

Lemma 1.2. [7] LetA ∈ Cn1×n2×n3 and B ∈ Cn2×n4×n3 . Then,

A⋆B = L−1(L(A)△L(B)). (1.1)

Notice that
L(A) = A×3 M and L−1(A) = A×3 M−1,

where M is defined in [7, Definition 3.2] and A ×3 M means the mode-3 product of a tensor A ∈ Cn1×n2×n3

with the matrix M ∈ Cn3×n3 . More precise, we have

(A×3 M)i1i2i3 =

n3∑
i3=1

ai1i2i3 m ji3 , ik ∈ {1, 2, ...,nk}, k = 1, 2, 3, j ∈ {1, 2, ...,n3}.

The reader can consult [8].

Definition 1.3. [7] Let L(I) = Î ∈ Cn1×n1×n3 be such that Î(i) = In1 , i = 1, 2, ...,n3. Then I = L−1(Î) is the identity
tensor.

Lemma 1.4. [7] LetA ∈ Cn1×n1×n3 and I ∈ Cn1×n1×n3 be the identity tensor. Then,

I⋆A = A⋆I = A.

Definition 1.5. [7] LetA ∈ Cn1×n1×n3 and B ∈ Cn1×n1×n3 . If

A⋆B = I and B⋆A = I,

thenA is said to be invertible and B is called the inverse ofA, which is denoted byA−1.

Definition 1.6. [7] LetA ∈ Cn1×n2×n3 . Then the conjugate transpose ofA, which is denoted byAH, is such that

L(AH)(i) = (L(A(i)))H, i = 1, 2, . . . ,n3.

1.2. The Genralized Inverse of Tensors with the C-Product
Next, we recall the definition of the Moore-Penrose inverse, the Drazin inverse, the group inverse and

the core inverse of a tensor via the C-Product.

Definition 1.7. [6] LetA ∈ Cn1×n2×n3 . The unique tensor X ∈ Cn2×n1×n3 satisfying

(1)A⋆X⋆A = A, (2) X⋆A⋆X = X, (3) (A⋆X)H = A⋆X, (4) (X⋆A)H = X⋆A, (1.2)

is called the Moore-Penrose inverse of the tensorA and is denoted byA†.
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For anyA ∈ Cn1×n2×n3 , denoteA{i, j, . . . , k} the set of allX ∈ Cn2×n1×n3 which satisfy equations (i), ( j), . . . , (k)
of (1.2). In this case, X is a {i, j, . . . , k}-inverse ofA.

Definition 1.8. [6] LetA ∈ Cn1×n1×n3 and ind(A) = k. The unique tensor X ∈ Cn1×n1×n3 satisfying

A
k⋆X⋆A = Ak, X⋆A⋆X = X, A⋆X = X⋆A, (1.3)

is called the Drazin inverse of the tensor A and is denoted by AD. In particular, when k = 1, the tensor X is called
the group inverse ofA and is denoted byA#.

For the definition of the core inverse of a tensor, we generalize Theorem 2.14 in [18] and obtain the
following definition. We also indicate that the core inverse we defined has similar forms as the core inverse
under the Einstein product studied by Sahoo et al. [20].

Definition 1.9. LetA ∈ Cn1×n1×n3 . The unique tensorX ∈ Cn1×n1×n3 is the core inverse ofA if and only ifX satisfies
that

(A⋆X)H = A⋆X, X⋆A2 = A, A⋆X2 = X. (1.4)

The core inverse ofA is denoted byA #O.

1.3. The Generalized Schur Complement of Tensors
LetM ∈ C(m1+m2)×(n1+n2)×p. Then,M can be partitioned as the following form

M =

[
A B

C D

]
∈ C(m1+m2)×(n1+n2)×p, (1.5)

whereA ∈ Cm1×n1×p, B ∈ Cm1×n2×p, C ∈ Cm2×n1×p,D ∈ Cm2×n2×p.
The operations of partitioned tensors are given as follows.

Lemma 1.10. The following statements are true.

(1) X⋆
[
A B

]
=
[
X⋆A X⋆B

]
, whereA ∈ Cm1×n1×p, B ∈ Cm1×n2×p, X ∈ Ca×m1×p.

(2)
[
C

D

]
⋆Y =

[
C⋆Y
D⋆Y

]
, where C ∈ Cm1×n1×p,D ∈ Cm2×n1×p,Y ∈ Cn1×a×p.

(3)
[
A B

]
⋆

[
C

D

]
= A⋆C +B⋆D, whereA ∈ Cm1×n1×p, B ∈ Cm1×n2×p, C ∈ Cn1×m2×p,D ∈ Cn2×m2×p.

(4)
[
A

B

]
⋆
[
C D

]
=

[
A⋆C A⋆D
B⋆C B⋆D

]
, where A ∈ Cm1×n1×p, B ∈ Cm2×n1×p, C ∈ Cn1×m1×p, D ∈

Cn1×m2×p.

(5)
[
A B

C D

]
⋆

[
E

F

]
=

[
A⋆E +B⋆F
C⋆E +D⋆F

]
, where A ∈ Cm1×n1×p, B ∈ Cm1×n2×p, C ∈ Cm2×n1×p, D ∈

Cm2×n2×p, E ∈ Cn1×m1×p, F ∈ Cn2×m1×p.

(6)
[
G H

]
⋆

[
A B

C D

]
=
[
G⋆A +H⋆C G⋆B +H⋆D

]
, where A ∈ Cm1×n1×p, B ∈ Cm1×n2×p,

C ∈ Cm2×n1×p,D ∈ Cm2×n2×p, G ∈ Cn1×m1×p,H ∈ Cn1×m2×p.

(7)
[
A B

C D

]
⋆

[
E F

G H

]
=

[
A⋆E +B⋆G A⋆F +B⋆H
C⋆E +D⋆G C⋆F +D⋆H

]
, where A ∈ Cm1×n1×p, B ∈ Cm1×n2×p,

C ∈ Cm2×n1×p,D ∈ Cm2×n2×p, E ∈ Cn1×m1×p, F ∈ Cn1×m2×p, G ∈ Cn2×m1×p,H ∈ Cn2×m2×p.
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Proof. (1) By Lemma 1.2,

X⋆
[
A B

]
= L−1(L(X)△L(

[
A B

]
))

=
[

L−1(L(X)△L(A)) L−1(L(X)△L(B))
]

=
[
X⋆A X⋆B

]
.

(2)-(7) follow similarly.

The Schur complements and generalized Schur complements, were studied by a lot of researchers, and
have applications in matrix theory, statistics, electrical network theory, discrete-time regulator problem,
sophisticated techniques and some other fields. So, it is natural to have a deep study on the Schur
complements of tensors.

Let

M =

[
A B

C D

]
∈ C(m1+m2)×(n1+n2)×p, (1.6)

whereA ∈ Cm1×n1×p, B ∈ Cm1×n2×p, C ∈ Cm2×n1×p,D ∈ Cm2×n2×p.
When m1 = n1 andA is invertible, the Schur complement ofA inM is defined by S = D−C⋆A−1⋆B.

Similarly, if m2 = n2 and D is invertible, then the Schur complement of D in M is defined by T =
A−B⋆D−1⋆C.

Notice that ifA ∈ Cm1×m1×p is invertible, thenM is invertible if and only if S is invertible. In which case,
the inverse ofM is given by

M
−1 =

[
A
−1 +A−1⋆B⋆S−1⋆C⋆A−1

−A
−1⋆B⋆S−1

−S
−1⋆C⋆A−1

S
−1

]
∈ C(m1+m2)×(m1+m2)×p,

which is called the Banachiewicz-Schur forms of the inverse ofM.
Indeed, ifA is invertible, then the Schur complement ofA inM is S = D− C⋆A−1⋆B. Since[

I1 O1
−C⋆A−1

I2

]
⋆

[
A B

C D

]
⋆

[
I1 −A

−1⋆B
O2 I2

]
=

[
A O1
O2 S

]
,

where I1, I2 are the identity tensors with proper size and O1, O2 are the zero tensors with proper size, we
haveM is invertible if and only if S is invertible. Therefore, the inverse ofM is

M
−1 =

[
A B

C D

]−1

=

[
I1 −A

−1⋆B
O2 I2

]
⋆

[
A
−1

O1
O2 S

−1

]
⋆

[
I1 O1

−C⋆A−1
I2

]
=

[
A
−1 +A−1⋆B⋆S−1⋆C⋆A−1

−A
−1⋆B⋆S−1

−S
−1⋆C⋆A−1

S
−1

]
.

Dually, if D ∈ Cm2×m2×p is invertible, thenM is invertible if and only if T is invertible. In which case,
M
−1 can be expressed as

M
−1 =

[
T
−1

−T
−1⋆B⋆D−1

−D
−1⋆C⋆T −1

D
−1 +D−1⋆C⋆T −1⋆B⋆D−1

]
.

More general, whenA is not invertible, for the tensor given by (1.6) and some fixed generalized inverse
A
−
∈ A{1}, the generalized Schur complement ofA inM is defined by

S = D− C⋆A−⋆B.
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Similarly, for some fixedD− ∈ D{1}, the generalized Schur complement ofD inM is defined by

T = A−B⋆D−⋆C.

The work is organized as follows. In section 2, we give necessary and sufficient conditions to present
{1}, {2}, {1, 2}, {1, 2, 3}, {1, 2, 4}-inverses and the Moore-Penrose inverse of the 2 × 2 block tensor M in the
Banachiewicz-Schur forms. In section 3, we present some results when the group and Drazin inverse of the
block tensor can be represented in the generalized Schur form. In section 4, we establish several expressions
of the core inverse of the block tensor. In section 5, we apply the results of section 4 to express the quotient
property and the first Syslvester identity based on the core inverse of tensors.

2. The Moore-Penrose Inverse of the 2 × 2 Block Tensor

In this section, we will establish the necessary and sufficient conditions of the Banachiewicz-Schur forms
of the generalized inverse ofM. In the following, we omit⋆ in the C-Product of two tensors.

LetM =
[
A B

C D

]
∈ C(m1+m2)×(n1+n2)×p. Then,

X =

[
A
− +A−BS−CA− −A

−
BS

−

−S
−
CA

−
S
−

]
∈ C(n1+n2)×(m1+m2)×p,

where A− ∈ A{1}, S− ∈ S{1}, A− +A−BS−CA− ∈ Cn1×m1×p, −A−BS− ∈ Cn1×m2×p, −S−CA− ∈ Cn2×m1×p and
S
−
∈ Cn2×m2×p.
Now, we suppose that the setsN1{i, j, k} andN2{i, j, k} are expressed as the following.

N1{i, j, k} = {X =
[
A
− +A−BS−CA− −A

−
BS

−

−S
−
CA

−
S
−

]
: A− ∈ A{i, j, k}, S = D− CA−B, S− ∈ S{i, j, k}}.

N2{i, j, k} = {Y =
[
T
−

−T
−
BD

−

−D
−
CT

−
D
− +D−CT −BD−

]
: D− ∈ D{i, j, k}, T = A−BD−C, T − ∈ T {i, j, k}}.

Denote Γα = I − α−α and Υα = I − αα−, where α = A,B,C,D,S,T , α− ∈ α{i, j, k}.

Theorem 2.1. LetM =
[
A B

C D

]
∈ C(m1+m2)×(n1+n2)×p. Then,

N1{1} ⊆ M{1}

if and only if
ΥABΓS = 0, ΥSCΓA = 0, ΥABS−CΓA = 0,

for someA− ∈ A{1}, S− ∈ S{1}.

Proof. Let

X =

[
A
− +A−BS−CA− −A

−
BS

−

−S
−
CA

−
S
−

]
∈ N1{1},

whereA− ∈ A{1}, S = D− CA−B, S− ∈ S{1}. Assume

MXM = Z =

[
Z1 Z2
Z3 Z4

]
.

By some computations, we have

Z1 = A + ΥABS
−
CΓA, Z2 = AA

−
B + ΥABS

−
S,
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Z3 = CA
−
A + SS−CΓA, Z4 = CA

−
B + S.

Then,

X ∈ M{1}, that isN1{1} ⊆ M{1} ⇔ Z1 = A, Z2 = B, Z3 = C, Z4 = D.

⇔ ΥABS
−
CΓA = 0, ΥABΓS = 0, ΥSCΓA = 0.

Theorem 2.2. LetM =
[
A B

C D

]
∈ C(m1+m2)×(n1+n2)×p. Then

N1{2} ⊆ M{2}.

Proof. Suppose

X =

[
A
− +A−BS−CA− −A

−
BS

−

−S
−
CA

−
S
−

]
∈ N1{2},

whereA− ∈ A{2}, S = D− CA−B, S− ∈ S{2}. Let

XMX = Z =

[
Z1 Z2
Z3 Z4

]
.

Some computations show that

XMX =

[
A
− +A−BS−CA− −A

−
BS

−

−S
−
CA

−
S
−

] [
A B

C D

] [
A
− +A−BS−CA− −A

−
BS

−

−S
−
CA

−
S
−

]
=

[
A
−
A−A

−
BS

−
CΓA A

−
B −A

−
BS

−
S

S
−
CΓA S

−
S

] [
A
− +A−BS−CA− −A

−
BS

−

−S
−
CA

−
S
−

]
=

[
A
− +A−BS−CA− −A

−
BS

−

−S
−
CA

−
S
−

]
= X,

that is X ∈ M{2}. Therefore,N1{2} ⊆ M{2}.

An immediate consequence of Theorems 2.1 and Theorems 2.2 is the following result.

Theorem 2.3. LetM =
[
A B

C D

]
∈ C(m1+m2)×(n1+n2)×p. Then

N1{1, 2} ⊆ M{1, 2}

if and only if
ΥABΓS = 0, ΥSCΓA = 0, ΥABS−CΓA = 0,

for someA− ∈ A{1, 2}, S− ∈ S{1, 2}.

Proof. It follows by Theorem 2.1 and Theorem 2.2.

Theorem 2.4. LetM =
[
A B

C D

]
∈ C(m1+m2)×(n1+n2)×p. Then

N1{1, 2, 3} ⊆ M{1, 2, 3}

if and only if
ΥAB = 0, ΥSC = 0,

for someA− ∈ A{1, 2, 3}, S− ∈ S{1, 2, 3}.
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Proof. Let

X =

[
A
− +A−BS−CA− −A

−
BS

−

−S
−
CA

−
S
−

]
∈ N1{1, 2, 3},

whereA− ∈ A{1, 2, 3}, S = D− CA−B, S− ∈ S{1, 2, 3}. By Theorem 2.3, X ∈ M{1, 2} if and only if

ΥABΓS = 0, ΥSCΓA = 0, ΥABS−CΓA = 0. (2.1)

Therefore,X ∈ M{1, 2, 3} if and only if (MX)H =MX and (2.1) holds. Now, we will computeMX. By some
operations, it shows that

MX =

[
A B

C D

] [
A
− +A−BS−CA− −A

−
BS

−

−S
−
CA

−
S
−

]
=

[
AA

−
− ΥABS

−
CA

− ΥABS
−

ΥSCA
−

SS
−

]
.

By (MX)H =MX, we haveΥSCA− = (ΥABS
−)H. PostmultiplyingAA− from the both sides of this equation

leads to ΥSCA− = 0.
Again using (ΥSCA−)H = ΥABS

−, postmultiplying SS− from the both sides of the equation gives
ΥABS

− = 0. This means (MX)H =MX if and only if

ΥSCA
− = 0 and ΥABS

− = 0. (2.2)

Therefore, X ∈ M{1, 2, 3} if and only if (2.1) and (2.2) hold. By (2.1) and (2.2), since ΥABΓS = ΥABS
− = 0,

one has

ΥAB = ΥABΓS + ΥABS
−
S = 0 + 0 = 0. (2.3)

Similarly, ΥSC = 0. Conversely, if ΥAB = 0 and ΥSC = 0, then (2.1) and (2.2) are true. Hence,

N1{1, 2, 3} ⊆ M{1, 2, 3}

if and only if
ΥAB = 0, ΥSC = 0,

for someA− ∈ A{1, 2, 3}, S− ∈ S{1, 2, 3}.

In a similar way, we have the following theorem concerning the {1, 2, 4}-inverse ofM.

Theorem 2.5. LetM =
[
A B

C D

]
∈ C(m1+m2)×(n1+n2)×p. Then

N1{1, 2, 4} ⊆ M{1, 2, 4}

if and only if
BΓS = 0, CΓA = 0,

for someA− ∈ A{1, 2, 4}, S− ∈ S{1, 2, 4}.

By using Theorem 2.4 and Theorem 2.5, we get the following desired result.

Theorem 2.6. LetM =
[
A B

C D

]
∈ C(m1+m2)×(n1+n2)×p. Then

M
† =

[
A
† +A†BS†CA† −A†BS†

−S
†
CA

†
S
†

]
(2.4)

if and only if
ΥAB = 0, CΓA = 0, BΓS = 0, ΥSC = 0,

whereA− = A†, S− = S†, S = D− CA†B.
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Dually, we have the following theorem.

Theorem 2.7. LetM =
[
A B

C D

]
∈ C(m1+m2)×(n1+n2)×p. Then,

M
† =

[
T
†

−T
†
BD

†

−D
†
CT

†
D
† +D†CT †BD†

]
(2.5)

if and only if
ΥDC = 0, BΓD = 0, CΓT = 0, ΥTB = 0,

whereD− = D†, T − = T †, T = A−BD†C.

3. The Drazin Inverse of the 2 × 2 Block Tensor

In this section, we will present some results which characterizes when the group and Drazin inverse of
a partitioned tensor can be expressed in the Banachiewicz-Schur forms.

Theorem 3.1. LetM =
[
A B

C D

]
∈ C(m1+m2)×(m1+m2)×p. Then,

M
# =

[
A

# +A#
BS

#
CA

#
−A

#
BS

#

−S
#
CA

#
S

#

]
(3.1)

if and only if
ΥAB = 0, CΓA = 0, BΓS = 0, ΥSC = 0,

whereA− = A#, S− = S#, S = D− CA#
B.

Proof. Let

X =

[
A

# +A#
BS

#
CA

#
−A

#
BS

#

−S
#
CA

#
S

#

]
.

By Theorem 2.3, X ∈ M{1, 2} if and only if

ΥABΓS = 0, ΥSCΓA = 0, ΥABS−CΓA = 0. (3.2)

whereA− = A#, S− = S#, S = D− CA#
B. Furthermore, X =M# if and only ifMX = XM and (3.2) holds.

Simple computations show that

MX =

[
AA

#
− ΥABS

#
CA

# ΥABS
#

ΥSCA
#

SS
#

]
and

XM =

[
A

#
A−A

#
BS

#
CΓA A

#
BΓS

S
#
CΓA S

#
S

]
.

IfMX = XM, one has ΥABS
# = A#

BΓS. Postmultiplication by S from both sides of the equation gives
ΥABS

#
S = A#

BΓSS = 0. Premultiplication by A from both sides of the equation gives AΥABS
# =

AA
#
BΓS = 0. Notice that

ΥABΓS = ΥAB − ΥABS
#
S = BΓS −AA

#
BΓS = 0.

Thus, ΥAB = 0 and BΓS = 0. Similarly, by ΥSCA# = S#
CΓA and ΥSCΓA = 0, one has

CΓA = 0, and ΥSC = 0.

Conversely, if
ΥAB = 0, CΓA = 0, BΓS = 0, ΥSC = 0,

where A− = A#, S− = S#, S = D − CA#
B, it is clear thatMX = XM and (3.2) holds. Thus, the proof is

finished.



H. Jin et al. / Filomat 37:26 (2023), 8909–8926 8918

If S = D− CA#
B is invertible, we can get the following result.

Corollary 3.2. Let M =

[
A B

C D

]
∈ C(m1+m2)×(m1+m2)×p. If ΥAB = 0, CΓA = 0, where A− = A#, and

S = D− CA#
B is invertible, then

M
# =

[
A

# +A#
BS

−1
CA

#
−A

#
BS

−1

−S
−1
CA

#
S
−1

]
.

Dually, we have the following theorems.

Theorem 3.3. LetM =
[
A B

C D

]
∈ C(m1+m2)×(m1+m2)×p. Then,

M
# =

[
T

#
−T

#
BD

#

−D
#
CT

#
D

# +D#
CT

#
BD

#

]
(3.3)

if and only if
ΥDC = 0, BΓD = 0, CΓT = 0, ΥTB = 0,

whereD− = D#, T − = T #, T = A−BD#
C.

Corollary 3.4. Let M =

[
A B

C D

]
∈ C(m1+m2)×(m1+m2)×p. If ΥDC = 0, BΓD = 0, where D− = D#, and

T = A−BD#
C is invertible, then

M
# =

[
T
−1

−T
−1
BD

#

−D
#
CT

−1
D

# +D#
CT

−1
BD

#

]
.

If we combine Theorem 3.1 and Theorem 3.3, a new result can be obtained.

Theorem 3.5. LetM =
[
A B

C D

]
∈ C(m1+m2)×(m1+m2)×p. Then

M
# =

[
A

# +A#
BS

#
CA

#
−A

#
BS

#

−S
#
CA

#
S

#

]
=

[
T

#
−T

#
BD

#

−D
#
CT

#
D

# +D#
CT

#
BD

#

]
if and only if one of the following condition holds.

(i) ΥAB = 0, ΥSC = 0, ΥDC = 0, BΓS = 0, CΓA = 0, BΓD = 0, (3.4)

(ii) ΥAB = 0, ΥTB = 0, ΥDC = 0, BΓD = 0, CΓA = 0, CΓT = 0, (3.5)

whereA− = A#, S− = S#,D− = D#, T − = T #, S = D− CA#
B, T = A−BD#

C.

Proof. (i) By Theorem 3.1 and Theorem 3.3,

M
# =

[
A

# +A#
BS

#
CA

#
−A

#
BS

#

−S
#
CA

#
S

#

]
=

[
T

#
−T

#
BD

#

−D
#
CT

#
D

# +D#
CT

#
BD

#

]
if and only if

ΥAB = 0, ΥTB = 0, ΥSC = 0, ΥDC = 0, BΓS = 0, CΓA = 0, BΓD = 0, CΓT = 0. (3.6)

Now, we only need to prove (3.6) is equivalent to (3.4). It is clearly (3.6) implies (3.4). Now, we prove the
reverse part.
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Denoting T
′

= A# +A#
BS

#
CA

#. ByΥAB = 0,ΥSC = 0, BΓD = 0, we have

TT
′

= (A−BD#
C)(A# +A#

BS
#
CA

#)
= AA

# +AA#
BS

#
CA

#
− BD

#
CA

#
− BD

#
CA

#
BS

#
CA

#

= AA
# +BS#

CA
#
− BD

#
CA

#
− BD

#(D−S)S#
CA

#

= AA
#

and by ΥDC = 0, BΓS = 0, CΓA = 0, we have

T
′

T = (A# +A#
BS

#
CA

#)(A−BD#
C)

= A
#
A−A

#
BD

#
C +A#

BS
#
CA

#
A−A

#
BS

#
CA

#
BD

#
C

= A
#
A−A

#
BD

#
C +A#

BS
#
C −A

#
BS

#(D−S)D#
C

= A
#
A.

Now, it is easy to get

TT
′

T = AA#(A−BD#
C) = A−BD#

C = T ,

T
′

TT
′

= A#
A(A# +A#

BS
#
CA

#) = A# +A#
BS

#
CA

# = T
′

.

Thus, T
′

= T #. Hence, T #
T = A#

A and TT # = AA#. Now, we get ΥAB = ΥTB = 0 and CΓA = CΓT = 0,
which means (3.4) implying (3.6). Thus, (3.4) is equivalent to (3.6).

(ii) The proof is similar to the proof of (i).

In the following, we give some expressions related to the Drazin inverse of the block tensors. Before
that, we denote Πα = I − αDα = I − ααD, where α = A,B,C,D,S,T .

Theorem 3.6. LetM =
[
A B

C D

]
∈ C(m1+m2)×(m1+m2)×p. If

ΠSCA
D = 0, ΠABSD = 0, CΠA = 0, BΠS = 0, ΠD = ΠS,

then

M
D =

[
A

D +AD
BS

D
CA

D
−A

D
BS

D

−S
D
CA

D
S

D

]
, (3.7)

where S = D− CAD
B.

Proof. Let

X =

[
A

D +AD
BS

D
CA

D
−A

D
BS

D

−S
D
CA

D
S

D

]
.

By ΠSCAD = 0, ΠABSD = 0, we have

MX = XM =

[
AA

D
O

O SS
D

]
.

Moreover,

XMX =

[
A

D +AD
BS

D
CA

D
−A

D
BS

D

−S
D
CA

D
S

D

] [
AA

D
O

O SS
D

]
=

[
A

D +AD
BS

D
CA

D
−A

D
BS

D

−S
D
CA

D
S

D

]
= X.
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Next, we will proveMk+1
X =Mk. By CΠA = 0, BΠS = 0, ΠD = ΠS, we have

M
2
X =

[
A B

C D

] [
AA

D
O

O SS
D

]
=

[
A

2
A

D
BSS

D

CAA
D
DSS

D

]
=

[
A B

C D

]
−

[
A(I −AAD) O

O D(I −DDD)

]
.

Furthermore,

M
k+1
X =Mk

−

[
A

k(I −AAD) O

O D
k(I −DDD)

]
,

which implies thatMk+1
X =Mk, when k ≥ max{ind(A), ind(D)}.

Similarly, we have the following result.

Theorem 3.7. LetM =
[
A B

C D

]
∈ C(m1+m2)×(m1+m2)×p. If

ΠTBD
D = 0, ΠDCTD = 0, BΠD = 0, CΠT = 0, ΠA = ΠT ,

then

M
D =

[
T

D
−T

D
BD

D

−D
D
CT

D
D

D +DD
CT

D
BD

D

]
, (3.8)

where T = A−BDD
C.

Combining the above two theorems, we can get a new theorem as follows.

Theorem 3.8. LetM =
[
A B

C D

]
∈ C(m1+m2)×(m1+m2)×p. If

ΠDC = 0, ΠAB = 0, CΠA = 0, BΠD = 0, ΠD = ΠS, ΠA = ΠT ,

then

M
D =

[
A

D +AD
BS

D
CA

D
−A

D
BS

D

−S
D
CA

D
S

D

]
=

[
T

D
−T

D
BD

D

−D
D
CT

D
D

D +DD
CT

D
BD

D

]
,

where S = D− CAD
B, T = A−BDD

C.

4. The Core Inverse of the 2 × 2 Block Tensor

In this part, we will establish several expressions of the core inverse of the partitioned tensor.

Theorem 4.1. LetM =
[
A B

C D

]
∈ C(m1+m2)×(m1+m2)×p. Then,

M
#O =

[
A

#O +A #O
BS

#O
CA

#O
−A

#O
BS

#O

−S
#O
CA

#O
S

#O

]
if and only if

ΥABS
#O = 0, ΥSCA #O = 0, ΓAB = 0, ΓSC = 0, (4.1)

whereA− = A #O, S− = S #O, S = D− CA #O
B.
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Proof. Let

X =

[
A

#O +A #O
BS

#O
CA

#O
−A

#O
BS

#O

−S
#O
CA

#O
S

#O

]
.

If X is the core inverse ofM, then by the definition, we have

X =M #O
⇔ (MX)H =MX, MX2 = X, XM2 =M.

According to (2.2), we have

(MX)H =MX⇔ ΥSCA
#O = 0, ΥABS

#O = 0.

Since XM2 =M, that is, [
A

#O +A #O
BS

#O
CA

#O
−A

#O
BS

#O

−S
#O
CA

#O
S

#O

] [
A B

C D

]2
=

[
A B

C D

]
,

we have
A = A #O

A
2
−A

#O
BS

#O
C(I −A #O

A)A +A #O
B(I − S #O

S)C,
B = A #O

AB−A
#O
BS

#O
C(I −A #O

A)B +A #O
B(I − S #O

S)D,
C = S #O

C(I −A #O
A)A + S #O

SC,
D = S #O

C(I −A #O
A)B + S #O

SD.

(4.2)

The third equality of (4.2) gives C = S #O
SC. Substituting the fourth equality of (4.2) into the second equality,

we will get B = A #O
AB. Hence, we have ΓAB = 0, ΓSC = 0.

Conversely, if
ΥABS

#O = 0, ΥSCA #O = 0, ΓAB = 0, ΓSC = 0,

we will prove that

X =

[
A

#O +A #O
BS

#O
CA

#O
−A

#O
BS

#O

−S
#O
CA

#O
S

#O

]
is the core inverse ofM.

Since ΥABS #O = 0 and ΥSCA #O = 0, we have (MX)H =MX and

MX
2 =

[
AA

#O
O

O SS
#O

] [
A

#O +A #O
BS

#O
CA

#O
−A

#O
BS

#O

−S
#O
CA

#O
S

#O

]
= X.

Since ΓAB = 0, ΓSC = 0 and ΓSD = (I − S #O
S)(S + CA #O

B) = 0, we have

XM
2 =

[
A

#O
A−A

#O
BS

#O
C(I −A #O

A) A
#O
B(I − S #O

S)
S

#O
C(I −A #O

A) S
#O
S

] [
A B

C D

]
=

[
A +A #O

B(I − S #O
S)C A

#O
AB−A

#O
BS

#O
C(I −A #O

A)B +A #O
B(I − S #O

S)D
S

#O
SC S

#O
C(I −A #O

A)B + S #O
SD

]
=

[
A B

C D

]
=M.

Above all, (MX)H =MX,MX2 = X and XM2 =M. Then, we have X =M #O.

If S is a nonsingular tensor, then ΥSCA #O = 0, ΓSC = 0 are always true. Hence, we can get the following
corollary.
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Corollary 4.2. Let M =

[
A B

C D

]
∈ C(m1+m2)×(m1+m2)×p and S = D − CA #O

B be invertible. If ΥABS−1 =

0, ΓAB = 0, whereA− = A #O, then

M
#O =

[
A

#O +A #O
BS

−1
CA

#O
−A

#O
BS

−1

−S
−1
CA

#O
S
−1

]
.

Dually, we have the following results.

Theorem 4.3. LetM =
[
A B

C D

]
∈ C(m1+m2)×(m1+m2)×p. Then,

M
#O =

[
T

#O
−T

#O
BD

#O

−D
#O
CT

#O
D

#O +D #O
CT

#O
BD

#O

]
if and only if

ΥDCT
#O = 0, ΥTBD #O = 0, ΓDC = 0, ΓTB = 0,

whereD− = D #O, T − = T #O, T = A−BD #O
C.

Corollary 4.4. Let M =

[
A B

C D

]
∈ C(m1+m2)×(m1+m2)×p and T = A − BD #O

C be invertible. If ΥDCT −1 =

0, ΓDC = 0, whereD− = D #O, then

M
#O =

[
T
−1

−T
−1
BD

#O

−D
#O
CT

−1
D

#O +D #O
CT

−1
BD

#O

]
.

If we combine Theorem 4.1 with Theorem 4.3, we can get a corollary as follows. In the following
theorem, we denote Γα = I − α #Oα and Υα = I − αα #O, where α = A,B,C,D,S,T .

Corollary 4.5. LetM =
[
A B

C D

]
∈ C(m1+m2)×(m1+m2)×p, S = D− CA #O

B and T = A−BD #O
C. Then,

M
#O =

[
A

#O +A #O
BS

#O
CA

#O
−A

#O
BS

#O

−S
#O
CA

#O
S

#O

]
=

[
T

#O
−T

#O
BD

#O

−D
#O
CT

#O
D

#O +D #O
CT

#O
BD

#O

]
(4.3)

if and only if

ΥABS
#O = 0, ΓAB = 0, ΥSCA #O = 0, ΓSC = 0, ΥDCT #O = 0, ΓDC = 0, ΥTBD #O = 0, ΓTB = 0. (4.4)

By using Corollary 4.5, we can get the following corollary.

Corollary 4.6. LetM =
[
A B

C D

]
∈ C(m1+m2)×(m1+m2)×p. If

ΥABS
#O = 0, ΓAB = 0, ΥSCA #O = 0, ΓSC = 0, ΥDCT #O = 0, ΓDC = 0, ΥTBD #O = 0, ΓTB = 0,

then
T

#O = A #O +A #O
BS

#O
CA

#O, S #O = D #O +D #O
CT

#O
BD

#O, TT #O = AA #O, SS #O = DD #O,

where S = D− CA #O
B and T = A−BD #O

C.

Proof. If

ΥABS
#O = 0, ΓAB = 0, ΥSCA #O = 0, ΓSC = 0, ΥDCT #O = 0, ΓDC = 0, ΥTBD #O = 0, ΓTB = 0,
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then the core inverse ofM possesses the expression of (4.3). Hence, we have T #O = A #O +A #O
BS

#O
CA

#O, S #O =
D

#O +D #O
CT

#O
BD

#O. Since ΓDC = 0, one has

ΓDS
#O = ΓDS(S #O)2 = ΓD(D− CA #O

B)(S #O)2 = 0.

And by ΥABS #O = 0, ΥSCA #O = 0, ΓDS #O = 0, we have that

TT
#O = (A−BD #O

C)(A #O +A #O
BS

#O
CA

#O)
= AA #O

− BD
#O
CA

#O +AA #O
BS

#O
CA

#O
− BD

#O
CA

#O
BS

#O
CA

#O

= AA #O +BS #O
CA

#O
− BD

#O
CA

#O
− BD

#O(D−S)S #O
CA

#O

= AA #O +BS #O
CA

#O
− BD

#O
CA

#O
− BS

#O
CA

#O +BD #O
CA

#O

= AA #O.

Similarly, SS #O = DD #O.

Furthermore, we can get the new sufficient conditions for the expression (4.3) being true.

Theorem 4.7. Let M =

[
A B

C D

]
∈ C(m1+m2)×(m1+m2)×p, S = D − CA #O

B and T = A − BD #O
C. If one of the

following condition holds

(i) ΥAB = 0, ΓAB = 0, ΥSC = 0, ΥDC = 0, ΓSC = 0, ΓDC = 0, CΓA = 0, (4.5)

(ii) ΥAB = 0, ΓAB = 0, ΥDC = 0, ΓDC = 0, ΥTB = 0, ΓTB = 0, BΓD = 0, (4.6)

then

M
#O =

[
A

#O +A #O
BS

#O
CA

#O
−A

#O
BS

#O

−S
#O
CA

#O
S

#O

]
=

[
T

#O
−T

#O
BD

#O

−D
#O
CT

#O
D

#O +D #O
CT

#O
BD

#O

]
.

Proof. (i) We will prove that (4.5) implies (4.4). DenoteT
′

= A #O+A #O
BS

#O
CA

#O. Notice that ΓDC = 0 implies

ΓDS
#O = ΓDS(S #O)2 = ΓD(D− CA #O

B)(S #O)2 = 0.

By ΥAB = 0, ΥSC = 0, ΓDS #O = 0, we have that

TT
′

= (A−BD #O
C)(A #O +A #O

BS
#O
CA

#O)
= AA #O

− BD
#O
CA

#O +AA #O
BS

#O
CA

#O
− BD

#O
CA

#O
BS

#O
CA

#O

= AA #O +BS #O
CA

#O
− BD

#O
CA

#O
− BD

#O(D−S)S #O
CA

#O

= AA #O +BS #O
CA

#O
− BD

#O
CA

#O
− BS

#O
CA

#O +BD #O
CA

#O

= AA #O.

On the other hand, ΓSC = 0 implies ΓSD #O = 0 and by ΥDC = 0, CΓA = 0, ΓSD #O = 0, we have

T
′

T = (A #O +A #O
BS

#O
CA

#O)(A−BD #O
C)

= A #O
A−A

#O
BD

#O
C +A #O

BS
#O
CA

#O
A−A

#O
BS

#O
CA

#O
BD

#O
C

= A #O
A−A

#O
BD

#O
C +A #O

BS
#O
C −A

#O
BS

#O(D−S)D #O
C

= A #O
A−A

#O
BD

#O
C +A #O

BS
#O
C −A

#O
BS

#O
C +A #O

BD
#O
C

= A #O
A.

Using ΓAB = 0, one has
T
′

TT = A #O
A(A−BD #O

C) = A−BD #O
C = T .
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Finally, it is easy to see TT
′

T
′

= T
′

. Thus, T
′

= T #O. Then, TT #O = AA #O and T #O
T = A #O

A. Therefore,

ΥAB = 0, ΓAB = 0⇒ ΥTB = 0, ΓTB = 0.

Hence, (4.5) implies (4.4). By Corollary 4.5, we get

M
#O =

[
A

#O +A #O
BS

#O
CA

#O
−A

#O
BS

#O

−S
#O
CA

#O
S

#O

]
=

[
T

#O
−T

#O
BD

#O

−D
#O
CT

#O
D

#O +D #O
CT

#O
BD

#O

]
.

(ii) Similarly.

5. The Application to the Quotient Property of the Block Tensor

In 1969, Crabtree and Haynsworth [2] showed a quotient formula for Schur complement of a matrix.
The formula was reproven twice by Ostrowski in 1971 [16] and in 1973 [17], respectively. In this part, we
will have a further study on the quotient property for the block tensor.

In the following, we denote

Z =

A B E

C D F

G H L

 ,M1 =

[
A B

C D

]
,M2 =

[
B E

D F

]
,M3 =

[
D F

H L

]
,M4 =

[
C D

G H

]
. (5.1)

Moreover, let ∆ =
[
α1 α2
α3 α4

]
, where ∆ = Z,M1,M2,M3,M4, then

(∆/α1)c = α4 − α3α
#O

1α2, (∆/α4)c = α1 − α2α
#O

4α3. (5.2)

The next theorem presents the quotient property of the generalized Schur complement based on the
core inverse.

Theorem 5.1. LetZ andM1 be the form of (5.1). If

ΥAB = 0, ΓAB = 0, ΥSC = 0, ΓSC = 0, (5.3)

whereA− = A #O, S− = S #O, S = D− CA #O
B, then

(Z/M1)c = ((Z/A)c/(M1/A)c)c.

Proof. According to the definition of the generalized Schur complement based on the core inverse, we have

(Z/M1)c = L −
[
G H

]
M

#O

1

[
E

F

]
, (M1/A)c = D− CA

#O
B,

(Z/A)c =

[
D F

H L

]
−

[
C

G

]
A

#O
[
B E

]
=

[
D− CA

#O
B F − CA

#O
E

H − GA
#O
B L − GA

#O
E

]
.

From which we have

((Z/A)c/(M1/A)c)c = L − GA
#O
E − (H −GA #O

B)(D− CA #O
B) #O(F − CA #O

E)

= L −
[
G H

] [A #O +A #O
B(D− CA #O

B) #O
CA

#O
−A

#O
B(D− CA #O

B) #O

−(D− CA #O
B) #O
CA

#O (D− CA #O
B) #O

] [
E

F

]
.

By Theorem 4.1, we have

((Z/A)c/(M1/A)c)c = L −
[
G H

]
M

#O

1

[
E

F

]
= (Z/M1)c.
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The next theorem is the first Sylvester identity based on the core inverse.

Theorem 5.2. LetZ,M1,M2,M3 andM4 be the form of (5.1). If

ΥDF = 0, ΓDF = 0, ΥWH = 0, ΓWH = 0. (5.4)

whereD− = A #O, W− = S #O,W = L −HD
#O
F , then

(Z/M3)c = ((Z/D)c/(M3/D)c)c = (M1/D)c − (M2/D)c(M3/D) #O
c (M4/D)c.

Proof. According to the definition of the generalized Schur complement based on the core inverse, we have

(Z/M3)c = A−
[
B E

]
M

#O

3

[
G

H

]
, (M3/D)c = L −HD

#O
F ,

(Z/D)c =

[
A E

G L

]
−

[
B

H

]
D

#O
[
C F

]
=

[
A−BD

#O
C E − BD

#O
F

G −HD
#O
C L −HD

#O
F

]
.

Thus, we have

((Z/D)c/(M3/D)c)c = A−BD
#O
C − (E − BD #O

F )(L −HD #O
F ) #O(G −HD #O

C)
= (M1/D)c − (M2/D)c(M3/D) #O

c (M4/D)c

= A−
[
B E

] [D #O +D #O
F (L −HD #O

F ) #O
HD

#O
C −D

#O
F (L −HD #O

F ) #O

−(L −HD #O
F ) #O
HD

#O (L −HD #O
F ) #O

] [
G

H

]
.

By Theorem 4.1, we have

((Z/D)c/(M3/D)c)c = A−
[
B E

]
M

#O

3

[
G

H

]
= (Z/M3)c.
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