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Abstract. In this work, we consider the thermoelastic system with a nonlinear distributed delay. Under
appropriate hypothesis on the weight function of the delay we prove well-posedness by using the Feado-
Galerkin method. Also we establish an exponential decay result by introducing a suitable Lyapunov
functional.

1. Introduction

Consider the following thermoelastic system with a nonlinear distributed delay:

Ui (X, £) = At (X, £) + boa(x, £) + gy (x, 1) 210y (x, )

+ f;z L(s)lue(x, t = s)"2uy(x, t — s)ds = 0, (x,s,t) € (0,L) x (11, 72) X Ry,

vi(x, 1) — doye(x, £) + buy(x, t) = 0, (x,1) € (0,L) xR,

u(0,t) =u(L,t) =0 ,(0,8) = v (L, t) =0 teRy, @
u(x/ 0) = Mo(X), ut(xr 0) = Ml(.X'), v(x, O) = UO(-X)/ X € (O/ L)r

up(x, —t) = uz(x, t), (x,£) € (0,L) x (0, 70).

Where x and  represents the space and the time variable, respectively, u(x, ) and v(x, t) are the displacement
and the temperature, subscripts mean partial derivatives. a, b, d, u1, 71, 72, L are some positive constants
and m > 2, the function ug, 11, vp and u, are the initial data and p(s) is a bounded function.

Several authors have addressed the problem of stability of classical thermoelastic systems, and many
results have been established in this regard. We mention, for example, Recently, Moulay et all [12] studied
the problem (1) by adding the delay and replacing the memory damping with the Kelvin Voigt damping of
the form cu,(x, t) for some real positive number c. Then the system writes as follows:

(2)

Uy (x, t) — Ay (x, t — T) + boy(x, t) — cuyy(x,£) =0, (0,L) X (0, 00),
vi(x, 1) — dvyge(x, t) + buy(x, ) =0, (0,L) x (0, c0).
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They proved that the problem is well-posedness using semigroup theory and exponential stability using
Lyapunov’s method. in the absence of Kelvin Voigt damping (¢ = 0) in the system (2), Racke proved in
[18] that, the internal time delay leads to ill-posedness and unstable even if 7 is relatively small. See also
[1,6,19].

Recently, Hao and Wang [7] dealing with an abstract thermoelastic system with infinite memory and
Kelvin Voigt damping of the form Bu;(x, t) :

_ 3
v + kAPv + A%u; = 0, t>0, (©)

{uﬁ + Au+ Bug + [ h()Au(s)ds — A =0, 20,

where A and B are self-adjoint linear positive definite operators with domain D(A) € D(B). They have given
the well-posedness and the general decay rate system by semigroup theory and perturbed energy.

In [5], Ferhat and Hakem considered the weak viscoelastic wave equation in bounded domain with
dynamic boundary conditions and nonlinear delay term:

¢
Uy — Ayu(x, t) — 0Au(x, t) — a(t)f g(t —s)Au(x,s)ds = 0in Q X (0, +0),
u=0onTj X (0, +00), °
ou ouy t u
Uy +a 8_v(x’ )+ 65(9(, t) - cf(if)f0 g(t— s)Au(x,s)a—V(x, s)ds 4)

e e, OVt ) + pralar(x, £ = D, £ = 1)] = 0 on Ty X (0, +00)
u(x,0) = uo(x) u'(x,0) = u1(x) on Q,
ui(x, t — 1) = fo(x,t — ) onI'; X (0, +00).

Under suitable conditions on the initial data and the relaxation function, they proved global existence and
general decay of energy.

Recently [2], the authors examined a viscoelastic Kirchhoff equation with distributed delay and Balakr-
ishnan Taylor damping:

luslPuy — (Co + CillVulBuxx(x, £) + 0(Vie, Vi) ray — Aty

+ [} h(t — 9)Au(o)do + plu (B 2uy(t)
+ [ B2l (t = 1" 2uy(t = s)ds = 0,

u(x, 0) = up(x), (x, 0) = 1), in Q, ©®)
ut(x/ _t) = fO(xr t)/ in Q X (0/ TZ)/
u(x,t) =0, in dQ x (0, ).

Under suitable hypothesis they proved general decay of energy.

The paper is organized as follows.In Section 2, we give some materials needed for our work and state
our main results. The well-posedness of the problem is analyzed in Section 3, by using Faedo-Galerkin
method. In Section 4, we prove the exponential decay of the energy when time goes to infinity.

2. Preliminaries

An integrating the second equation (1) over (0, L) while respecting the boundary condition, gives
L
f o(x, Hdx =1, Yt >0, (6)
0

where 1 = ﬁf vo(x)dx. by posing

B(x, 1) = o(x, ) — % V(x, 1) € (0,L) X Ry, %
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we find

L
f o(x,)dx =0,  Vt>0. 8)
0

Moreover, (u,v) and (u, 9) satisfy the same problem (1). So in what follows we deal with ¢ while keeping
the notation v for simplicity.
The weight function of the delay y : [71, 72] = R, satisfying

f 2 u(s)ds < py. 9)

We define the energy of problem (1) by

L _ 1 T2
Et) = % f {uf +au? + 0% + 2m L f f su@s)ly(x, p, s, t)|mdsdp} dx, (10)
0 0 Jr
Lemma 2.1. The energy functional E(t) satisfies
L L
E'(t) = —df v2dx — mf [y dx. (11)
0 0

wherey = up — L ( T:Z y(s)ds).

Proof. Multiplying the first two equations in (18) by u; and v;, respectively, then integrating over (0, L), we
obtain

1d (* 2 2, .2
37 ) {ut+aux+v}dx (12)

L L L Ty
- f Rdx - f et — f i f Oy, 5" 2y (1, S)dsddx
0 0 0 1

and by applying Young’s inequality to the last term of the above relation, we have

f utf u(s)ly(, s)"2y(1, s)dsdx (13)

< a( f u(s)ds) f " + f f u(©)ly(x, 1,5, " dsdx.

Now, multiplying the third equation in (18) by u(s)ly(x,p,s, )" 2y(x,p,s,t) and integrating over (0,L) X
(0,1) X (11, T2), we get

L 1 T
f f f SUE)yI"yyi(x, p, s, t)dsdpdx
mdtf ff su(s)ly(x, p, s, H)I"dsdpdx (14)
f f f O™ yy,(x, p, s, t)dsdpdx
- s)=—|y(x, p,s, H)"dsdpdx
mfofof u()apy( p,s, H"dsdp
1 L T
o f f @) [lyCx, 1,8, O™ = Ju|"] dsdx
m Jo T1
1 T2 L 1 I 75
= E(L y(s)ds)fo || alx—afofTl w(s)ly(x, 1,8, )" dsdx
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Combining (10) and (12)-(14), we obtain (11). [

Remark 2.2. From the assumption (9) we can conclude that the energy E(t) of the system (1) is nonincreasing for all
t>0,

E(t) < E(0), vt > 0. (15)

3. Well-posedness

In this section, we prove the existence and the uniqueness solution of system (1) by using Faedo-Galerkin
method.
Based on the approach of [4], we introduce a new variable

y(x,p,s,t) = up(x, t —sp), Y(x,p,t,8) € (0,L) X (0,1) X (11, T2) X Ry, 16)
y(x,p,s,0) = yo(sp) = ua(x,sp), V(x,p,s) € (0,L) x (0,1) X (11, T2).

It is clear that
yp(x/ p/ S/ t) + Syt(x/ p/ S, t) = O/ v(x/ p/ t/ S) € (0/ L) X (0/ 1) X (Tll TZ) X R+/ (17)
y(x,0,5,t) = u(x, t), Y(x,s,t) € (0,L) X (11, T2) X R,.

Thus, system (1) becomes

(X, £) = At (X, £) + Do (X, 1) + g (x, )" 2uy(x, 1)
+ J:Z H(S)W(x/ ]-/ S, t)|m_2]/(x/ 1/ S, t)ds = 0/ (x/ S, t) € (0/ L) X (Tll TZ) X ]R+/
Ut(x/ t) - dvxx(xl t) + buxt(x/ t) = 0/ (x/ t) € (0/ L) X ]R+/
yp(xr pr S, t) + Syt(xr pr S, t) = Or (xr pr S, t) € (0/ L) X (0/ 1) X (Tll TZ) X ]R+r (18)
u(0,t) =u(L,t) =0 0:(0,8) = v (L, t) =0 te R,
u(x, 0) = up(x), u(x,0) = u1(x), v(x,0) = vo(x), x€(0,L),
y(x,p,s,0) = ux(x, ps), (x,p,8) € (0,L) x (0,1) X (0, T2),

with condition (8).
The existence and uniqueness result is stated as follows:

Theorem 3.1. Assume that (9) hold.
Then giU@n (MO/ 0o, u2) € (HZ(O/ L)ﬂHé (0/ L))ZXLZ((O/ L)/ H(l)((or 1)/ (Tll TZ)) /(ull uZ) € LZ(OI L)XLZ((O, L)/ (0/ 1)/ (Tll TZ))/
there exists a unique weak solution u,v, y of problem (18) such that

(u,v) € C([0, +oo[, H*(0, L) N Hy(0, L)) N CX([0, +oo[, L*(0, L)),
]/ € C([Or +OO[; Lz((ol L)/ Hé((or 1)/ (Tl/ TZ))'

Proof. We divide the proof of Theorem3.1 into two steps:the Faedo-Galerkin approximation and the energy
estimates.
Step 1 :Faedo-Galerkin approximation.

We construct approximations of the solution (#,v, y) by the Faedo-Galerkin method as follows. For
n>1 let W, =span {wy, ..., w;} be a Hilbertian basis of the space Hé. Now, we we define for
1 < i < n the sequence @;(x, p) as follows:

@ilx, 0) = wi(x)
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Then we may extend @;(x, p) over L2((0,1),Q) and denote V,, = span {¢1, ....., i}. We choose sequences
(ug), (u}), (vg), (¥}) in W,, and (y;) in V,, such that

(ult, v, ull, 1) — (1o, vo, u1,v1) strongly in H*(Q) N H{(Q) and 2z — u, strongly in L*((0, 1), Hj(Q)) as

n — 00,

We search the approximate solutions

Wt =) fiOwE), o)=Y H®wE) ad ypt) =) KOeixp)
i=1 i=1 i=1

to the finite dimensional Cauchy problem:

f upw; dx+11f (u")x(w;)xd x+bf (") w; x+y1f [(u™) ™ zutw,
f f @)y (x, 1, H"2y" (x, 1, tyw;dsdx = (19)
L L
Utwidx+df (v ”)x(wl)xdx+bf (u})xwidx =0,
0 0 0
u"(0),v"(0)) = (ug,v5)  (u}(0),0/(0)) = (uf,vY),

and

L
fo (vp (X, p,s, £) + sy (x, p,s, D)pidx = 0,

y'(x,p,s5,0) =y

(20)

According to the standard theory of ordinary differential equations, the finite dimensional problem
(19)-(20) has solution f!'(t), h!(t), k! (t) defined on [0, t). The a priori estimates that follow imply that in
factt, =T.

Energy estimates. Multiplying the first and the second equation of (19) by ( f (t))l and K (t) respectively,
we obtain:

L L
f uttutdx+af (") (u)x dx+bf (v )xutdx+[u1f |(u")e| ™ dx -
f f pE)ly™(x, 1, "2y (x, 1, tyu'dsdx =

and

L L L
f ofv"dx +d f (0")?dx + b f (u})x0"dx = 0. (22)
0 0 0

Multiplying the first equation of (20) by (m — 1)u(s)ly"(x, p, s, t)lmfzk;l(t) and integrating over (0, f) X
(0,1) x (11, 72), we get

t L 1 75
(M—l)ff f f ‘Li(s)ly”|m‘2y”y2(x,}7/5rt)dededO:
0 Jo 0 Jr
_ L )
m 1ff f #(S)(|y”(x,l,s,t)|m_|yn(x,0,5,t)|m)dsdxd0’
0o Jo Ju

(23)
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t L 1 To
(m—l)ff f f sy(s)|y”(x,p,s,t)I’”’zy”yf(x,p,s,t)dsdpdxdt=
0o Jo Jo Ju
m—l L 1 T2
E— f f f suG)(1y" (e p,s, 0" = 1y (x, p, s, )" )dsdpx.
0 0 T

Integrating (21) and (22) over (0, t), taking into account (23),(24), we obtain

& (t)+H1ff I( ”)tlmdxda+f f u(s)ly"(x, 1, H"2y"(x, 1, Hu dsdxda+dff o

= 811(0)/

and

(24)

where

L L L
Sn(t)=% j; (u';)2(x,t)dx+g fo (uZ)z(x,t)dx+% fo (0")dx

1 (26)

su)ly" (x, p, s, H)|"dsdpdx.

Young’s inequality gives us that

To t L t L
&t + G- ([ uoas) [ st +d [ [ oot < &,0), @)
T 0 0 0 0

Consequently, using that fT :2 H(s)ds < ui1, we have the following estimate:

Eu(t) < Ex(0). (28)
Now, since the sequences (ug)neN, (ug’ )HGN, (vg)neN, (yg)nE]N converge and we can find a positive
constant ¢ independent of 7 such that

En(t) < c. (29)
Therefore, the estimate (29) together with (28) give us, for alln € N, t, = T, we deduce

(w7) , isboundedin L*(0, T;Hi(0,L)),
(v") . isboundedin L*(0, T;H}(0,L)),

nelN ) . 1 (30)
(ut”)nE]N isbounded in  L*(0, T; Hy(0, L)),
y" N isbounded in  L*(0, T; L™((0,L), (0, 1), (71, 72))-
Consequently, we conclude that
u" = u weaklystarin L*(0,T; H§ (0,L)),
v" = v weaklystarin L%(0,T; Hy(0,L)), (31)

ul = u; weaklystarin  L¥(0,T; Hl(O L)),
y"—y weaklystarin L*(0,T; Lz((O, L),(0,1), (11, 12)).
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From (30), we have (u")neN, (v”)neN are bounded in L*(0,T; H})(O, L)) and (y")neN is bounded
in L=(0, T; L3((0,L), H)((0,1), (71, 72))). Then (u”)ne]N, (vn>n€IN are bounded in L2(0,T; H}(0,L)), and

(y”)neN is bounded in L?(0, T; L%((0, L), (0, 1), (t1, 72)). Consequently,(u”)neN, (v”)neN are bounded in

HY0,T;H'(0,L)) and (y”)neN is bounded in L2(0, T; L?((0, L), (0, 1), (t1, 72)). Since the embedding
L*(0, T;L*(0,L)) < L*(0, T; L*(0, L))

HY0,T; H'(0,L)) — L*(0, T;L*(0, L))

. . T , k n s
is compact, using Aubin-Lion’s theorem [15], we can extract subsequences (u )keN of (u )neN, (v )keN

of (v")neN and (y")keN of (y”)neN such that

W - u strongly in L*(0,T;L2(0,L)),

F oo strongly in L*(0,T;L?(0,L))

and
y* -y stronglyin L*0,T;L*((0,L),(0,1),(t1,72)))
Therefore,
uk = u strongly anda.e  (0,T) x (0,L),
A strongly and a.e (0,T)x (0,L),
and

v -y stronglyanda.e (0,T)x (0,L) x (0,1) X (11, T2).

The proof now can be completed arguing as in Theorem 3.1 of [15]

Uniqueness.

Let (u1,v1, y1) and (12, v2, y2) be two solutions of problem (1) Then (u, v) = (11 —u2, v1 — vy, Y1 —Y2) satisfies

(X, 1) — At (X, £) + boe(x, £) + palug(x, D" 2uy(x, 1)
+ f;z p(S)us(x, t = s)"2u(x, t — s)ds = 0,
vi(x, t) — dvyge(x, t) + buy(x, ) =0, (x,t) e (0,L) xR,

32
u(0,t) =u(L,t) =0 0:(0,8) = v (L, t) =0 te R, (32)
u(x,0) =0, u(x,0) =0, v(x,0) =0, x € (0,L),
Yo = O/ (x/ t) € (0/ L) X (0/ TZ)'

Following Lemma 2.1, the energy function associated to the problem (32) satisfies E’(f) < 0. Then E(t) =
E(0) = 0, we deduce that u = v = 0. The proof is complete. [
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4. Decay of solutions

In this section we study the asymptotic behavior of solutions. For this we use the method of Lyapunov.
In order to prove the decay of energy, we define the Lyapunov candidate function by

L(t) = E(i’) + kq Vl(t) + szz(f) + k3V3(t), (33)
where k1, k, and k3 are positive constants, E(t) is the energy given by (10) and
L
i(t) = f uudx, (34)
0
L x
Vo(t) = f us [o(z, t)dzdx, (35)
0o 0
L 1 T2
Vi(t) = f f f su(s)e Ply(x, p, s, H)" dsdpdx, (36)
0 0 T1
Proposition 4.1. There exist two positive constants a and b, such that
aE(t) < L(f) < bE(}), t>0. (37)

Proof. Using Young's inequality, Cauchy-Schwarz’s inequality and Poincare’s inequality, we obtain (37). O

Lemma 4.2. Let V(t), the functional given by (34), then, for t > 0, its time derivative, yield

L L
f w?dx — (11— b —nz)f udx
0 4
b
: Ly f jf"dx

+— de + 2
f f u©)ly(x,1,s,t)|"dsdx. (38)

Where np = % (yl + fT 1 y(s)ds), 01 and 1 are small positive constants.

Vi)

Proof. Deriving V(t), taking the system (1) and integrating by parts, we obtain

L L L
Vi) = f u?dx —af uldx + bf VU dx
0 0 0

L
i fo s e, D" g, Byx (39)

L T
- [ Cu [ s 0y s, s
0 T1

By exploiting Young’s and Poincare’s inequality, the last three terms in the right hand side of the above
inequality gives

L b L 51b L
b f VU dx < — vzdx + = f udx (40)
0 01 4 Jo
L
f le (2, )" 2upu(x, t)dsdx (41)

52“ f lu ,(|2dx+ f | " dx.
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L Ty
j(;uf 1)y, s)"2y(1, s)dsdx

62c* 2
i (fn y(s)ds)f 1| dx+

f f u()ly(x, 1,5, t)["dsdx.
for 61 and 0, any small positive constants.

Substituting (40)-(42) into (39), we obtain (38). O

IA

Lemma 4.3. Let V(t) the functional given by (35), then for t > 0, its derivative satisfies

L
Vi) = (b—%i)fo utzdx+(b+§3+n3)f v?dx
L
+% 2dx+6df 2alx+ 64y1f 14" dx

f f w(S)ly(x, 1,5, t)["dsdx

where 13 = % (g—i + 6 fT fz y(s)ds) , 03 and 04 are small positive constants.

Proof. By differentiating V»(t) and using system (1) we obtain

L X L X
Vi) = df utfvxxdzdx—bf uy [ uydzdx

0o 0 0o 0

L X
+f (auxx—b —yllutl"‘zut)f v(z, t)dzdx
0
f f G)y(x, 1,5, H" 2y(x, 1,5, t)dsf v(z, Hdzdx
0

Taking into account the boundary conditions and (8), integrating by parts the terms of (44), we have

L L L L
Vi) = df vxutdx—bf utzdx+bf Ude—af uodx
0 0 0 0
L X
—y1f Iutl’”zutf v(z, t)dzdx
0
f f G)y(x, 1,5, )" 2y(x, 1,5, t)ds f v(z, t)dzdx
0

Similar to (40)-(42), we estimate the terms of (45), as

L L L
d f Uxttydx < 4 f v,%dx+6id f wldx
0 63 0 4 0
L L I
af uxvdxsif vzdx+@f udx
0 63 0 4 0
L X
f || uy f v(z, Hdzdx
0 0

Le. (¢ -1_ (*
¢ f vrdx + m 64f o] dx
4111(54 0 0

8905

(42)

(43)

(44)

(45)

(46)

(47)

(48)
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and

L T2 X
[ st s 002015, s f oz, ydzdx (49)
0 T1

625116 (f:z H(S)ds)f 2dx+ f f u(s)ly(x, 1,5, H)"dsdx.

for 63 and 04 any small positive constants.
Substituting (46)—(49) into (44), we obtain (43). O

Lemma 4.4. Let V3(t) the functional given by (36), then for t > 0, its derivative satisfies

To L L T2
Vi) < mf y(s)dsf Iutl"’dx—me”ff w(S)ly(x, 1,5, t)["dsdx
T1 0 0 T1
L 1 T2
—m f f f su(s)ye Ply(x, p, s, t)|" dsdpdx. (50)
0 0 T1

where 03 and 03 are small positive constants.

Proof. Deriving V3(t), using the identity (17) and integrating by parts, we have

L 1 T
Vi(t) m f f f su(s)e P ly(x, p, s, Hm=2 yyi(x, p, s, H)dsdpdx
0 0 T1

L 1 T2 a
= -m f f f y(s)e"”—ly(x,p,s,t)Imdsdpdx

= f f (e Iy, 0,5, 1"  ly(x, 1,5, HI"] dsdx
—mf f f su(s)e P ly(x, p, s, )" dsdpdx.
Using the fact that e77° < 1, for all ps € [0, 72], we obtain (50). O

Theorem 4.5. Assume that (H1) and (H2) hold. Then, there exist three positive constants o and C such that
E(t) <Ce™  Vt>0. (51)

Proof. From (11), (33), (38), (43), (50) and the fact that

L 1 (*
—f vidx < _ﬁf vdx
0 0
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The derivative of L(t) given

Ho = o :(d_ dé_l;z)% - % _(b+ ;_3 +ﬂ3)kz]‘£vadx

3 ",anzl tki — mﬂ; 154#1k2 -m (:{zy(s)ds) k3] j;L s dx
(o= 2] [
) i(a - %b N 772)k1 - %kz] jj uZdx

- L T
[t - 2 = 2] [ [ o 15 s
L 0 T

_T]l_

T}’l(Sz 141(52 1
L 1 T
—mks f f f su(s)e P ly(x, p, s, t)|" dsdpdx (52)
0 0 T1

Now, we pick 6;,i = 1,2,3,4, k1, k; and k3 small enough such that coefficients on the right hand side of (52)
are all strictly negative. Then, there exist a positive constant A; such that

L'(t) < —ME(t)  Vt>0. (53)

Using equivalence relation (37) , we have

L'(t) < =AL(t)  Vt>0. (54)
where A = % Multiplying inequality (54) by ¢! and integrating over (0, t), we have
L(t) <L(0)e™™  Vt>o0. (55)

Using (56) and the left inequality of the relationship (37), we get

E(ty<Ce™  Vt20, (56)

where C = L(0)/a. The proof is complete. [J
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