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İlkay Arslan Güvena,∗, Hasan Esb, Yusuf Yaylıc

aDepartment of Mathematics, Faculty of Art and Science, Gaziantep University, 27310 Gaziantep, Turkey
bDepartment of Mathematics and Science Education, Faculty of Education, Gazi University, 06500 Ankara, Turkey

cDepartment of Mathematics, Faculty of Science, Ankara University, 06100 Ankara, Turkey

Abstract. This paper investigates curves of stationary acceleration by using alternative frame which
includes the principal normal vector, the derivative of principal normal vector and the Darboux vector.
Mentioned curves are studied by the way of rigid body motions, that is to say a point in the moving
body follows the curve and the alternative frame in the moving body stays aligned with the members
of frame. It is determined that in which condition this special motion becomes to stationary acceleration
motion. The matrix representations of a constant vector related to velocity vector of the motion which is
used to characterize stationary acceleration is obtained by means of alternative frame curvatures. Some
examinations are developed with some solutions of differential equations. The main result is attained as:
general helix curves with linear curvature and torsion functions are curves of stationary acceleration which
are curves in the rigid body motions group SE(3) correlated with robotics. The paths designed as stationary
acceleration curves can lead the way to control the end-effectors of robots. Finally, some explanatory
examples are imputed.

1. Introduction

A rigid body is a solid body which does not change shape or disfigure. Motion of rigid bodies appears
in kinematics and is related to angular velocity and angular acceleration. Rigid body motion has two
properties: one of them is ”angular velocity and angular acceleration of all lines on arigid body are same”
and the other one is ”the motion comprises of the translation of an arbitrary point, pursued by a rotation
about the point”.

Also, robotics deduces from the geometry of rigid body motion because it is supposed that the con-
nections of a robot are rigid bodies. While end-effectors of robot are moving, this movement is described
as a curve in group of rigid body motions SE(3). One of the application of robotics is the explanation of
geometry of these curves. Finding the best path of end-effector of robot given with a starting point and
extreme point can be a remarkable inquiry about this geometry.

In former times, it was said that a screw motion was made by the end-effector of robot. A screw motion
is a combination of two motions: a translation along a vector and a rotation about a constant axis(screw
axis) which is parallel to that vector. Also, the interpolation problem of this motion was used in computer
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graphics with the help of several algorithms. Despite of applying the rigid body motion in robotics and
computer graphics, the geometry of this motion was not adequate.

In computer-aided geometric design, computer graphics and robotics, the interpolation of a set of
positions and orientations is found by a smooth motion and this problem was investigated in the work [23]
by Zefran and Kumar. They gave methods for computing a smooth motion and these effective methods
were for finding trajectories which minimize meaningful functions. These functions were the acceleration
of a rigid body as the covariant derivative of its motion and the jerk as the second covariant derivative.
Since the covariant derivative is depended on positive definite left-invariant metric on the group and there
are many metrics to select on SE(3), there was an elusiveness. Before this work, Noakes et al [13] gave
equations for curves in SO(3) with minimum acceleration via the same definition of acceleration.

Then Selig looked over again the ideas of Zefran and Kumar but used bi-variant metric on SE(3) in
[15]. Since there are no positive definite bi-variant metric on SE(3), the curves with derived equations
are not minimal, they are only stationary. On the other hand, Bottema and Roth [4] gave Frenet-Serret
motion which is one of special motions. Selig [15] studied Frenet-Serret and Bishop motion by a unit-speed
space curve and gave the condition to be the curve of stationary acceleration. It was indicated that if the
curvature and torsion functions of curve are linear functions, then the Frenet-Serret motion determined by
this curve has stationary acceleration. Also similar result was given for Bishop motion. Then Selig studied
Frenet-Serret and Bishop motions as an application to a simple model of needle steering in [16]. The path
of the needle was derived with a kinematic model. It was shown that the kinematic model is resulted in
Frenet-Serret motion of needle with constant curvature. Several researches related to Frenet-Serret motions
can be found in [1, 8, 10, 11, 18].

Otherwise, while studying in curve theory, frames of curves are so significant to examine their spec-
ifications. There are various adapted curve frame examples, most known one is a moving frame called
Frenet-Serret frame. An alternative moving frame to Frenet-Serret frame was defined by Uzunoğlu et al in
[20]. It is the rotate case of Frenet-Serret frame by taking the principal normal vector N, the derivative of
principal normal vector C = N·

∥N′∥ and the Darboux vector W = N×C. They defined a new type of slant helix
and constant precession curve by means of this frame. Also studies regarding {N,C,W} frame are reached
in [2, 3, 21, 22].

The definition of acceleration is given as the rate at which velocity changes with respect to time. The
acceleration of a rigid body was defined by using covariant derivative by Zefran and Kumar in [23] as
A = ∇VV, where ∇ is the covariant derivative and V is the velocity vector. Selig [15] obtained an expression
which concures results given in [23] for the same acceleration. Then, the acceleration along a curve was

optimised and the equation V(3)+
[
··

V,V
]
= 0 was obtained for stationary acceleration curves, namely curves

with constant acceleration. Also by appropriate calculations, the second derivative of velocity vector

was expressed as
··

V = GXG−1, where G is the (4 × 4) matrix representation of rigid body transformations
G(t) ∈ SE(3) and X is a constant vector.

Motivated by these ideas, in this work we focus on a curve given with the alternative {N,C,W} frame
and its apparatus. We particularly discuss frame motions in three-dimensional Euclidean space and
improve {N,C,W} frame motions which is the new aspect to extension of kinematic frame motions. We
determine stationary acceleration curves via the alternative frame motion, by developing the idea of matrix

representation of a constant vector which satisfies above condition
··

V = GXG−1. It is established that
a special case of general helix curves are curves of stationary acceleration, new curvature and torsion
functions belonging to stationary acceleration curves are obtained by solving some differential equations.

2. Differential Geometry Preliminaries

In this section, some definitions, theorems and notions related to differential geometry will be introduced
as the basis of the study.

A curve is an object which is similar to line but has not to be straight. It is given with definition
topologically that a curve is a continuous function from an interval to topological space. In differential
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geometry, the differentiable function α : I −→ X is called a curve for an interval I and differentiable manifold
X [19].

The adapted frame of a space curve is the {v1, v2, v3} vector collection in three dimensional Euclidean
space. Here vi, 1 ≤ i ≤ 3 constitute orthonormal base of three dimensional Euclidean space such that the
tangent of α is v1 and the vectors v2, v3 are selected from plane arbitrarily to be orthogonal to v1 [5].

For regular curve α, three ortogonal vector fields are called Frenet vectors given by

T =
·

α∥∥∥ ·α∥∥∥ , N = B × T, B =
·

α ×
··

α∥∥∥ ·α × ··α∥∥∥ (1)

where T,N and B are, the tangent, principal normal and binormal vectors to the curve, respectively.
The curvature and torsion of the curve are calculated in order of

κ =

∥∥∥ ·α × ··α∥∥∥∥∥∥ ·α∥∥∥3 , τ =
det(

·

α,
··

α,
···

α)∥∥∥ ·α × ··α∥∥∥2 (2)

and Frenet-Serret equations hold as:
·

T = κN
·

N = −κT + τB (3)
·

B = −τN.

One of the new curve frames along a curve is the alternative moving {N,C,W} frame given in [20], defined
as:

C =

·

N∥∥∥∥ ·N∥∥∥∥ , W =
τT + κB
√

κ2 + τ2
(4)

such that W = N × C and N,C,W are, respectively, the unit principal normal vector, the derivative of
principal normal vector and the unit Darboux vector. The derivative equations of this alternative frame are:

·

N = f C
·

C = − f N + 1W (5)
·

W = −1C

where f and 1 are curvatures of the curve in terms of {N,C,W} frame and given by

f = κ
√

1 +H2, 1 = σ f (6)

providing that H is the harmonic curvature of the curve and σ is the geodesic curvature of spherical image
of principal normal indicatrix curve:

H =
τ
κ

σ =
κ2

(κ2 + τ2)3/2

·(
τ
κ

)
. (7)

Also the relation between H and σ is constructed as:

σ =

·

H

κ (1 +H2)3/2
. (8)
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The Darboux vector (nominately angular velocity vector) in terms of alternative {N,C,W} frame is given by

D = 1N + f W (9)

which provides the following relations:

D ×N =
·

N, D× =
·

C, D ×W =
·

W. (10)

Besides, a curve is said to be a general helix when H = τκ is constant and vice versa.

3. Background of Rigid Body Motions

In this section, some basic notions of screw theory in three-dimensional Euclidean space are introduced
for necessity of sequent parts.

Before setting out rigid body motions, the following notions are required to comprehend smoothly.
A Lie group is a topological group which is also a smooth manifold and one of the Lie group repre-

sentation is spatial transformations, that are used in computer and robotics vision. SO(3) and SE(3) are
Lie groups, named respectively as special orthogonal group and special Euclidean group. The elements of
SO(3) represent only rotation matrices:

SO(3) =
{
R ∈ R3×3 | RRT = RTR = I, det(R) = 1

}
and SE(3) is the group of rigid transformations consisting of rotation R and translation t:

SE(3) =
{

G =
(

R t
0 1

)
| R ∈ SO(3), t ∈ R3

}
⊂ R4×4.

In the sense of transformations, consider a rigid body motion G(t) and an arbitrary point r on the rigid
body. The behavior of such a motion on a position r0 ∈ R3×1 is given by(

r(t)
1

)
= G(t)

(
r0
1

)
(11)

which can also be written as

Z(t) = G(t)Y (12)

where Z(t) =
(

r(t)
1

)
and Y =

(
r0
1

)
. By taking into consideration Y = G−1(t)Z(t), the velocity of the point

is given as:

·

Z(t) =
·

G(t)G−1(t)Z(t). (13)

The instantaneous twist of the motion is defined by

Sd =
·

G(t)G−1(t) (14)

which also identify the velocity of the rigid body motion G(t). Thus, by the velocity Sd, the equation (11)
holds to

·

Z(t) = SdZ(t). (15)

The following equation is derived in terms of 3D vectors, by expanding the equation (13) using partitioned
matrix as:

·

r = ωd × r + Vd (16)
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which is the standard form of the velocity vector given by the points on the rigid body motion along an
instantaneous screw Sd [15]. Here ωd is the angular velocity vector of the rigid body. By the way, a screw
can be written as a (4 × 4) matrix:

S =
(
Ω u
0 0

)
(17)

where u is linear velocity characteristic of the motion andΩ is a (3× 3) anti-symmetric matrix, corresponds
to angular velocity ω. The matrix of Ω is given in terms of the elements of ω =

(
ωx, ωy, ωz

)
as:

Ω =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 . (18)

Also, the acceleration vector of a rigid body motion is defined in [23] as:

A = ∇VV (19)

where ∇ is the covariant derivative and V = Sd is the velocity vector.
After that, in [15], the acceleration along a curve is optimised and the equation

V(3) +
[
··

V,V
]
= 0 (20)

is obtained for stationary acceleration curves which comes to mean curves with constant acceleration.
Then by integrating equation (20) and making proper calculations, it is indicated that, the velocity vector

for stationary acceleration curves has the following expression
··

V = GXG−1 (21)

where G is the (4 × 4) matrix representation of rigid body transformations G(t) ∈ SE(3) and X is a constant
vector. If the constant vector X is respecified, then:

X = G−1
··

VG. (22)

For detailed calculations of equations (18), (19) and (20), see the reference [15].

4. Alternative Frame Motion

The paths of rigid body motions can design a curve in terms of kinematics, in the Lie groups. One way
specified these paths, is given as Frenet-Serret motion in [4]. Also, Frenet-Serret and Bishop motions are
studied in [15] in the sense of mentioned frames. In this section, frame motion will be improved via the
alternative moving {N,C,W} frame to establish a rigid body motion and its kinematic properties.

Assume that α(t) is a unit speed curve and {N,C,W} denotes the alternative frame aligned with the
principal normal vector N, the derivative of principal normal vector C and the Darboux vector W. A point
in the moving body moves along the curve α(t) and using rigid transformations SE(3), the {N,C,W}motion
of the curve α(t) is indicated as

G(t) =
(

R(t) α(t)
0 1

)
(23)

where R(t) is the rotation matrix of type (3 × 3) with column elements N, C, W as

R(t) = (N C W) . (24)

Also by using the (3 × 3) anti-symmetric matrix Ω, corresponding to Darboux vector D given in equation
(9), it can be written as:

·

R = ΩR. (25)
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Theorem 4.1. Let α be a unit speed cuve and the rigid body motion along the curve α be {N,C,W} motion. If the
curve α is general helix with linear curvature and torsion functions, then α is curve of stationary acceleration.

Proof. Our aim is to obtain the vector X = G−1
··

VG given in equation (22), as constant in the {N,C,W}motion
along the curve α.

Since the Darboux vector, given in equation (9), of the curve α is D = 1N + f W, we have the following
derivatives by using relations in equation (5) as:

·

D =
·

1N +
·

f W
··

D =
··

1N + (
·

1 f −
·

f1)C +
··

f W. (26)

By using equation (18), the (3 × 3) anti-symmetric matrix corresponding to
··

D is given by

··

Ω =


0 −

··

f
·

1 f −
·

f1
··

f 0 −
··

1
·

f1 −
·

1 f
··

1 0

 . (27)

At the same time, by using equation equation (16) and
·

α = T, the velocity vector is obtained as:

V = T −D × α. (28)

Taking second derivative from equation (28) and using equations (3), (5);

··

V =
·

κN + κ f C −
··

D × α − 2
·

D × T −D ×
·

T (29)

and using equation (26), B = T ×N, N = C ×W, we have

·

D × T =

·

fκ
f

N −
·

1

(
τ
f

C +
κ
f

W
)

(30)

D ×
·

T = κ f C. (31)

Putting the expressions (30) and (31) into equation (29), we obtain

··

V =

 ·κ − 2
·

fκ
f

 N +
2
·

1τ

f
C +

2
·

1κ

f
W −

··

D × α. (32)

On the other hand, the inverse matrix and the derivative of G from equation (23) are

G−1 =

(
RT

−RTα
0 1

)
,

·

G =
( ·

R
·

α
0 0

)
(33)

where RT = R−1, since R is the rotation matrix.
From equations (14), (25) and (33), we get

V =
·

GG−1 =

(
Ω T −D × α
0 1

)
(34)

where Ωα = D × α.
Taking second derivative of equation (34) and using equations (30), (31), we obtain

··

V =
( ··

Ω a1N + a2C + a3W −
··

D × α
0 0

)
(35)
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where a1 =
·

κ −
2
·

fκ
f , a2 =

2
·

1τ
f and a3 =

2
·

1κ
f . If it is looked closely, it can be noticed that equation (32) and

(35) are overlaped.

Considering the equations (33), (35) and
··

Ωα =
··

D × α, we finally have

X = G−1
··

VG =
(

RT
··

ΩR a1RTN + a2RTC + a3RTW
0 0

)
. (36)

In equation (36), if we use equation (24) and the properties of vector and dot products of N, C, W, the
expression can be extended to

X = G−1
··

VG =


0 −

··

f
·

1 f −
·

f1
·

κ −
2
·

fκ
f

··

f 0 −
··

1
2
·

1τ
f

·

f1 −
·

1 f
··

1 0 2
·

1κ
f

0 0 0 0


. (37)

Now if the curve α is general helix, then τ
κ =constant (taking κ = at and τ = µt where a, µ are constants

and t is the parameter of α). From the equation (6) and (7), the curvatures of the curve α in terms of the
alternative frame are:

f = λat and 1 = 0 (38)

where λ is constant. The following expressions are derived from equation (38) as:
·

f = λa
··

f = 0 (39)
·

1 = 0
··

1 = 0.

Thus, using equation (38) and (39), in equation (37), we have

X =


0 0 0 −a
0 0 0 0
0 0 0 0
0 0 0 0


which is constant. This completes the proof.

Theorem 4.2. Let α(t) be a unit speed cuve and the rigid body motion along the curve α be {N,C,W} motion. If the
curvatures in terms of alternative frame of the curve α are f = at+b and 1 = λ, then the curve α is curve of stationary
acceleration with curvature and torsion

κ = E(at + b) +D(at + b)2

τ = (E(at + b) +D(at + b)2)

√
Y(t)2

1 − Y(t)2

where a, b, c, D, E = − c
a , λ, N,M are constants and Y(t) = Eλt +Dλ

(
at2

2 + bt
)
+N −M.

Proof. By using similar method in the previous proof, we consider the vector X in equation (37) to be
constant.
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If the curvatures are f = at + b and 1 = λ, then we have
·

f = a
··

f = 0 (40)
·

1 = 0
··

1 = 0.

To get a constant from the first row and fourth column element of the matrix in equation (37), we solve the
following differential equation

·

κ −
2
·

fκ
f
= c (41)

where c is a constant. By using f = at + b, the equation (41) becomes a linear differential equation

·

κ + p(t)κ = c (42)

where p(t) = − 2a
at+b . Solving the equation (42), we obtain the curvature as:

κ = E(at + b) +D(at + b)2 (43)

with b, E = − c
a and D constants.

From the equation (6), (7), f = at + b and 1 = λ, we have

λ
at + b

=
κ2

(κ2 + τ2)3/2

·(
τ
κ

)
. (44)

By letting h(t) = λ
at+b and Z(t) = τ

κ and making appropriate collocations in equation (44), we get the
differential equation

κ(t)h(t) =
1

(1 + Z(t)2)3/2

dZ
dt
. (45)

Integrating equation (45) by substituting Z = tan s and using equation (43), we find

Z
√

1 + Z2
= Eλt +Dλ

(
at2

2
+ bt

)
+N −M (46)

where a, b, c, D, E = − c
a , λ, N,M are constants.

By using Z(t) = τκ , equation (43) and letting Y(t) = Eλt+Dλ
(

at2

2 + bt
)
+N−M in equation (46), we obtain

the results clearly as:

τ = (E(at + b) +D(at + b)2)

√
Y(t)2

1 − Y(t)2 . (47)

Thus equations (43) and (46) bring to completion the proof.

Example 4.3. Consider the unit speed general helix curve α(t) with curvature and torsion

κ(t) = 3t and τ(t) = 4t.

The figure is diagrammatized for −5 ≤ t ≤ 5. The path given in Figure 1 is stationary acceleration curve.
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Figure 1: The curve α(t) with κ and τ

Example 4.4. Consider the unit speed curve α(t) with curvature and torsion

κ = t2 + t

τ = (t2 + t)

√
2t2

4 − t4

where the curvature and torsion are written by the constants a = 1, b = 1, c = 1, D = 1, N = 1, M = 1, λ = 1, in
Theorem 2. The figure is diagrammatized for −1 ≤ t ≤ 1. The path given in Figure 2 is stationary acceleration curve.

Figure 2: The curve α(t) with κ and τ

5. Conclusion and Remarks

The alternative {N,C,W} frame motions have been studied in three dimensional Euclidean space. These
type of motions are designated by a unit speed curve. It has been shown that if the curve determined by
these motions is a general helix with linear functions of curvature and torsion, then the curve is stationary
acceleration curve. Also a stationary acceleration curve is given with determined curvature and torsion
functions which are obtained by solving some differential equations, are achieved as the elements of the
matrix related to stationary acceleration curve condition. By the notion of the robot motion which describes
a rigid body motion, these stationary acceleration curve paths can lead the way to robots as a control
of end-effectors. Namely, the path can be taken as a curve of general helix with linear curvature and
torsion function or a curve with curvature and torsion given in Theorem 2, which provides the stationary
acceleration curve.

In [15], Selig gave the stationary acceleration curve condition as only linear functions of curvature and
torsion, by using Frenet-Serret motion. In this paper, we indicated that condition as a general helix with
linear curvature and torsion functions by using {N,C,W} frame motion, thus we concluded the stationary
acceleration curves with general helix case. Also we gave another case which involves determined curvature
and torsion functions.

For further investigation, the rigid body motions can be studied with other curve frames and also in
different spaces. Some new conditions can be obtained for stationary acceleration curves.
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