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Abstract. Square matrices whose powers eventually have some special properties are of both theoretical
significance and application value. This paper investigates those complex matrices whose powers are
eventually triangular. We completely characterize the eventually triangular complex matrices of order not
greater than 4, and extend the results to the nonnegative case. Eventually triangular matrices of order n are
also discussed.

1. Introduction

Square matrices whose powers eventually have some special properties are interesting objects of study.
It is natural to characterize those complex matrices A for which there exists a positive integer k0 such that
Ak has a certain property for all integers k ≥ k0.

Complex matrices whose powers are eventually positive (nonnegative), were introduced by Friedland
[6] in 1978. These matrices have applications in control theory [15], and have been studied extensively. See
[3, 4, 8, 12, 13, 16, 18] and the references therein. Zaslavsky and Tam [19] introduced the matrices whose
powers are eventually irreducible. Hogben [7, 9] introduced the matrices whose powers are eventually
reducible, r-cyclic, respectively. In 2019, Ma et al. [11] considered the matrices whose powers eventually
have some structural properties. They characterized those complex matrices whose powers are eventually
diagonal, Toeplitz, normal, respectively.

In this paper, we focus on another basic kind of matrices: triangular matrices. Triangular matrices
have applications in numerical linear algebra [10]. Our aim is to describe the matrices whose powers are
eventually triangular. In Sections 2-4, we give a complete characterization of the eventually triangular
complex matrices of order not greater than 4, and also describe the eventually triangular nonnegative
matrices more clearly. In Section 5, we discuss the eventually triangular matrices of order n in some cases.

A complex square matrix A is called nilpotent if there exists a positive integer p such that Ap is a zero
matrix. It is clear that triangular matrices and nilpotent matrices are eventually triangular. Note that if a
nonsingular matrix A is eventually upper (lower) triangular, that is, there exists a positive integer k0 such
that Ak is upper (lower) triangular for all integers k ≥ k0, then (Ak0 )−1 is upper (lower) triangular and thus
A = (Ak0 )−1Ak0+1 is upper (lower) triangular.
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2. Eventually triangular matrices of order 2

Eventually triangular complex matrices of order 2 are easy to characterize.

Theorem 2.1. Let A be a complex matrix of order 2. Then A is eventually upper (lower) triangular if and only if A
is either upper (lower) triangular or nilpotent.

Proof. Consider the two eigenvalues of A.We distinguish three cases.
Case 1. A has two nonzero eigenvalues. Then A is eventually upper (lower) triangular if and only if A

is upper (lower) triangular.
Case 2. A has two zero eigenvalues. Then A is eventually triangular if and only if A is nilpotent.
Case 3. A has a zero eigenvalue and a nonzero eigenvalue.
If A is eventually upper triangular, there exists a positive integer k0 such that Ak is upper triangular for

all integers k ≥ k0. Then Ak0 =

[
b1 b2
0 0

]
or
[

0 b2
0 b1

]
with b1 , 0. Suppose A =

[
a1 a2
a3 a4

]
. AAk0 = Ak0 A

implies that a3b1 = 0. Since b1 , 0, a3 = 0. Thus A is upper triangular.
If A is eventually lower triangular, a similar argument shows that A is lower triangular. This completes

the proof.

A matrix is nonnegative if all of its entries are nonnegative real numbers. Nonnegative matrices have
many attractive properties, and they are important in a variety of applications [1, 2]. Note that if a
nonnegative matrix of order 2 is nilpotent, then it must be strictly upper or lower triangular. As a corollary,
we can deduce the eventually triangular nonnegative matrices of order 2.

Corollary 2.2. Let A be a nonnegative matrix of order 2. Then A is eventually upper (lower) triangular if and only
if A is upper (lower) triangular.

It is clear that a block upper (lower) triangular matrix, with diagonal block being upper (lower) triangular
or nilpotent, is eventually triangular. However, we found that eventually triangular matrices may not only

have this form, even for the 3 × 3 case. Consider the matrix A =

 2 −1 −3
−2 3 5
2 −2 −4

 . A simple computation

shows that Ak =

 0 1 1
0 1 1
0 0 0

 for all integers k ≥ 2, but A is not any block triangular matrix with diagonal

block being triangular or nilpotent. Thus it is of interest to study the eventually triangular matrices of order
n ≥ 3.

3. Eventually triangular matrices of order 3

If A is a matrix, A(i, j) denotes its entry in the i-th row and j-th column. The following fact is clear.

Lemma 3.1. Let A be a complex matrix of order n. If there exists a positive integer k0 such that Ak is upper triangular
for all integers k ≥ k0, then given an integer i with 1 ≤ i ≤ n, either Ak(i, i) = 0 for all integers k ≥ k0, or Ak(i, i) , 0
for all integers k ≥ k0.

Lemma 3.2. Let A be an eventually upper triangular matrix of order 3, and assume that there exists a positive integer
k0 ≥ 2 such that Ak is upper triangular for all integers k ≥ k0. If Ak0 (2, 2) , 0 and Ak0 (1, 1) = Ak0 (3, 3) = 0, then

A = S

 a 0 0
0
0 N

S−1, where a , 0, N is a nilpotent matrix of order 2, and S =

 b 1 0
1 0 c
0 0 1

 .
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Proof. Suppose Ak0 =

 0 b1 b2
0 b3 b4
0 0 0

 with b3 , 0. Consider the Jordan canonical form of A, denoted as J(A),

it follows that J(A) =


k0
√

b3 0 0
0 0 0
0 0 0

 or


k0
√

b3 0 0
0 0 1
0 0 0

 . Thus J(Ak0 ) =

 b3 0 0
0 0 0
0 0 0

 , i.e., there exists a

nonsingular matrix S of order 3 such that (S−1AS)k0 = S−1Ak0 S =

 b3 0 0
0 0 0
0 0 0

 . Since b3 , 0, S−1AS has the

form


k0
√

b3 0 0
0
0 N

 ,where N is a nilpotent matrix of order 2.

Next we give the matrix S. Since rank(Ak0 ) = rank(J(Ak0 )) = 1, b1b4 = b2b3. A direct computation shows
that Ak0 has the eigenvectors [ b1

b3
, 1, 0]T, [1, 0, 0]T, [0,− b4

b3
, 1]T corresponding to the eigenvalues b3, 0, 0. Then

S =


b1
b3

1 0
1 0 −

b4
b3

0 0 1

 . Let a = k0
√

b3, b = b1
b3
, c = − b4

b3
. This completes the proof.

We mentioned in Section 2 that the matrix A =

 2 −1 −3
−2 3 5
2 −2 −4

 is eventually upper triangular. It is easy

to verify that A = S

 1 0 0
0
0 N

S−1,where N =
[

2 −2
2 −2

]
is nilpotent, and S =

 1 1 0
1 0 −1
0 0 1

 .
The following theorem characterizes the eventually upper triangular complex matrices of order 3.

Theorem 3.3. Let A be a complex matrix of order 3. Then A is eventually upper triangular if and only if A is one of
the following:

(i) upper triangular;
(ii) nilpotent;

(iii) A =

 a1 a2 a3
0 a5 a6
0 a8 a9

 with a1 , 0 and the submatrix
[

a5 a6
a8 a9

]
being nilpotent, or A =

 a1 a2 a3
a4 a5 a6
0 0 a9

 with

a9 , 0 and the submatrix
[

a1 a2
a4 a5

]
being nilpotent;

(iv) A = S

 a 0 0
0
0 N

S−1, where a , 0, N is a nilpotent matrix of order 2, and S =

 b 1 0
1 0 c
0 0 1

 .
Proof. Consider the three eigenvalues of A.We distinguish four cases.

Case 1. A has three nonzero eigenvalues. Then A is eventually upper triangular if and only if A is upper
triangular.

Case 2. A has three zero eigenvalues. Then A is eventually upper triangular if and only if A is nilpotent.
Case 3. A has two nonzero eigenvalues and a zero eigenvalue.
Suppose there exists a positive integer k0 ≥ 2 such that Ak is upper triangular for all integers k ≥ k0.

Then Ak0 =

 b1 b2 b3
0 b4 b5
0 0 0

with b1b4 , 0, or

 0 b1 b2
0 b3 b4
0 0 b5

with b3b5 , 0, or

 b1 b2 b3
0 0 b4
0 0 b5

with b1b5 , 0.

If Ak0 =

 b1 b2 b3
0 b4 b5
0 0 0

 with b1b4 , 0, by Lemma 3.1, Ak0+1 has the form

 c1 c2 c3
0 c4 c5
0 0 0

 with c1c4 , 0.
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Suppose A =

 a1 a2 a3
a4 a5 a6
a7 a8 a9

 . Then by A · Ak0 = Ak0 · A = Ak0+1, we can deduce that a4 = a7 = a8 = 0. Thus A

is upper triangular.

If Ak0 =

 0 b1 b2
0 b3 b4
0 0 b5

with b3b5 , 0, or

 b1 b2 b3
0 0 b4
0 0 b5

with b1b5 , 0, a similar argument shows that A is

upper triangular.
Case 4. A has a nonzero eigenvalue and two zero eigenvalues.
Suppose there exists a positive integer k0 ≥ 2 such that Ak is upper triangular for all integers k ≥ k0.

Then Ak0 =

 b1 b2 b3
0 0 b4
0 0 0

with b1 , 0, or

 0 b1 b2
0 0 b3
0 0 b4

with b4 , 0, or

 0 b1 b2
0 b3 b4
0 0 0

with b3 , 0.

If Ak0 =

 b1 b2 b3
0 0 b4
0 0 0

with b1 , 0, by Lemma 3.1, Ak0+1 has the form

 c1 c2 c3
0 0 c4
0 0 0

with c1 , 0. Suppose

A =

 a1 a2 a3
a4 a5 a6
a7 a8 a9

 . By A · Ak0 = Ak0 · A = Ak0+1, we can deduce that a4 = a7 = 0. Then

 a1 a2 a3
0 a5 a6
0 a8 a9


k0

= b1 b2 b3
0 0 b4
0 0 0

 implies ak0
1 = b1 and

[
a5 a6
a8 a9

]k0

=

[
0 b4
0 0

]
. Thus A =

 a1 a2 a3
0 a5 a6
0 a8 a9

 with a1 , 0, and the

submatrix
[

a5 a6
a8 a9

]
is nilpotent.

If Ak0 =

 0 b1 b2
0 0 b3
0 0 b4

 with b4 , 0, a similar argument shows that A =

 a1 a2 a3
a4 a5 a6
0 0 a9

 with a9 , 0, and

the submatrix
[

a1 a2
a4 a5

]
is nilpotent.

If Ak0 =

 0 b1 b2
0 b3 b4
0 0 0

with b3 , 0, by Lemma 3.2, A has the form (iv).

Conversely, when A has any one of the forms (i)–(iv), a direct computation shows that A is eventually
upper triangular. This completes the proof.

Two matrices X and Y are said to be permutation similar if there exists a permutation matrix P such that
PTXP = Y. Now we can describe the eventually upper triangular nonnegative matrices of order 3 more
clearly.

Theorem 3.4. Let A be a nonnegative matrix of order 3. Then A is eventually upper triangular if and only if A is
one of the following:

(i) upper triangular;
(ii) nilpotent, and thus permutation similar to a strictly upper triangular matrix;

(iii) A =

 a1 a2 a3
0 0 0
0 a8 0

 with a1, a8 > 0, or A =

 0 0 a3
a4 0 a6
0 0 a9

 with a4, a9 > 0, or A =

 0 0 0
0 a 0
b 0 0

 with

a, b > 0.

Proof. Consider the three eigenvalues of A.We distinguish four cases.
Case 1. A has three nonzero eigenvalues. Then A is eventually upper triangular if and only if A is upper

triangular.



C. Ma et al. / Filomat 37:26 (2023), 8867–8885 8871

Case 2. A has three zero eigenvalues. Then A is eventually upper triangular if and only if A is nilpotent.
By Lemma 2.3 in [11], A is permutation similar to a strictly upper triangular matrix.

Case 3. A has two nonzero eigenvalues and a zero eigenvalue. By the Case 3 in the proof of Theorem
3.3, A is upper triangular.

Case 4. A has a nonzero eigenvalue and two zero eigenvalues. Suppose there exists a positive integer
k0 ≥ 2 such that Ak is upper triangular for all integers k ≥ k0.

If Ak0 =

 b1 b2 b3
0 0 b4
0 0 0

 with b1 > 0, by the Case 4 in the proof of Theorem 3.3, A =

 a1 a2 a3
0 a5 a6
0 a8 a9

 with

a1 > 0, and the submatrix
[

a5 a6
a8 a9

]
is nilpotent. Since A is nonnegative, a5 = a9 = 0 and a6a8 = 0. Thus A

is upper triangular or has the first form in (iii).

If Ak0 =

 0 b1 b2
0 0 b3
0 0 b4

with b4 > 0, a similar argument shows that A is upper triangular or has the second

form in (iii).

If Ak0 =

 0 b1 b2
0 b3 b4
0 0 0

 with b3 > 0, either A is eventually diagonal, or there exists a positive integer

k1 ≥ 2 such that Ak1 is upper triangular but not diagonal. In the previous case, by Theorem 2.4 in [11], A is

permutation similar to a matrix of the form

 0 b 0
0 0 0
0 0 a

 with a > 0. Thus A =

 0 0 b
0 a 0
0 0 0

 or

 0 0 0
0 a 0
b 0 0

 ,
which implies that A is upper triangular or has the third form in (iii). In the latter case, Ak1 =

 0 c1 c2
0 c3 c4
0 0 0

 ,
where c3 > 0 and at least one of c1, c2, c4 are positive. Suppose A =

 a1 a2 a3
a4 a5 a6
a7 a8 a9

 . Then by A ·Ak1 = Ak1 ·A

and the nonnegativity of A,we can deduce that a4 = a7 = a8 = 0. Thus A is upper triangular.
Conversely, when A has any one of the forms (i)–(iii), a direct computation shows that A is eventually

upper triangular. This completes the proof.

Obviously, the eventually lower triangular complex (nonnegative) matrices of order 3 can be obtained
from Theorem 3.3 (Theorem 3.4) by taking the transpose.

4. Eventually triangular matrices of order 4

Denote by In the identity matrix of order n.

Lemma 4.1. Let A be an eventually upper triangular matrix of order 4, and assume that there exists a positive integer
k0 ≥ 2 such that Ak is upper triangular for all integers k ≥ k0. If Ak0 (2, 2)Ak0 (3, 3) , 0 and Ak0 (1, 1) = Ak0 (4, 4) = 0,

then A = S


a b
0 c

0 0
0 0

0 0
0 0 N

S−1, where ac , 0,N is a nilpotent matrix of order 2, and S =


d e 1 0
1 f 0 1

0 1 0 h
0 0 0 1

 .

Proof. Suppose Ak0 =


0 b1 b2 b3
0 b4 b5 b6
0 0 b7 b8
0 0 0 0

with b4b7 , 0. Consider the Jordan canonical form of A, denoted as

J(A).We distinguish three cases.
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Case 1. J(A) =


k0
√

b4 0 0 0
0 k0

√
b7 0 0

0 0 0 0
0 0 0 0

 or


k0
√

b4 0 0 0
0 k0

√
b7 0 0

0 0 0 1
0 0 0 0

 with k0
√

b4 ,
k0
√

b7. Then J(Ak0 ) =


b4 0 0 0
0 b7 0 0
0 0 0 0
0 0 0 0

 , i.e., there exists a nonsingular matrix S of order 4 such that (S−1AS)k0 = S−1Ak0 S =


b4 0 0 0
0 b7 0 0
0 0 0 0
0 0 0 0

 . Since b4b7 , 0 and b4 , b7, S−1AS has the form


k0
√

b4 0
0 k0

√
b7

0 0
0 0

0 0
0 0 N

 ,where N is

a nilpotent matrix of order 2. Let a = k0
√

b4, b = 0, c = k0
√

b7.

Next we give the matrix S. Since rank(Ak0 ) = rank(J(Ak0 )) = 2, b1(b5b8−b6b7)−b4(b2b8−b3b7) = 0.A direct
computation shows that Ak0 has the eigenvectors [ b1

b4
, 1, 0, 0]T, [ b2

b7
+ b1b5

b7(b7−b4) ,
b5

b7−b4
, 1, 0]T, [1, 0, 0, 0]T, [0, b5b8

b4b7
−

b6
b4
,− b8

b7
, 1]T corresponding to the eigenvalues b4, b7, 0, 0. Then S =


b1
b4

b2
b7
+ b1b5

b7(b7−b4) 1 0
1 b5

b7−b4
0 b5b8

b4b7
−

b6
b4

0 1 0 −
b8
b7

0 0 0 1

 . Let

d = b1
b4
, e = b2

b7
+ b1b5

b7(b7−b4) , f = b5
b7−b4
, 1 = b5b8

b4b7
−

b6
b4
, h = − b8

b7
.

Case 2. J(A) =


k0
√

b4 0 0 0
0 k0

√
b7 0 0

0 0 0 0
0 0 0 0

 or


k0
√

b4 0 0 0
0 k0

√
b7 0 0

0 0 0 1
0 0 0 0

 with k0
√

b4 =
k0
√

b7. Then b4 = b7 and

J(Ak0 ) =


b4 0 0 0
0 b4 0 0
0 0 0 0
0 0 0 0

 , i.e., there exists a nonsingular matrix S of order 4 such that (S−1AS)k0 = S−1Ak0 S =


b4 0 0 0
0 b4 0 0
0 0 0 0
0 0 0 0

 . Since b4 , 0, S−1AS has the form


B

0 0
0 0

0 0
0 0 N

 , where Bk0 = b4I2, and N is a

nilpotent matrix of order 2.

Next we give the matrix S. Note that rank(Ak0 ) = rank(J(Ak0 )) = 2 and rank(b4I4 − Ak0 ) = rank(b4I4 −

J(Ak0 )) = 2.Then b5 = 0 and thus b1b4b6+b4(b2b8−b3b4) = 0.A direct computation shows that Ak0 has the eigen-
vectors [ b1

b4
, 1, 0, 0]T, [ b2

b4
, 0, 1, 0]T, [1, 0, 0, 0]T, [0,− b6

b4
,− b8

b4
, 1]T corresponding to the eigenvalues b4, b4, 0, 0. Then

S =


b1
b4

b2
b4

1 0
1 0 0 −

b6
b4

0 1 0 −
b8
b4

0 0 0 1

 . Let d = b1
b4
, e = b2

b4
, f = 0, 1 = − b6

b4
, h = − b8

b4
. Since Ak = S


Bk 0 0

0 0
0 0
0 0

0 0
0 0

S−1 is

upper triangular for all integers k ≥ k0, a direct computation shows that Bk is upper triangular for all integers
k ≥ k0. By the nonsingularity of B, it follows that B is upper triangular. Let a = B(1, 1), b = B(1, 2), c = B(2, 2).

Case 3. J(A) =


k0
√

b4 1 0 0
0 k0

√
b7 0 0

0 0 0 0
0 0 0 0

 or


k0
√

b4 1 0 0
0 k0

√
b7 0 0

0 0 0 1
0 0 0 0

 with k0
√

b4 =
k0
√

b7. Then b4 = b7 and
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J(Ak0 ) =


b4 1 0 0
0 b4 0 0
0 0 0 0
0 0 0 0

 , i.e., there exists a nonsingular matrix T of order 4 such that (T−1AT)k0 = T−1Ak0 T =


b4 1 0 0
0 b4 0 0
0 0 0 0
0 0 0 0

 . Since b4 , 0, T−1AT has the form


B

0 0
0 0

0 0
0 0 N

 , where Bk0 =

[
b4 1
0 b4

]
, and N

is a nilpotent matrix of order 2.
Now we give the matrix T. Note that rank(Ak0 ) = rank(J(Ak0 )) = 2 and rank(b4I4 − Ak0 ) = rank(b4I4 −

J(Ak0 )) = 3. Then b5 , 0 and b1(b5b8 − b4b6)− b4(b2b8 − b3b4) = 0. First Ak0 has the eigenvector s1 = [ b1
b4
, 1, 0, 0]T

corresponding to the eigenvalue b4. Then by solving Ak0 s2 = s1 + b4s2,we have s2 = [ b2
b4b5
−

b1

b2
4
, 0, 1

b5
, 0]T.Next

Ak0 has the eigenvectors s3 = [1, 0, 0, 0]T, s4 = [0, b5b8

b2
4
−

b6
b4
,− b8

b4
, 1]T corresponding to the eigenvalues 0, 0.

Then T = [s1, s2, s3, s4] =


b1
b4

b2
b4b5
−

b1

b2
4

1 0

1 0 0 b5b8

b2
4
−

b6
b4

0 1
b5

0 −
b8
b4

0 0 0 1

 . Since Ak = T


Bk 0 0

0 0
0 0
0 0

0 0
0 0

T−1 is upper

triangular for all integers k ≥ k0, a direct computation shows that Bk is upper triangular for all integers
k ≥ k0. By the nonsingularity of B, it follows that B is upper triangular.

Let S = [s1, b5s2, s3, s4] =


b1
b4

b2
b4
−

b1b5

b2
4

1 0

1 0 0 b5b8

b2
4
−

b6
b4

0 1 0 −
b8
b4

0 0 0 1

 . Then S = TD with D = diag(1, b5, 1, 1). Thus A =

T


B

0 0
0 0

0 0
0 0 N

T−1 = SD−1


B

0 0
0 0

0 0
0 0 N

DS−1 = S


B(1, 1) b5B(1, 2)

0 B(2, 2)
0 0
0 0

0 0
0 0 N

S−1.

Let a = B(1, 1), b = b5B(1, 2), c = B(2, 2), d = b1
b4
, e = b2

b4
−

b1b5

b2
4
, f = 0, 1 = b5b8

b2
4
−

b6
b4
, h = − b8

b4
.

This completes the proof.

Lemma 4.2. Let A be an eventually upper triangular matrix of order 4, and assume that there exists a positive integer
k0 ≥ 2 such that Ak is upper triangular for all integers k ≥ k0.

(i) If Ak0 (2, 2) , 0 and Ak0 (1, 1) = Ak0 (3, 3) = Ak0 (4, 4) = 0, then A = S


a 0 0 0
0
0
0

N

S−1, where

a , 0, N is a nilpotent matrix of order 3, and S =


b 1 0 0
1 0 c d
0 0 1 0
0 0 0 1

 ;

(ii) If Ak0 (3, 3) , 0 and Ak0 (1, 1) = Ak0 (2, 2) = Ak0 (4, 4) = 0, then A = S


a 0 0 0
0
0
0

N

S−1, where

a , 0, N is a nilpotent matrix of order 3, and S =


b 1 0 0
c 0 1 0
1 0 0 d
0 0 0 1

 .
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Proof. (i) If Ak0 (2, 2) , 0 and Ak0 (1, 1) = Ak0 (3, 3) = Ak0 (4, 4) = 0, by Lemma 3.1, Ak0+1(2, 2) , 0 and

Ak0+1(1, 1) = Ak0+1(3, 3) = Ak0+1(4, 4) = 0. Suppose Ak0+1 =


0 b1 b2 b3
0 b4 b5 b6
0 0 0 b7
0 0 0 0

 with b4 , 0. Consider the Jor-

dan canonical form of A, denoted as J(A), it follows that J(A) =


k0+1√b4 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 or


k0+1√b4 0 0 0

0 0 0 0
0 0 0 1
0 0 0 0


or


k0+1√b4 0 0 0

0 0 1 0
0 0 0 1
0 0 0 0

 . Then J(Ak0+1) =


b4 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 for k0 + 1 ≥ 3, i.e., there exists a nonsingular

matrix S of order 4 such that (S−1AS)k0+1 = S−1Ak0+1S =


b4 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . Since b4 , 0, S−1AS has the form


k0+1√b4 0 0 0

0
0
0

N

 ,where N is a nilpotent matrix of order 3. Let a = k0+1√b4.

Next we give the matrix S. Note that rank(Ak0+1) = rank(J(Ak0+1)) = 1. Then b7 = 0, b1b5 − b2b4 = 0
and b1b6 − b3b4 = 0. A direct computation shows that Ak0+1 has the eigenvectors [ b1

b4
, 1, 0, 0]T, [1, 0, 0, 0]T,

[0,− b5
b4
, 1, 0]T, [0,− b6

b4
, 0, 1]T corresponding to the eigenvalues b4, 0, 0, 0. Then S =


b1
b4

1 0 0
1 0 −

b5
b4
−

b6
b4

0 0 1 0
0 0 0 1

 . Let

b = b1
b4
, c = − b5

b4
, d = − b6

b4
.

(ii) If Ak0 (3, 3) , 0 and Ak0 (1, 1) = Ak0 (2, 2) = Ak0 (4, 4) = 0, a similar argument shows that A =

S


k0+1
√

Ak0+1(3, 3) 0 0 0
0
0
0

N

S−1, where Ak0+1(3, 3) , 0, N is a nilpotent matrix of order 3 and S =


Ak0+1(1,3)
Ak0+1(3,3)

1 0 0
Ak0+1(2,3)
Ak0+1(3,3)

0 1 0

1 0 0 −
Ak0+1(3,4)
Ak0+1(3,3)

0 0 0 1

 . Let a = k0+1
√

Ak0+1(3, 3), b = Ak0+1(1,3)
Ak0+1(3,3)

, c = Ak0+1(2,3)
Ak0+1(3,3)

, d = −Ak0+1(3,4)
Ak0+1(3,3)

.

The following theorem characterizes the eventually upper triangular complex matrices of order 4.

Theorem 4.3. Let A be a complex matrix of order 4. Then A is eventually upper triangular if and only if A is one of
the following:

(i) upper triangular;
(ii) nilpotent;

(iii) A =


a1 a2 a3 a4
0 a6 a7 a8
0 0 a11 a12
0 0 a15 a16

 with a1a6 , 0 and the submatrix
[

a11 a12
a15 a16

]
being nilpotent, or A =
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a1 a2 a3 a4
a5 a6 a7 a8
0 0 a11 a12
0 0 0 a16

 with a11a16 , 0 and the submatrix
[

a1 a2
a5 a6

]
being nilpotent, or A =


a1 a2 a3 a4
0 a6 a7 a8
0 a10 a11 a12
0 0 0 a16


with a1a16 , 0 and the submatrix

[
a6 a7
a10 a11

]
being nilpotent;

(iv) A =


a1 a2 a3 a4
0 a6 a7 a8
0 a10 a11 a12
0 a14 a15 a16

 with a1 , 0 and the submatrix

 a6 a7 a8
a10 a11 a12
a14 a15 a16

 = S

 a 0 0
0
0 N

S−1,

or A =


a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
0 0 0 a16

 with a16 , 0 and the submatrix

 a1 a2 a3
a5 a6 a7
a9 a10 a11

 = S

 a 0 0
0
0 N

S−1, where

a , 0, N is a nilpotent matrix of order 2, and S =

 b 1 0
1 0 c
0 0 1

 ;
(v) A = S


a b
0 c

0 0
0 0

0 0
0 0 N

S−1,where ac , 0,N is a nilpotent matrix of order 2, and S =


d e 1 0
1 f 0 1

0 1 0 h
0 0 0 1

 ;

(vi) A =


a1 a2 a3 a4
0 a6 a7 a8
0 a10 a11 a12
0 a14 a15 a16

 with a1 , 0 and the submatrix

 a6 a7 a8
a10 a11 a12
a14 a15 a16

 being nilpotent, or A =


a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
0 0 0 a16

 with a16 , 0 and the submatrix

 a1 a2 a3
a5 a6 a7
a9 a10 a11

 being nilpotent;

(vii) A = S


a 0 0 0
0
0
0

N

S−1, where a , 0, N is a nilpotent matrix of order 3, S =


b 1 0 0
1 0 c d
0 0 1 0
0 0 0 1

 or


b 1 0 0
c 0 1 0
1 0 0 d
0 0 0 1

 .

Proof. Consider the four eigenvalues of A.We distinguish five cases.

Case 1. A has four nonzero eigenvalues. Then A is eventually upper triangular if and only if A is upper
triangular.

Case 2. A has four zero eigenvalues. Then A is eventually upper triangular if and only if A is nilpotent.

Case 3. A has three nonzero eigenvalues and a zero eigenvalue.

Suppose there exists a positive integer k0 ≥ 2 such that Ak is upper triangular for all integers k ≥ k0.

Then Ak0 =


b1 b2 b3 b4
0 b5 b6 b7
0 0 b8 b9
0 0 0 0

 with b1b5b8 , 0, or


0 b1 b2 b3
0 b4 b5 b6
0 0 b7 b8
0 0 0 b9

 with b4b7b9 , 0, or


b1 b2 b3 b4
0 0 b5 b6
0 0 b7 b8
0 0 0 b9


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with b1b7b9 , 0, or


b1 b2 b3 b4
0 b5 b6 b7
0 0 0 b8
0 0 0 b9

with b1b5b9 , 0.

If Ak0 =


b1 b2 b3 b4
0 b5 b6 b7
0 0 b8 b9
0 0 0 0

 with b1b5b8 , 0, by Lemma 3.1, Ak0+1 has the form


c1 c2 c3 c4
0 c5 c6 c7
0 0 c8 c9
0 0 0 0

 with

c1c5c8 , 0. Suppose A =


a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
a13 a14 a15 a16

 . Then by A · Ak0 = Ak0 · A = Ak0+1, we can deduce that

a5 = a9 = a10 = a13 = a14 = a15 = 0. Thus A is upper triangular.

If Ak0 =


0 b1 b2 b3
0 b4 b5 b6
0 0 b7 b8
0 0 0 b9

 with b4b7b9 , 0, or


b1 b2 b3 b4
0 0 b5 b6
0 0 b7 b8
0 0 0 b9

 with b1b7b9 , 0, or


b1 b2 b3 b4
0 b5 b6 b7
0 0 0 b8
0 0 0 b9


with b1b5b9 , 0, a similar argument shows that A is upper triangular.

Case 4. A has two nonzero eigenvalues and two zero eigenvalues.
Suppose there exists a positive integer k0 ≥ 2 such that Ak is upper triangular for all integers k ≥ k0.

Then Ak0 =


b1 b2 b3 b4
0 b5 b6 b7
0 0 0 b8
0 0 0 0

with b1b5 , 0, or


0 b1 b2 b3
0 0 b4 b5
0 0 b6 b7
0 0 0 b8

with b6b8 , 0, or


b1 b2 b3 b4
0 0 b5 b6
0 0 0 b7
0 0 0 b8

with

b1b8 , 0, or


b1 b2 b3 b4
0 0 b5 b6
0 0 b7 b8
0 0 0 0

 with b1b7 , 0, or


0 b1 b2 b3
0 b4 b5 b6
0 0 0 b7
0 0 0 b8

 with b4b8 , 0, or


0 b1 b2 b3
0 b4 b5 b6
0 0 b7 b8
0 0 0 0

 with

b4b7 , 0.

If Ak0 =


b1 b2 b3 b4
0 b5 b6 b7
0 0 0 b8
0 0 0 0

 with b1b5 , 0, by Lemma 3.1, Ak0+1 has the form


c1 c2 c3 c4
0 c5 c6 c7
0 0 0 c8
0 0 0 0

 with

c1c5 , 0. Suppose A =


a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
a13 a14 a15 a16

 . By A · Ak0 = Ak0 · A = Ak0+1, we can deduce that a5 =

a9 = a10 = a13 = a14 = 0. Then


a1 a2 a3 a4
0 a6 a7 a8
0 0 a11 a12
0 0 a15 a16


k0

=


b1 b2 b3 b4
0 b5 b6 b7
0 0 0 b8
0 0 0 0

 implies ak0
1 = b1, ak0

6 = b5 and

[
a11 a12
a15 a16

]k0

=

[
0 b8
0 0

]
. Thus A =


a1 a2 a3 a4
0 a6 a7 a8
0 0 a11 a12
0 0 a15 a16

 with a1a6 , 0, and the submatrix
[

a11 a12
a15 a16

]
is

nilpotent.

If Ak0 =


0 b1 b2 b3
0 0 b4 b5
0 0 b6 b7
0 0 0 b8

 with b6b8 , 0, a similar argument shows that A =


a1 a2 a3 a4
a5 a6 a7 a8
0 0 a11 a12
0 0 0 a16

 with
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a11a16 , 0, and the submatrix
[

a1 a2
a5 a6

]
is nilpotent.

If Ak0 =


b1 b2 b3 b4
0 0 b5 b6
0 0 0 b7
0 0 0 b8

with b1b8 , 0, a similar argument shows that A =


a1 a2 a3 a4
0 a6 a7 a8
0 a10 a11 a12
0 0 0 a16

with

a1a16 , 0, and the submatrix
[

a6 a7
a10 a11

]
is nilpotent.

If Ak0 =


b1 b2 b3 b4
0 0 b5 b6
0 0 b7 b8
0 0 0 0

 with b1b7 , 0, by Lemma 3.1, Ak0+1 has the form


c1 c2 c3 c4
0 0 c5 c6
0 0 c7 c8
0 0 0 0

 with

c1c7 , 0. Suppose A =


a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
a13 a14 a15 a16

 . By A · Ak0 = Ak0 · A = Ak0+1, we can deduce that a5 = a9 =

a13 = 0. Then A =


a1 a2 a3 a4
0 a6 a7 a8
0 a10 a11 a12
0 a14 a15 a16

 with a1 =
k0
√

b1 , 0, and the submatrix

 a6 a7 a8
a10 a11 a12
a14 a15 a16

 satisfies

 a6 a7 a8
a10 a11 a12
a14 a15 a16


k0

=

 0 b5 b6
0 b7 b8
0 0 0

with b7 , 0. By Lemma 3.2,

 a6 a7 a8
a10 a11 a12
a14 a15 a16

 = S

 a 0 0
0
0 N

S−1,

where a , 0, N is a nilpotent matrix of order 2, and S =

 b 1 0
1 0 c
0 0 1

 .
If Ak0 =


0 b1 b2 b3
0 b4 b5 b6
0 0 0 b7
0 0 0 b8

 with b4b8 , 0, a similar argument shows that A =


a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
0 0 0 a16

 with

a16 , 0, and the submatrix

 a1 a2 a3
a5 a6 a7
a9 a10 a11

 = S

 a 0 0
0
0 N

S−1, where a , 0, N is a nilpotent matrix

of order 2, and S =

 b 1 0
1 0 c
0 0 1

 .
If Ak0 =


0 b1 b2 b3
0 b4 b5 b6
0 0 b7 b8
0 0 0 0

with b4b7 , 0, by Lemma 4.1, A has the form (v).

Case 5. A has a nonzero eigenvalue and three zero eigenvalues.
Suppose there exists a positive integer k0 ≥ 2 such that Ak is upper triangular for all integers k ≥ k0. Then

Ak0 =


b1 b2 b3 b4
0 0 b5 b6
0 0 0 b7
0 0 0 0

 with b1 , 0, or


0 b1 b2 b3
0 0 b4 b5
0 0 0 b6
0 0 0 b7

 with b7 , 0, or


0 b1 b2 b3
0 b4 b5 b6
0 0 0 b7
0 0 0 0

 with b4 , 0, or


0 b1 b2 b3
0 0 b4 b5
0 0 b6 b7
0 0 0 0

with b6 , 0.
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If Ak0 =


b1 b2 b3 b4
0 0 b5 b6
0 0 0 b7
0 0 0 0

with b1 , 0, by Lemma 3.1, Ak0+1 has the form


c1 c2 c3 c4
0 0 c5 c6
0 0 0 c7
0 0 0 0

with c1 , 0.

Suppose A =


a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
a13 a14 a15 a16

 . By A ·Ak0 = Ak0 ·A = Ak0+1,we can deduce that a5 = a9 = a13 = 0. Then


a1 a2 a3 a4
0 a6 a7 a8
0 a10 a11 a12
0 a14 a15 a16


k0

=


b1 b2 b3 b4
0 0 b5 b6
0 0 0 b7
0 0 0 0

 implies ak0
1 = b1 and

 a6 a7 a8
a10 a11 a12
a14 a15 a16


k0

=

 0 b5 b6
0 0 b7
0 0 0

 . Thus

A =


a1 a2 a3 a4
0 a6 a7 a8
0 a10 a11 a12
0 a14 a15 a16

with a1 , 0, and the submatrix

 a6 a7 a8
a10 a11 a12
a14 a15 a16

 is nilpotent.

If Ak0 =


0 b1 b2 b3
0 0 b4 b5
0 0 0 b6
0 0 0 b7

 with b7 , 0, a similar argument shows that A =


a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
0 0 0 a16

 with

a16 , 0, and the submatrix

 a1 a2 a3
a5 a6 a7
a9 a10 a11

 is nilpotent.

If Ak0 =


0 b1 b2 b3
0 b4 b5 b6
0 0 0 b7
0 0 0 0

 with b4 , 0, or


0 b1 b2 b3
0 0 b4 b5
0 0 b6 b7
0 0 0 0

 with b6 , 0, by Lemma 4.2, A has the form

(vii).
Conversely, when A has any one of the forms (i)–(vii), a direct computation shows that A is eventually

upper triangular. This completes the proof.

Lemma 4.4. Let A be an eventually upper triangular nonnegative matrix of order 4, and assume that there exists
a positive integer k0 ≥ 2 such that Ak is upper triangular for all integers k ≥ k0. If Ak0 (2, 2),Ak0 (3, 3) > 0 and

Ak0 (1, 1) = Ak0 (4, 4) = 0, then A is either upper triangular or has the form


0 0 0 0
0 a6 a7 0
0 0 a11 0

a13 0 0 0

 with a6, a11, a13 > 0.

Proof. Suppose Ak0 =


0 b1 b2 b3
0 b4 b5 b6
0 0 b7 b8
0 0 0 0

with b4, b7 > 0. By Lemma 3.1, Ak0+1 has the form


0 c1 c2 c3
0 c4 c5 c6
0 0 c7 c8
0 0 0 0


with c4, c7 > 0. Suppose A =


a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
a13 a14 a15 a16

 . Then by A ·Ak0 = Ak0 ·A = Ak0+1 and the nonnegativity

of A,we can deduce that a5 = a9 = a10 = a14 = a15 = 0.
If a13 = 0, then A is upper triangular.
If a13 > 0, then by A · Ak0 = Ak0 · A and the nonnegativity of A, we have b1 = b2 = b3 = b6 = b8 = 0,

and thus a2 = a3 = a8 = a12 = 0. Ak0 (1, 1) =
∑

1≤i1,...,ik0−1≤4
A(1, i1)A(i1, i2) · · ·A(ik0−1, 1) = A(1, 1)k0 + · · · = 0 implies
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A(1, 1) = a1 = 0.Ak0 (4, 4) =
∑

1≤i1,...,ik0−1≤4
A(4, i1)A(i1, i2) · · ·A(ik0−1, 4) = A(4, 4)k0+· · · = 0 implies A(4, 4) = a16 = 0.

A2k0 (1, 1) =
∑

1≤i1,...,i2k0−1≤4
A(1, i1)A(i1, i2) · · ·A(i2k0−1, 1) = (A(1, 4)A(4, 1))k0 + · · · = 0 implies A(1, 4) = a4 = 0. Thus

A =


0 0 0 0
0 a6 a7 0
0 0 a11 0

a13 0 0 0

 . Since b4 = ak0
6 and b7 = ak0

11,we have a6, a11 > 0.

Lemma 4.5. Let A be an eventually upper triangular nonnegative matrix of order 4, and assume that there exists
a positive integer k0 ≥ 2 such that Ak is upper triangular for all integers k ≥ k0. If Ak0 (2, 2) > 0 and Ak0 (1, 1) =
Ak0 (3, 3) = Ak0 (4, 4) = 0, then A is either upper triangular or has one of the following forms:

0 a2 a3 a4
0 a6 a7 a8
0 0 0 0
0 0 a15 0

with a6, a15 > 0;


0 0 0 0
0 a6 0 0
a9 0 0 a12
a13 0 a15 0

with a6, a9, a13 > 0 and a12a15 = 0;


0 0 a3 0
0 a6 a7 0
0 0 0 0

a13 0 a15 0


with a6, a13 > 0;


0 0 0 0
0 a6 0 0
0 0 0 a12

a13 0 0 0

 with a6, a12, a13 > 0;


0 0 0 a4
0 a6 0 a8
a9 0 0 a12
0 0 0 0

 with a6, a9 > 0;


0 0 0 0
0 a6 0 0
a9 0 0 0
0 0 a15 0


with a6, a9, a15 > 0.

Proof. Suppose Ak0 =


0 b1 b2 b3
0 b4 b5 b6
0 0 0 b7
0 0 0 0

 with b4 > 0. By Lemma 3.1, Ak0+1 has the form


0 c1 c2 c3
0 c4 c5 c6
0 0 0 c7
0 0 0 0


with c4 > 0. Suppose A =


a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
a13 a14 a15 a16

 . Then by A · Ak0 = Ak0 · A = Ak0+1 and the nonnegativity

of A, we can deduce that a5 = a10 = a14 = 0. Ak0 (1, 1) =
∑

1≤i1,...,ik0−1≤4
A(1, i1)A(i1, i2) · · ·A(ik0−1, 1) = A(1, 1)k0 +

· · · = 0 implies A(1, 1) = a1 = 0. Ak0 (3, 3) =
∑

1≤i1,...,ik0−1≤4
A(3, i1)A(i1, i2) · · ·A(ik0−1, 3) = A(3, 3)k0 + · · · = 0

implies A(3, 3) = a11 = 0. Ak0 (4, 4) =
∑

1≤i1,...,ik0−1≤4
A(4, i1)A(i1, i2) · · ·A(ik0−1, 4) = A(4, 4)k0 + · · · = 0 implies

A(4, 4) = a16 = 0. A2k0 (3, 3) =
∑

1≤i1,...,i2k0−1≤4
A(3, i1)A(i1, i2) · · ·A(i2k0−1, 3) = (A(3, 4)A(4, 3))k0 + · · · = 0 implies

A(3, 4)A(4, 3) = a12a15 = 0. Next we distinguish four cases.
Case 1. a9 = a13 = 0. Then b4 = Ak0 (2, 2) =

∑
1≤i1,...,ik0−1≤4

A(2, i1)A(i1, i2) · · ·A(ik0−1, 2) = A(2, 2)k0 > 0 implies

a6 > 0. Thus A is either upper triangular or has the form


0 a2 a3 a4
0 a6 a7 a8
0 0 0 0
0 0 a15 0

with a6, a15 > 0.

Case 2. a9, a13 > 0. Then A2k0 (3, 3) =
∑

1≤i1,...,i2k0−1≤4
A(3, i1)A(i1, i2) · · ·A(i2k0−1, 3) = (A(3, 1)A(1, 3))k0 + · · · = 0

implies A(1, 3) = a3 = 0. A2k0 (4, 4) =
∑

1≤i1,...,i2k0−1≤4
A(4, i1)A(i1, i2) · · · A(i2k0−1, 4) = (A(4, 1)A(1, 4))k0 + · · · = 0

implies A(1, 4) = a4 = 0.
We assert that a2 = 0.To the contrary, assume a2 > 0.Then Ak0+1(3, 2) =

∑
1≤i1,...,ik0≤4

A(3, i1)A(i1, i2) · · ·A(ik0 , 2) =

A(3, 1)A(1, 2)A(2, 2)k0−1+· · · = 0 implies A(2, 2) = a6 = 0,A3k0 (3, 3) =
∑

1≤i1,...,i3k0−1≤4
A(3, i1)A(i1, i2) · · ·A(i3k0−1, 3) =
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(A(3, 1)A(1, 2)A(2, 3))k0+ · · · = 0 implies A(2, 3) = a7 = 0,A3k0 (4, 4) =
∑

1≤i1,...,i3k0−1≤4
A(4, i1)A(i1, i2) · · ·A(i3k0−1, 4) =

(A(4, 1)A(1, 2)A(2, 4))k0 + · · · = 0 implies A(2, 4) = a8 = 0. Thus a5 = a6 = a7 = a8 = 0 implies b4 = Ak0 (2, 2) =∑
1≤i1,...,ik0−1≤4

A(2, i1)A(i1, i2) · · ·A(ik0−1, 2) = 0,which is a contradiction.

Since a2 = a10 = a14 = 0, Ak0 (2, 2) =
∑

1≤i1,...,ik0−1≤4
A(2, i1)A(i1, i2) · · ·A(ik0−1, 2) > 0 implies A(2, 2) = a6 > 0.

Then Ak0+1(2, 1) =
∑

1≤i1,...,ik0≤4
A(2, i1)A(i1, i2) · · ·A(ik0 , 1) = A(2, 2)k0−1A(2, 3)A(3, 1) + A(2, 2)k0−1A(2, 4)A(4, 1) +

· · · = 0 implies A(2, 3) = a7 = 0 and A(2, 4) = a8 = 0. Thus A =


0 0 0 0
0 a6 0 0
a9 0 0 a12
a13 0 a15 0

 with a6, a9, a13 > 0 and

a12a15 = 0.
Case 3. a9 = 0, a13 > 0. Then A2k0 (4, 4) =

∑
1≤i1,...,i2k0−1≤4

A(4, i1)A(i1, i2) · · ·A(i2k0−1, 4) = (A(4, 1)A(1, 4))k0 + · · · =

0 implies A(1, 4) = a4 = 0. A3k0 (4, 4) =
∑

1≤i1,...,i3k0−1≤4
A(4, i1)A(i1, i2) · · · A(i3k0−1, 4) = (A(4, 1)A(1, 2)A(2, 4))k0 +

(A(4, 1)A(1, 3)A(3, 4))k0 + · · · = 0 implies A(1, 2)A(2, 4) = a2a8 = 0 and A(1, 3)A(3, 4) = a3a12 = 0. A4k0 (4, 4) =∑
1≤i1,...,i4k0−1≤4

A(4, i1)A(i1, i2) · · ·A(i4k0−1, 4) = (A(4, 1)A(1, 2)A(2, 3)A(3, 4))k0+· · · = 0 implies A(1, 2)A(2, 3)A(3, 4) =

a2a7a12 = 0.
Assume that a6 = 0. Since a12a15 = 0, b2

4 = A2k0 (2, 2) =
∑

1≤i1,...,i2k0−1≤4
A(2, i1)A(i1, i2) · · ·A(i2k0−1, 2) =

A(2, 3)A(3, 4)A(4, 1)A(1, 2) · · ·+A(2, 3)A(3, 4)A(4, 1)A(1, 3) · · ·+A(2, 3)A(3, 4)A(4, 3) · · ·+A(2, 4)A(4, 1)A(1, 2) · · ·+
A(2, 4)A(4, 1)A(1, 3)A(3, 4) · · ·+A(2, 4)A(4, 3)A(3, 4) · · · = a2a7a12a13 · · ·+a3a12a7a13 · · ·+a12a15a7 · · ·+a2a8a13 · · ·+
a3a12a8a13 · · · + a12a15a8 · · · = 0,which is a contradiction. Thus a6 > 0.

Then Ak0 (4, 2) =
∑

1≤i1,...,ik0−1≤4
A(4, i1)A(i1, i2) · · ·A(ik0−1, 2) = A(4, 1)A(1, 2)A(2, 2)k0−2+· · · = 0 implies A(1, 2) =

a2 = 0, Ak0 (2, 1) =
∑

1≤i1,...,ik0−1≤4
A(2, i1)A(i1, i2) · · ·A(ik0−1, 1) = A(2, 2)k0−2A(2, 4)A(4, 1) + · · · = 0 implies A(2, 4) =

a8 = 0. When a12 = 0, A =


0 0 a3 0
0 a6 a7 0
0 0 0 0

a13 0 a15 0

 with a6, a13 > 0. When a12 > 0, a3a12 = a12a15 = 0 implies

a3 = a15 = 0.Ak0+1(2, 1) =
∑

1≤i1,...,ik0≤4
A(2, i1)A(i1, i2) · · ·A(ik0 , 1) = A(2, 2)k0−2A(2, 3)A(3, 4)A(4, 1)+ · · · = 0 implies

A(2, 3) = a7 = 0. Thus A =


0 0 0 0
0 a6 0 0
0 0 0 a12

a13 0 0 0

with a6, a12, a13 > 0.

Case 4. a9 > 0, a13 = 0.A similar argument as in Case 3 shows that A =


0 0 0 a4
0 a6 0 a8
a9 0 0 a12
0 0 0 0

with a6, a9 > 0,

or A =


0 0 0 0
0 a6 0 0
a9 0 0 0
0 0 a15 0

with a6, a9, a15 > 0.

Now we can describe the eventually upper triangular nonnegative matrices of order 4 more clearly.

Theorem 4.6. Let A be a nonnegative matrix of order 4. Then A is eventually upper triangular if and only if A is
one of the following:
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(i) upper triangular;
(ii) nilpotent, and thus permutation similar to a strictly upper triangular matrix;

(iii) A =


a1 a2 a3 a4
0 a6 a7 a8
0 0 0 0
0 0 a15 0

 with a1, a6, a15 > 0, or A =


0 0 a3 a4
a5 0 a7 a8
0 0 a11 a12
0 0 0 a16

 with a5, a11, a16 > 0, or A =


a1 a2 a3 a4
0 0 0 a8
0 a10 0 a12
0 0 0 a16

 with a1, a10, a16 > 0;

(iv) A =


a1 a2 a3 a4
0 0 0 0
0 0 a11 0
0 a14 0 0

 with a1, a11, a14 > 0, or A =


0 0 0 a4
0 a6 0 a8
a9 0 0 a12
0 0 0 a16

 with a6, a9, a16 > 0, or A =


0 0 0 0
0 a6 a7 0
0 0 a11 0

a13 0 0 0

 with a6, a11, a13 > 0;

(v) A =


a1 a2 a3 a4
0 a6 a7 a8
0 a10 a11 a12
0 a14 a15 a16

 with a1 > 0 and the submatrix

 a6 a7 a8
a10 a11 a12
a14 a15 a16

 being nilpotent, or A =


a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
0 0 0 a16

 with a16 > 0 and the submatrix

 a1 a2 a3
a5 a6 a7
a9 a10 a11

 being nilpotent;

(vi) A =


0 a2 a3 a4
0 a6 a7 a8
0 0 0 0
0 0 a15 0

 with a6, a15 > 0, or A =


0 0 0 0
0 a6 0 0
a9 0 0 a12
a13 0 a15 0

 with a6, a9, a13 > 0 and a12a15 =

0, or A =


0 0 a3 0
0 a6 a7 0
0 0 0 0

a13 0 a15 0

 with a6, a13 > 0, or A =


0 0 0 0
0 a6 0 0
0 0 0 a12

a13 0 0 0

 with a6, a12, a13 > 0, or A =


0 0 0 a4
0 a6 0 a8
a9 0 0 a12
0 0 0 0

 with a6, a9 > 0, or A =


0 0 0 0
0 a6 0 0
a9 0 0 0
0 0 a15 0

 with a6, a9, a15 > 0;

(vii) A =


0 0 a3 a4
a5 0 a7 a8
0 0 a11 a12
0 0 0 0

 with a5, a11 > 0, or A =


0 a2 0 0
a5 0 0 0
0 0 a11 0

a13 a14 0 0

 with a11, a13, a14 > 0 and

a2a5 = 0, or A =


0 0 0 0
a5 0 a7 a8
0 0 a11 0

a13 0 0 0

 with a11, a13 > 0, or A =


0 a2 0 0
0 0 0 0
0 0 a11 0

a13 0 0 0

 with a2, a11, a13 > 0, or

A =


0 a2 a3 a4
0 0 0 0
0 0 a11 0
0 a14 0 0

 with a11, a14 > 0, or A =


0 0 0 0
a5 0 0 0
0 0 a11 0
0 a14 0 0

 with a5, a11, a14 > 0.
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Proof. Consider the four eigenvalues of A.We distinguish five cases.
Case 1. A has four nonzero eigenvalues. Then A is eventually upper triangular if and only if A is upper

triangular.
Case 2. A has four zero eigenvalues. Then A is eventually upper triangular if and only if A is nilpotent.

By Lemma 2.3 in [11], A is permutation similar to a strictly upper triangular matrix.
Case 3. A has three nonzero eigenvalues and a zero eigenvalue. By the Case 3 in the proof of Theorem

4.3, A is upper triangular.
Case 4. A has two nonzero eigenvalues and two zero eigenvalues. Suppose there exists a positive

integer k0 ≥ 2 such that Ak is upper triangular for all integers k ≥ k0.

If Ak0 =


b1 b2 b3 b4
0 b5 b6 b7
0 0 0 b8
0 0 0 0

with b1, b5 > 0,by the Case 4 in the proof of Theorem 4.3, A =


a1 a2 a3 a4
0 a6 a7 a8
0 0 a11 a12
0 0 a15 a16


with a1, a6 > 0, and the submatrix

[
a11 a12
a15 a16

]
is nilpotent. Since A is nonnegative, a11 = a16 = 0 and

a12a15 = 0. Thus A is upper triangular or has the first form in (iii).

If Ak0 =


0 b1 b2 b3
0 0 b4 b5
0 0 b6 b7
0 0 0 b8

 with b6, b8 > 0, a similar argument shows that A is upper triangular or has

the second form in (iii).

If Ak0 =


b1 b2 b3 b4
0 0 b5 b6
0 0 0 b7
0 0 0 b8

 with b1, b8 > 0, a similar argument shows that A is upper triangular or has

the third form in (iii).

If Ak0 =


b1 b2 b3 b4
0 0 b5 b6
0 0 b7 b8
0 0 0 0

with b1, b7 > 0,by the Case 4 in the proof of Theorem 4.3, A =


a1 a2 a3 a4
0 a6 a7 a8
0 a10 a11 a12
0 a14 a15 a16


with a1 > 0, and the submatrix

 a6 a7 a8
a10 a11 a12
a14 a15 a16

 satisfies

 a6 a7 a8
a10 a11 a12
a14 a15 a16


k0

=

 0 b5 b6
0 b7 b8
0 0 0

 . By the Case

4 in the proof of Theorem 3.4,

 a6 a7 a8
a10 a11 a12
a14 a15 a16

 is upper triangular or has the form

 0 0 0
0 a11 0

a14 0 0

 with

a11, a14 > 0. Thus A is upper triangular or has the first form in (iv).

If Ak0 =


0 b1 b2 b3
0 b4 b5 b6
0 0 0 b7
0 0 0 b8

 with b4, b8 > 0, a similar argument shows that A is upper triangular or has

the second form in (iv).

If Ak0 =


0 b1 b2 b3
0 b4 b5 b6
0 0 b7 b8
0 0 0 0

 with b4, b7 > 0, by Lemma 4.4, A is upper triangular or has the third form in

(iv).
Case 5. A has a nonzero eigenvalue and three zero eigenvalues. Suppose there exists a positive integer

k0 ≥ 2 such that Ak is upper triangular for all integers k ≥ k0.



C. Ma et al. / Filomat 37:26 (2023), 8867–8885 8883

If Ak0 =


b1 b2 b3 b4
0 0 b5 b6
0 0 0 b7
0 0 0 0

with b1 > 0, or Ak0 =


0 b1 b2 b3
0 0 b4 b5
0 0 0 b6
0 0 0 b7

with b7 > 0, by the Case 5 in the proof

of Theorem 4.3, A is upper triangular or has the form (v).

If Ak0 =


0 b1 b2 b3
0 b4 b5 b6
0 0 0 b7
0 0 0 0

with b4 > 0, by Lemma 4.5, A is upper triangular or has the form (vi).

If Ak0 =


0 b1 b2 b3
0 0 b4 b5
0 0 b6 b7
0 0 0 0

 with b6 > 0, using a similar argument as in the proof of Lemma 4.5, we can

show that A is upper triangular or has the form (vii).
Conversely, when A has any one of the forms (i)–(vii), a direct computation shows that A is eventually

upper triangular. This completes the proof.

Obviously, the eventually lower triangular complex (nonnegative) matrices of order 4 can be obtained
from Theorem 4.3 (Theorem 4.6) by taking the transpose.

5. Eventually triangular matrices of order n and future work

The eventually triangular matrices of orders n = 2, 3 and 4 have been completely characterized. We can
see that many cases have been discussed when n = 4, and the computations would be more complicated
as n increases. In some cases, for example, when the matrix of order n has exactly n, n − 1, 1 and 0 zero
eigenvalue(s), respectively, the results concerning the eventually triangular matrices of order n ≤ 4 can be
expanded to that of the general order n.

Theorem 5.1. Let A be a complex matrix of order n. Then the following statements hold.
(i) When A has n zero eigenvalues, A is eventually upper triangular if and only if A is nilpotent;
(ii) When A has n nonzero eigenvalues, A is eventually upper triangular if and only if A is upper triangular;
(iii) When A has n − 1 nonzero eigenvalues and a zero eigenvalue, A is eventually upper triangular if and only if

A is upper triangular;
(iv) When A has n − 1 zero eigenvalues and a nonzero eigenvalue, A is eventually upper triangular if and only if

A is one of the following:

(1) A =


a b1 · · · bn−1

0
...
0

N

 or


N

b1
...

bn−1

0 · · · 0 a

 ,where a , 0 and N is a nilpotent matrix

of order n − 1;

(2) A = Si


a 0 · · · 0
0
...
0

N

S−1
i , where a , 0, N is a nilpotent matrix of order n − 1, and Si =
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b1 1 0 · · · 0 0 0 · · · 0
b2 0 1 · · · 0 0 0 · · · 0
...

...
...
. . .

...
...

...
. . .

...
bi−1 0 0 · · · 1 0 0 · · · 0

1 0 0 · · · 0 bi bi+1 · · · bn−1
0 0 0 · · · 0 1 0 · · · 0
0 0 0 · · · 0 0 1 · · · 0
...

...
...
. . .

...
...

...
. . .

...
0 0 0 · · · 0 0 0 · · · 1


, i = 2, 3, . . . ,n − 1.

Proof. (i) and (ii) are obvious.
(iii) This can be shown in a similar way that the Case 3 in the proof of Theorem 4.3 is being proved.
(iv) Suppose there exists a positive integer k0 ≥ 2 such that Ak is upper triangular for all integers k ≥ k0.

Then Ak0 (i, i) , 0 for some i with 1 ≤ i ≤ n, and Ak0 ( j, j) = 0 for all j , i with 1 ≤ j ≤ n.We distinguish three
cases.

Case 1. Ak0 (1, 1) , 0.Using a similar argument as the Case 5 in the proof of Theorem 4.3, we can deduce
that A has the first form in (1).

Case 2. Ak0 (n,n) , 0.Using a similar argument as the Case 5 in the proof of Theorem 4.3, we can deduce
that A has the second form in (1).

Case 3. Ak0 (i, i) , 0 for some i with 2 ≤ i ≤ n − 1. Let a be the only nonzero eigenvalue of A.
Since k0 + n − 3 ≥ n − 1, the Jordan canonical form of Ak0+n−3, denoted as J(Ak0+n−3), has the form

ak0+n−3 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 . Thus there exists a nonsingular matrix Si of order n such that (S−1
i ASi)k0+n−3 =

S−1
i Ak0+n−3Si =


ak0+n−3 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 . Since a , 0, S−1
i ASi has the form


a 0 · · · 0
0
...
0

N

 , where N

is a nilpotent matrix of order n − 1.
Next we give the matrix Si. By Lemma 3.1, Ak0+n−3(i, i) , 0 and Ak0+n−3( j, j) = 0 for all j , i. It is

clear that Ak0+n−3(i, i) = ak0+n−3 is the only nonzero eigenvalue of Ak0+n−3. Since rank(Ak0+n−3) = 1, each
2 × 2 minor of Ak0+n−3 is zero. For r = 1, 2, . . . ,n, let er be the column vector of dimension n whose only
nonzero component is the r-th component equal to 1. A direct computation shows that Ak0+n−3 has the
eigenvectors s1 =

Ak0+n−3(1,i)
ak0+n−3 e1 +

Ak0+n−3(2,i)
ak0+n−3 e2 + · · · +

Ak0+n−3(i−1,i)
ak0+n−3 ei−1 + ei, s2 = e1, s3 = e2, . . . , si = ei−1, si+1 =

−
Ak0+n−3(i,i+1)

ak0+n−3 ei+ei+1, si+2 = −
Ak0+n−3(i,i+2)

ak0+n−3 ei+ei+2, . . . , sn = −
Ak0+n−3(i,n)

ak0+n−3 ei+en corresponding to the eigenvalues

ak0+n−3, 0, . . . , 0. Then Si = [s1, s2, . . . , sn]. Let b1 =
Ak0+n−3(1,i)

ak0+n−3 , b2 =
Ak0+n−3(2,i)

ak0+n−3 , . . . , bi−1 =
Ak0+n−3(i−1,i)

ak0+n−3 , bi =

−
Ak0+n−3(i,i+1)

ak0+n−3 , bi+1 = −
Ak0+n−3(i,i+2)

ak0+n−3 , . . . , bn−1 = −
Ak0+n−3(i,n)

ak0+n−3 .
Conversely, when A has the form (1) or (2), a direct computation shows that A is eventually upper

triangular. This completes the proof.

When an eventually triangular matrix A of order n has exactly m zero eigenvalues with 2 ≤ m ≤ n − 2,
it seems difficult to give a complete characterization of A. Although the results for n = 4 might shed some
light on the solutions for large n, it is necessary to develop more useful techniques to study this problem.

For an eventually triangular matrix A of order n, it is also interesting to determine the positive integer
k0 such that Ak is triangular for all integers k ≥ k0. When A has exactly m zero eigenvalues, by the
characterization of the eventually triangular matrices of orders 2, 3 and 4 in Theorems 2.1, 3.3 and 4.3, we
can verify that Ak must be triangular for all integers k ≥ m. We suspect that this statement holds for the
eventually triangular matrices of order n.
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Problem 5.2. Let A be an eventually triangular matrix of order n, and suppose A has exactly m zero eigenvalues. Is
it true that Ak must be triangular for all integers k ≥ m?

As a generalization of matrix theory, topics on tensors have drawn much people’s attention in recent
years [5, 14, 17]. It is natural to consider those tensors whose powers eventually have certain properties.
We leave them for further study.
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