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Exponential stability of delayed neutral impulsive stochastic
integro-differential systems perturbed by fractional Brownian motion

and Poisson jumps

Youssef Benkabdia,∗, El Hassan Lakhela

aCadi Ayyad University, National School of Applied Sciences, 46000 Safi, Morocco

Abstract. In this manuscript, we investigate the existence, uniqueness, and exponential stability of a
delayed neutral impulsive stochastic integro-differential equation driven by fractional Brownian motion
in a separable Hilbert space and Poisson jumps. The results are obtained, using the theory of resolvent
operators, stochastic analysis, and a fixed-point technique. Lastly, an example is provided to show the
validity of the obtained results.

1. Introduction

The theory of functional differential equations have been widely applied to modeling real phenomena
of quite different natures (such as physics, biology, mechanics, medicine, control theory, information theory,
chemistry, economic, etc). A defining property of functional differential equations is that the evolution rate
of the processes described by these equations depends on the past history. Moreover, impulsive functional
differential equations have been extensively developed to describe evolutionary processes in which the
values of the parameters undergo short-term rapid changes, whose duration is negligible in contrast with
the length of an entire evolution. Besides, Random perturbation are common in actual systems, which
might be caused by unexpected environmental changes, stochastic failures, repairs of components, and so
on. These random influences can result in a variety of complicated dynamic performances. As a result,
it is important to include the stochastic impact in describing such systems. Such systems are frequently
modelled by taking into account the theory of stochastic differential equations.

As an important and practical self-similar stochastic process, fractional Brownian motion (fBm) with
Hurst index H ∈ (0, 1) is gaussian, has stationary increments, and exhibits long range dependence for
1/2 < H < 1. It has been extensively used to model dynamic random phenomena in diverse fields such as
physics, finance, biology, etc. Driven by fBm, stochastic differential equations has gained a lot of attention.
An existence and asymptotic behavior of solutions result to stochastic delay evolution equations perturbed
by a fBm have been studied by Caraballo et al. [8]. Boufoussi et al. [6] have proved the existence,
uniqueness, and exponential stability of mild solution for neutral stochastic differential equations with
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finite delay driven by fBm. Recently, Benkabdi et al. [4] have established some new criteria ensuring
the controllability of a class of retarded time-dependent neutral stochastic integro-differential equations
driven by fBm. Very recently, Dhayal et al. [12] have derived a set of sufficient conditions guaranteeing
the existence, uniqueness, and stability of mild solutions and controllability result for a class of non-
instantaneous impulsive stochastic differential equations driven by mixed fBm. For more results on the
topic, we refer to [5, 11, 19, 24] and references therein.

In reality, however, where the path continuity assumption does not appear suitable for the model (for
instance, sudden price changes due to market crushes, epidemics, earthquake, etc), stochastic processes
with jumps should be included in modeling such systems. Generally, these jump models are based on the
Poisson random measure. Such systems have right-continuous sample paths with left limits. The study
of stochastic differential equations with jumps has recently attracted more attention. Taniguchi et al.[23]
have established the existence and asymptotic behaviour of mild solution to stochastic evolution equations
with infinite delays driven by Poisson jumps. Lakhel et al.[17] have proved the existence, uniqueness and
asymptotic behavior of mild solutions for a class of neutral functional stochastic differential equations with
Poisson jumps. Very recently, the exponential behavior of a class of neutral impulsive stochastic integro-
differential equations driven by Poisson jumps and Rosenblatt process have been studied by kasinathan et
al. [14]. For more results, we refer to [1–3, 5, 7, 18, 22] and references therein.

The objective of this paper is to investigate the existence and exponential stability of the unique solution
of the following system

d
[
x(t) − Γ1(t, xt,

∫ t

0
µ1(t, s, xs)ds)

]
=
[
A
[
x(t) − Γ1(t, xt,

∫ t

0
µ1(t, s, xs)ds)

]
+ Γ2(t, xt,

∫ t

0
µ2(t, s, xs)ds)

]
dt

+
[ ∫ t

0
B(t − s)

[
x(s) − Γ1(s, xs,

∫ s

0
µ1(s, r, xr)dr)

]
ds
]
dt

+

∫
U

f (t, xt, η)Ñ(dt, dη) + v(t)dBH(t), t ∈ J := [0,T], t , tk,

∆x|t=tk = x(t+k ) − x(t−k ) = Ik(x(t−k )), k = 1, ...,m, m ∈N
x0 = φ ∈ Ca

(1)

where A is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators,
(S(t))t≥0, in a Hilbert space X; BH is a fractional Brownian motion with Hurst parameter H > 1

2 on a real and
separable Hilbert space Y; B(t) is a closed linear operator on X with Domain D(B(t)) ⊃ D(A). For any con-
tinuous function x and t ∈ J, xt : (−τ, 0]→ X, xt(r) = x(t+ r), and Γ1,Γ2 : J×Ca×X→ X, µ1, µ2 : D×Ca→ X,
v : [0,∞) → L0

2(Y,X), and f : J × Ca ×U → X are appropriate functions and will be specified later, where
L

0
2(Y,X) denotes the space of all Q-Hilbert-Schmidt operators from Y into X, D = {(t, s) ∈ I×I : s < t}, andCa =
{φ : [−τ, 0] −→ X, φ is càdlàg everywhere except a finit number of points τi at which φ(τ−i ), φ(τ+i ) exist }.
For φ ∈ Ca, ∥φ∥Ca = sup

−τ≤s≤0(E∥φ(s)∥2)
1
2 < +∞. Moreover, the fixed moments of time tk satisfy

0 < t1 < t2 < ... < tm < T. ∆x(tk) represents the leap in the state x at time tk with I(.) : X −→ X deter-
mining the size of the leap.

Although there are numerous results concerning the solvability and stability of stochastic differential
equations, to our knowledge, no research has considered the existence, uniqueness, and exponential stability
of delayed impulsive neutral stochastic integro-differential equations driven by fBm and Poisson jumps.
To illuminate this uncharted area, we will attempt to research this issue for the first time in this work.

The outline of this paper is as follows: Some preliminary results and notations are provided in section
2. Section 3 demonstrates the existence, uniqueness, and stability of system (1) by employing a fixed point
strategy. Section 4 gives an illustrative example of our result. Lastly, section 5 concludes the paper.
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2. Preliminaries

For more information on the subjects covered in this section, we refer to [13, 16, 20].
Let (U,B, ν(du)) be a σ-finite measurable space, given a Poisson point process (q(t))t>0 which is defined

on a complete probabilty space (Ω,F ,P) with values in U and with characteristic measure ν (see [16]).
N(dt, du) denote the counting random measure associated to q(·),i.e N(t,Λ) := N([0, t),Λ) =

∑
s∈(0,t] 1Λ(q(s))

such that E(N(t,Λ)) = tν(Λ) for Λ ∈ B. Define Ñ(dt, du) := N(dt, du) − dtν(du), the Poisson martingale
measure generated by q(t).

2.1. Fractional Brownian motion.
Let given a complete probability space (Ω,F ,P). A standard fractional Brownian motion (fBm) {βH(t), t ∈

R} with Hurst parameter H ∈ (0, 1) is a zero mean Gaussian process with continuous sample paths such
that

RH(t, s) = E[βH(t)βH(s)] =
1
2

(
t2H + s2H

− |t − s|2H
)
, s, t ∈ R. (2)

Remark 2.1. In the case H > 1
2 , it follows from [20] that the second partial derivative of the covariance function

∂RH

∂t∂s
= αH |t − s|2H−2,

where αH = H(2H − 1), is integrable, and we can write

RH(t, s) = αH

∫ t

0

∫ s

0
|u − v|2H−2dudv. (3)

Moreover, βH has the following Wiener integral representation:

βH(t) =
∫ t

0
KH(t, s)dβ(s), (4)

where β = {β(t) : t ∈ [0,T]} is a Wiener process and kernel KH(t, s) is the kernel given by

KH(t, s) = cHs
1
2−H
∫ t

s
(u − s)H− 3

2 uH− 1
2 du,

for t > s, where cH =
√

H(2H−1)
1(2−2H,H− 1

2 )
and 1(·, ·) denotes the Beta function. We take KH(t, s) = 0 if t ≤ s.

We will denote byH the reproducing kernel Hilbert space of the fBm. Precisely,H is the closure of set
of indicator functions {1[0;t] : t ∈ [0,T]}with respect to the scalar product

⟨1[0,t], 1[0,s]⟩H = RH(t, s).

The mapping 1[0,t] → βH(t) can be extended to an isometry between H and the first Wiener chaos and we
will denote by βH(φ) the image of φ by the previous isometry.

Recall that for ψ,φ ∈ H , the scalar product inH is given by

⟨ψ,φ⟩H = H(2H − 1)
∫ T

0

∫ T

0
ψ(s)φ(t)|t − s|2H−2dsdt.

Consider the operator K∗H fromH to L2([0,T]) defined by

(K∗Hφ)(s) =
∫ T

s
φ(r)

∂KH

∂r
(r, s)dr.
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The proof of the fact that K∗H is an isometry between H and L2([0,T]) can be found in [20]. Moreover, for
any φ ∈ H , we have

βH(φ) =
∫ T

0
(K∗Hφ)(t)dβ(t).

It follows from [20] that the elements ofH are distributions of negative order. In order to obtain a space
of functions contained inH , we consider the linear space |H| generated by the measurable functionsψ such
that

∥ψ∥2
|H|

:= αH

∫ T

0

∫ T

0
|ψ(s)||ψ(t)||s − t|2H−2dsdt < ∞.

Note that |H| is Banach space with the norm ∥.∥|H| and we have the following result.

Lemma 2.2 (Nualart [20]). Let H >
1
2

, the following inclusions hold

L2([0,T]) ⊆ L1/H([0,T]) ⊆ |H| ⊆ H ;

and for any φ ∈ L2([0,T]),

∥ψ∥2
|H|
≤ 2HT2H−1

∫ T

0
|ψ(s)|2ds.

Let X and Y be two real, separable Hilbert spaces and let L(Y,X) be the space of bounded linear operator
from Y to X. For the sake of convenience, we shall use the same notation to denote the norms in X,Y and
L(Y,X). Let Q ∈ L(Y,Y) be an operator defined by Qen = λnen with finite trace trQ =

∑
∞

n=1 λn < ∞. where
λn ≥ 0 (n = 1, 2...) are non-negative real numbers and {en} (n = 1, 2...) is a complete orthonormal basis in Y.
We define the infinite dimensional fBm on Y with covariance Q as

BH(t) = BH
Q(t) =

∞∑
n=1

√
λnenβ

H
n (t),

where βH
n are real, independent fBm’s. This process is Gaussian, it starts from 0, has zero mean and

covariance:
E⟨BH(t), x⟩⟨BH(s), y⟩ = RH(s, t)⟨Q(x), y⟩ for all x, y ∈ Y and t, s ∈ [0,T].

In order to define Weiner integrals with respect to the Q-fBm, we introduce the space L0
2 := L0

2(Y,X) of all
Q-Hilbert-Schmidt operators ψ : Y→ X. We recall that ψ ∈ L(Y,X) is called a Q-Hilbert-Schmidt operator,
if

∥ψ∥2
L

0
2

:=
∞∑

n=1

∥

√
λnψen∥

2 < ∞,

and that the space L0
2 equipped with the inner product ⟨φ,ψ⟩L0

2
=
∑
∞

n=1⟨φen, ψen⟩ is a separable Hilbert
space.
Let ψ(s); s ∈ [0,T] be a function with values in L0

2(Y,X), such that

∞∑
n=1

∥K∗ψQ
1
2 en∥

2
L2([0,T]) < ∞.

The Weiner integral of ψ with respect to BH is defined by

∫ t

0
ψ(s)dBH(s) =

∞∑
n=1

∫ t

0

√
λnψ(s)endβH

n (s) =
∞∑

n=1

∫ t

0

√
λn(K∗H(ϕen)(s)dβn(s). (5)

We conclude by stating the following lemma which is critical in the proof of our result, see for example [6].
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Lemma 2.3. If ψ : [0,T] → L0
2(Y,X) satisfies

∫ T

0 ∥ψ(s)∥2
L

0
2
ds < ∞, then (5) is well-defined as an X-valued random

variable and

E∥

∫ t

0
ψ(s)dBH(s)∥2 ≤ 2Ht2H−1

∫ t

0
∥ψ(s)∥2

L
0
2
ds.

2.2. Resolvent operator.

For better comprehension of the subject we shall introduce some definitions, hypothesis and results (see
[13, 15]). Throughout this work we assume that X is a Banach space, A and B(t) are closed linear operators
on X, and Y denotes the Banach space D(A) equipped with the graph norm defined by

∥y∥Y = ∥Ay∥ + ∥y∥, for y ∈ Y.

We consider the following abstract integro-differential problem
du(t)

dt
= Au(t) +

∫ t

0 B(t − s)u(s) ds,

u(0) = x ∈ X.
(6)

Definition 2.4. A one-parameter family of bounded linear operators (R(t))t≥0 on X is called a resolvent
operator of (6) if the following conditions are satisfied.

(a) Function R(·) : [0,∞)→ L(X) is strongly continuous and R(0)x = x for all x ∈ X.

(b) For x ∈ D(A), R(·)x ∈ C([0,∞), [D(A)]) ∩ C1([0,∞),X), and

dR(t)x
dt

= AR(t)x +
∫ t

0
B(t − s)R(s)xds, (7)

dR(t)x
dt

= R(t)Ax +
∫ t

0
R(t − s)B(s)xds, (8)

for every t ≥ 0,

(c) There exists some constants M > 0, δ such that ∥R(t)∥ ≤Meδt for every t ≥ 0.

Definition 2.5. [13, Theorem 4.1] A resolvent operator (R(t))t≥0 of (6) is called exponentially stable if there
exists positive constants M, β such that ∥R(t)∥ ≤Me−βt.

Resolvent operators are crucial in studying integro-differential equations. So it is important to know
when the linear system (6) has a resolvent operator. In this work, we assume that the following two
assumptions are satisfied.

(A.1) A is the infinitesimal generator of a strongly continuous semigroup on X.

(A.2) For all t ≥ 0, B(t) is a closed linear operator from D(A) to X, and B(t) ∈ L(Y,X). For any y ∈ Y, the map
t −→ B(t)y is bounded, differentiable and the derivative B′(t)y is bounded and uniformly continuous
on R+ .

Theorem 2.6. [13, Theorem 3.7 ] Assume that (A.1) and (A.2) hold. Then there exists a unique resolvent operator
of the Cauchy problem (6).
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In the remaining of this section we discuss the existence of solutions to


du(t)

dt
= Au(t) +

∫ t

0 B(t − s)u(s) ds + f (t), t ≥ 0,

u(0) = u0 ∈ X.
(9)

where f : [0,+∞) −→ X is a continuous function. First, we give the definition of strict solution.

Definition 2.7. A function u : [0,+∞)→ X, is called a strict solution of (9) on [0,+∞) if u ∈ C([0,+∞), [D(A)])∩
C1([0,+∞),X), and u satisfies (9) on [0,+∞).

Theorem 2.8 ([13, Theorem 2.5]). Let u0 ∈ X. Assume that f ∈ C([0,+∞),X) and u(·) is a strict solution of (9)
on [0,+∞). Then

u(t) = R(t)u0 +

∫ t

0
R(t − s) f (s) ds, t ∈ [0,+∞). (10)

Motivated by (10), we introduce the concept of mild solution.

Definition 2.9. A function u ∈ C([0,+∞),X) is called a mild solution of (9) if

u(t) = R(t)u0 +

∫ t

0
R(t − s) f (s) ds, t ∈ [0,+∞).

3. Main result

In this section, we prove the existence, uniqueness, and stability of system (1). To obtain our result, we
use the theory of resolvent operator and a fixed point theorem. First, we introduce the concept of mild
solution for equation (1).

Definition 3.1. A stochastic process x(·) : [−τ,T] −→ X is a mild solution of (1) if

1. x(·) has càdlàg path on [0,T] − {t1, t2, ..., tm}, and
∫ T

0 ∥x(t)∥2dt < ∞ almost surely, and ∆x|t=tk = Ik(x(t−k )), k =
1, ...,m;

2. x(t) = φ(t) on [−τ, 0];
3. for every 0 ≤ t ≤ T, the process x(t) satisfies

x(t) = R(t)
[
φ(0) − Γ1(0, φ, 0)

]
+ Γ1(t, xt,

∫ t

0 µ1(t, s, xs)ds)

+
∫ t

0 R(t − s)Γ2(s, xs,
∫ s

0 µ2(s, τ, xτ)dτ)ds +
∫ t

0 R(t − s)v(s)dBH(s)

+
∫ t

0

∫
U

R(t − s)1(s, xs, η)Ñ(dt, dη)

+
∑

0<tk<tR(t − tk)Ik(x(t−k )), P − a.s.

(11)

To establish our main result, we introduce the following assumptions.

(H .1) The resolvent operator (R(t))t≥0 given by (A.1) and (A.2) satisfies the following condition:

∥R(t)∥ ≤Me−λt for t ≥ 0, where M ≥ 1 and λ > 0.

(H .2) The mapping Γi : J × Ca × X→ X, i = 1, 2, satisfies the following conditions.
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(i) The function Γ1 is continuous in the quadratic mean sense, i.e for x1, x2 ∈ Ca, y1, y2 ∈ X

lim
t−→s
E∥Γ1(t, x1, y1) − Γ1(s, x2, y2)∥2 = 0.

(ii) There exist positive constants γi, i = 1, 2 such that for t ∈ J, x1, x2 ∈ Ca, y1, y2 ∈ X

E∥Γi(t, x1, y1) − Γi(t, x2, y2)∥2 ≤ γi[∥x1 − x2∥
2
Ca + E∥y1 − y2∥

2],

and Γi(t, 0, 0) = 0.

(H .3) The functions µi : D × Ca → X, i = 1, 2 satisfies the following condition. There exists a constant
δi > 0, i = 1, 2, such that for x1, x2 ∈ Ca we have

E∥

∫ t

0
[µi(t, s, x1) − µi(t, s, x2)]ds∥2 ≤ δi∥x1 − x2∥

2
Ca, t ∈ J,

and µi(t, s, 0) = 0, for (t, s) ∈ D.

(H .4) There exist a positive constant k > 0 such that, for all t ∈ J and x, y ∈ Ca

E

∫
U

∥ f (t, x, η) − f (t, y, η)∥2ν(dη) ≤ k∥x − y∥2
Ca,

and f (t, 0, η) = 0, for η ∈ U.

(H .5) The function v : [0,∞)→ L0
2(Y,X) satisfies∫ T

0
e2λs
∥v(s)∥L0

2(Y,X)ds < ∞,∀T > 0.

(H .6) The impulses functions Ik, k = 1, 2, ...,m, satisfy the following conditions. There exist positive con-
stants Mk, such that E∥Ik(y1) − Ik(y2)∥2 ≤MkE∥y1 − y2∥

2 for all y1, y2 ∈ X, and Ik(0) = 0 .

Next, we prove the paper’s main result.

Theorem 3.2. Suppose the hypothesesH .1 −H .6 are satisfied. Moreover, the initial value φ satisfies

E∥φ(t)∥2 ≤M0∥φ∥
2
Cae−bt, −τ ≤ t ≤ 0,

for some M0 > 0 and b > 0, and

4
(
γ1(1 + δ1) +M2γ2(1 + δ2)λ−2 +M2k(2λ)−1 +mM2

( m∑
i=1

Mk

))
< 1. (12)

Then, there exist a unique mild solution of system (1). moreover, it exponentially decays to zero in mean square, i.e,
there exist a pair of positive constants α < λ and M∗ =M∗(φ, α) such that

E∥x(t)∥2 ≤M∗e−αt

Proof. For a fixed T > 0, letCaT be the space of càdlàg processes y(s) on [0,T]−{t1, t2, ..., tm} such that y(t−i ) and

y(t+i ) exist, and y(s) = φ(s), s ∈ [−τ, 0], equipped with the supremum norm ∥y∥CaT = supθ∈[−τ,T]

(
E∥y(θ)∥2

)1/2
.

Assume further that there exist some constants b > 0 and M∗ =M∗(φ, b) > 0 such that

E∥x(t)∥2 ≤M∗e−bt. (13)
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It is routine to check that CaT is a Banach space endowed with the norm ∥.∥CaT . Define the operator Π on
CaT by

Π(x)(t) =



φ(t), if t ∈ [−τ, 0],

R(t)
[
φ(0) − Γ1(0, φ, 0)

]
+ Γ1(t, xt,

∫ t

0 µ1(t, s, xs)ds)

+
∫ t

0 R(t − s)Γ2(s, xs,
∫ s

0 µ2(s, τ, xτ)dτ)ds +
∫ t

0 R(t − s)v(s)dBH(s)

+
∫ t

0

∫
U

R(t − s) f (s, xs, η)Ñ(dt, dη)

+
∑

0<tk<tR(t − tk)Ik(x(t−k )), if t ∈ J.

Thus it is clear that proving the existence of a unique mild solution to equation (1), which exponentially
decays to zero in mean square, is equivalent to finding a unique fixed point of the operator Π. We will
provide the proof in the steps that follow.
Step 1: We verify that Π(x)(t) is a càdlàg process. Let t ∈ J and h be sufficiently small, then for all x ∈ CaT,
we have
E∥Π(x)(t + h) −Π(x)(t)∥2 ≤ 6E∥[R(t + h) − R(t)]

(
φ(0) − Γ1(0, φ, 0)

)
∥

2

+6E∥Γ1(t + h, xt+h,
∫ t+h

0 µ1(t + h, s, xs)ds)

−Γ1(t, xt,
∫ t

0 µ1(t, s, xs)ds)∥2

+6E∥
∫ t+h

0 R(t + h − s)Γ2(s, xs,
∫ s

0 µ2(s, η, xη)dη)ds

−

∫ t

0 R(t − s)Γ2(s, xs,
∫ s

0 µ2(s, η, xη)dη)ds∥2

+6E∥
∫ t+h

0 R(t + h − s)v(s)dBH(s)

−

∫ t

0 R(t − s)v(s)dBH(s)∥2

+6E∥
∫ t+h

0 R(t + h − s)
∫
U

f (s, xs, η)Ñ(dt, dη)

−

∫ t

0 R(t − s)
∫
U

f (s, xs, η)Ñ(dt, dη)∥2

+6E∥
∑

0<tk<t+hR(t + h − tk)Ik(x(t−k ))

−
∑

0<tk<tR(t − tk)Ik(x(t−k ))∥2

= 6
∑6

i=1E∥Fi(h)∥2.

By Definition 2.4, we have

lim
h→0

(R(t + h) − R(t))
(
φ(0) − Γ1(0, φ, 0)

)
= 0.

And from conditionH .1, we get

E∥(R(t + h) − R(t))
(
φ(0) − Γ1(0, φ, 0)

)
∥ ≤Me−λt(e−λh + 1)E∥

(
φ(0) − Γ1(0, φ, 0)

)
∥.

Then using the Lebesgue dominated theorem, we obtain

lim
h→0
E∥F1(h)∥2 = 0.
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From condition (i) inH .2, we conclude that

lim
h→0
E∥F2(h)∥2 = 0.

For the third terme F3(h), we have

∥F3(h)∥ ≤ ∥
∫ t

0 [R(t + h − s) − R(t − s)]Γ2(s, xs,
∫ s

0 µ2(s, τ, xτ)dτ)ds∥

+∥
∫ t+h

t R(t + h − s)Γ2(s, xs,
∫ s

0 µ2(s, τ, xτ)dτ)ds∥

= ∥F31(h)∥ + ∥F32(h)∥.

By using Holder’s inequality, we get

E∥F31(h)∥2 ≤ t
∫ t

0
E∥[R(t + h − s) − R(t − s)]Γ2(s, xs,

∫ s

0
µ2(s, τ, xτ)dτ)∥2ds.

By using conditionsH .1–H .3, one has that

E∥[R(t + h − s) − R(t − s)]Γ2(s, xs,
∫ s

0 µ2(s, τ, xτ)dτ)∥2

≤ 2M2e−2λ(t−s)(e−2λh + 1)γ2(1 + δ2) sup
−τ≤s≤T E∥x(s)∥2.

Then by using Definition 2.4 and by applying the Lebesgue dominated theorem, we obtain

lim
h→0
E∥F31(h)∥2 = 0.

Through the use ofH .1–H .2 along with Holder’s inequality, we get

E∥F32(h)∥2 ≤M2(2λ)−1(1 − e−2λh)γ2(1 + δ2) sup
−τ≤s≤T E∥x(s)∥2,

therefore
lim
h→0
E∥F3(h)∥2 = 0.

Moreover, we have

∥F4(h)∥ ≤

∥∥∥∥∥∥
∫ t

0
(R(t + h − s) − R(t − s))v(s)dBH(s)

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∫ t+h

t
R(t + h − s)v(s)dBH(s)

∥∥∥∥∥∥
≤ ∥F41(h)∥ + ∥F42(h)∥.

From Lemma 2.3, we get that

E ∥F41(h)∥2 ≤ 2Ht2H−1
∫ t

0
∥(R(t + h − s) − R(t − s))v(s)∥2

L2
ds.

Since R(t) is strongly continuous and by using conditionH .1 we conclude, by the dominated convergence
theorem that,

lim
h→0
E ∥F41(h)∥2 = 0.

Again by virtue of Lemma 2.3 , we obtain that

E ∥F42(h)∥2 ≤ 2Hh2H−1
∫ t+h

t
M2e−2λ(t+h−s)

∥v(s)∥2
L2

ds

≤ 2M2Hh2H−1
∫ t+h

t
e2λs
∥v(s)∥2

L2
ds −→ 0 as h→ 0.
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By assumptionH .1, we get

E∥F5(h)∥2 ≤ 2E

∥∥∥∥∥∥
∫ t

0
[R(t + h − s) − R(t − s)]

∫
U

f (s, xs, η)Ñ(ds, dη)

∥∥∥∥∥∥2
+ 2E

∥∥∥∥∥∥
∫ t+h

t
R(t + h − s)

∫
U

f (s, xs, η)Ñ(ds, dη)

∥∥∥∥∥∥
2

≤ 4M2[e−2λh + 1]
∫ t

0

∫
U

e−2λ(t−s)E∥ f (s, xs, η)∥2ν(dη)ds

+ 2M2e−2λh
∫ t+h

t

∫
U

e−2λ(t−s)E∥ f (s, xs, η)∥2ν(dη)ds,

(14)

from assumptionH .5, we have

∫ t

0

∫
U

e−2λ(t−s)E∥ f (s, xs, η)∥2ν(dη)ds ≤

∫ t

0
e−2λ(t−s)k∥xs∥

2
Cads

≤ k sup
−τ≤s≤T

E∥x(s)∥2(2λ)−1(1 − e−2λt)

:= K.
(15)

Using the Lebesgue dominated theorem along with the continuous property of the resolvent operator
and the inequalities (14) and (15), we obtain that

lim
h→0
E∥F5(h)∥2 = 0.

Finally, we have

E∥F6(h)∥2 ≤ 2E
∥∥∥∑0<ti<t(R(t + h − ti) − R(t − ti))Ii(x(t−i ))

∥∥∥2
+2E

∥∥∥∑t≤ti<t+h R(t + h − ti)Ii(x(t−i ))
∥∥∥2 .

From conditionH .1 andH .6, we have

E
∥∥∥(R(t + h − ti) − R(t − ti))Ii(x(t−i ))

∥∥∥2
≤M2[e−2λh

− 1]e−2λ(t−s)Mk sup
−τ≤s≤T

E∥x(s)∥2,

and

E
∥∥∥R(t + h − ti)Ii(x(t−i ))

∥∥∥2 ≤M2e−2λ(t+h−s)Mk sup
−τ≤s≤T

E∥x(s)∥2.

So, we obtain that

E ∥F6(h)∥2 → 0 as h→ 0.

The above arguments show that limh→0E∥Π(x)(t+h)−Π(x)(t)∥2 = 0. Therefore, we conclude that t 7−→ Π(x)(t)
is càdlàg on J − {t1, t2, ..., tm} in the L2-sense.
Step 2: In this step, we show that Π(CaT) ⊂ CaT. Let x ∈ CaT then there exist some constants b > 0 and
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M∗ =M∗(φ, b) > 0 such that for all t ∈ J, E∥x(t)∥2 ≤M∗e−bt, and we have

E∥Π(x)(t)∥2 ≤ 6E∥R(t)
(
φ(0) − Γ1(0, φ, 0)

)
∥

2 + 6E∥Γ1(t, xt,
∫ t

0 µ1(t, s, xs)ds)∥2

+6E∥
∫ t

0 R(t − s)Γ2(s, xs,
∫ s

0 µ2(s, η, xη)dη)ds∥2

+6E∥
∫ t

0 R(t − s)v(s)dBH(s)∥2

+6E∥
∫ t

0 R(t − s)
∫
U

f (s, xs, η)Ñ(dt, dη)∥2

+6E∥
∑

0<tk<tR(t − tk)Ik(x(t−k ))∥2

= 6
∑6

i=1Hi(t).

First, we begin with estimating xt ∈ CaT, for t ∈ J.

∥xt∥
2
Ca ≤M0∥φ∥

2
Cae−bt +M∗e−bt

≤ [M0∥φ∥
2
Ca +M∗]e−bt =Me−bt,

where M =M0∥φ∥2Ca +M∗.
Without loss of generality, we can suppose that b < λ. From conditionH .1, we have

H1(t) ≤M2E∥φ(0) − Γ1(0, φ, 0)∥2e−λt
≤ N1e−bt,

where N1 =M2E∥φ(0) − Γ1(0, φ, 0)∥2.
By conditionH .2 andH .3, we get that

H2(t) ≤ γ1[∥xt∥
2
Ca + E∥

∫ t

0
µ(t, s, xs)ds∥2]

≤ γ1(1 + δ1)∥xt∥
2
Ca

≤ γ1(1 + δ1)Me−bt

≤ N2e−bt,

where N2 = γ1(1 + δ1)M.
By using Holder’s inequality together with conditionsH .1-H .3, we get

H3(t) ≤ E
[ ∫ t

0 Me−λ(t−s)
∥Γ2(s, xs,

∫ s

0 µ2(s, η, xη)dη)∥ds
]2

≤M2
( ∫ t

0 e−λ(t−s)ds
)( ∫ t

0 e−λ(t−s)E∥Γ2(s, xs,
∫ s

0 µ2(s, η, xη)dη)∥2ds
)

≤M2λ−1(1 − e−λt)γ2(1 + δ2)
∫ t

0 e−λ(t−s)
∥xs∥

2
Cads

≤M2λ−1γ2(1 + δ2)(1 − e−λt)
∫ t

0 e−λ(t−s)Me−bsds

≤M2Mλ−1γ2(1 + δ2)e−λt
∫ t

0 e(λ−b)sds

≤M2Mλ−1(λ − b)−1γ2(1 + δ2)e−λt(e(λ−b)t
− 1)

≤ N3e−bt,
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where N3 =M2Mλ−1(λ − b)−1γ2(1 + δ2).
Using Lemma 2.3, we obtain

H4(t) ≤ 2Ht2H−1
∫ t

0
M2e−2λ(t−s)

∥v(s)∥2
L2

ds

≤ 2HM2t2H−1e−2λt
∫ t

0
e2λs
∥v(s)∥2

L2
ds

≤ 2HM2(t2H−1e−λt)
( ∫ t

0
e2λs
∥v(s)∥2

L2
ds
)
e−λt,

using hypothesisH .5 and since supt>0 t2H−1e−λt < ∞, we get that

H4(t) ≤ N4e−bt,

where N4 = 2HM2t2H−1e−λt
∫ t

0 e2λs
∥v(s)∥2

L2
ds.

By assumptionsH .1 andH .4, we get

H5(t) ≤
∫ t

0
M2e−2λ(t−s)

∫
U

E∥ f (s, xs, η)∥2ν(dη)ds

≤M2e−2λtk
∫ t

0
e2λs
∥xs∥

2
Cads

≤ kM2Me−2λt
∫ t

0
e2λse−bsds

≤ kM2Me−2λt(2λ − b)−1(e(2λ−b)t
− 1)

≤ kM2M(2λ − b)−1e−bt

≤ N5e−bt,

where N5 = kM2M(2λ − b)−1. By assumptionsH .1 andH .6, we get

H6(t) ≤ mE
∑

0<tk<t

E∥R(t − tk)Ik(x(t−k ))∥2

≤ m
∑

0<tk<t

M2e−2λ(t−tk)MkE∥x(t−k )∥2

≤ mM2M∗e−2λt
∑

0<tk<t

Mke2λtk e−btk

≤ mM2M∗e−2λt
( ∑

0<tk<t

Mk

)
e(2λ−b)t

≤ mM2M∗
( ∑

0<tk<t

Mk

)
e−bt

≤ N6e−bt,

where N6 = mM2M∗(
∑

0<tk<t Mk). Therefore, we obtain

E∥Π(x)(t)∥2 ≤ Ne−bt

for some constants b > 0 and N = 6
∑6

i=1 Ni > 0. That is Π(x) ∈ CaT, and hence, we conclude that
Π(CaT) ⊂ CaT.
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Step 3: Finally, we show that Π is a contraction. Let y, z ∈ CaT, and t ∈ J

E∥Π(y)(t) −Π(z)(t)∥2 ≤ 4E∥Γ1(t, yt,
∫ t

0 µ1(t, s, ys)ds) − Γ1(t, zt,
∫ t

0 µ1(t, s, zs)ds)∥2

+4E∥
∫ t

0 R(t − s)[Γ2(s, ys,
∫ s

0 µ2(s, η, yη)dη)

−Γ2(s, zs,
∫ s

0 µ2(s, η, zη)dη)]ds∥2

+4E∥
∫ t

0 R(t − s)
∫
U

[ f (s, ys, η) − f (s, zs, η)]Ñ(dt, dη)∥2

+4E∥
∑

0<tk<tR(t − tk)[Ik(y(t−k )) − Ik(z(t−k ))]∥2.

From (H .1) − (H .6) combined with Holder’s inequality, we obtain

E∥Π(y)(t) −Π(z)(t)∥2 ≤ 4γ1(1 + δ1) sup
−τ≤s≤T E∥y(s) − z(s)∥2

+4M2γ2(1 + δ2)λ−2 sup
−τ≤s≤T E∥y(s) − z(s)∥2

+4M2k(2λ)−1 sup
−τ≤s≤T E∥y(s) − z(s)∥2

+4mM2
(∑m

i=1 Mk

)
sup

−τ≤s≤T E∥y(s) − z(s)∥2.

Thus
∥Π(y) −Π(z)∥CaT ≤ k̂∥y − z∥CaT ,

where

k̂ = 4
(
γ1(1 + δ1) +M2γ2(1 + δ2)λ−2 +M2k(2λ)−1 +mM2

( m∑
i=1

Mk

))
< 1.

Therefore, Π is a contractive mapping. Hence, Π has a unique fixed point x ∈ CaT, which is a unique mild
solution to equation (1). Furthermore, this solution is exponentially stable in mean square. This complete
the proof.

4. Exponential stability in the case of time-varying delay

Consider now the following impulsive neutral stochastic integro-differential equation driven by frac-
tional Brownian motion with time-varying delay and Poisson jumps

d
[
x(t) − Γ1

(
t, x(t − r1(t)),

∫ t

0
µ1(t, s, x(s − r1(s)))ds

)]
=

A
[
x(t) − Γ1

(
t, x(t − r1(t)),

∫ t

0
µ1(t, s, x(s − r1(s))

)
ds)
]
dt

+
[
Γ2

(
t, x(t − r2(t)),

∫ t

0
µ2(t, s, x(s − r2(s)))ds

)]
dt

+
[ ∫ t

0
B(t − s)

[
x(s) − Γ1

(
s, x(s − r1(s)),

∫ s

0
µ1(s, δ, x(δ − r1(δ)))dδ

)]
ds
]
dt

+

∫
U

f (t, x(t − r3(t)), η)Ñ(dt, dη) + v(t)dBH(t), t ∈ J := [0,T], t , tk,

∆x|t=tk = x(t+k ) − x(t−k ) = Ik(x(t−k )), k = 1, ...,m, m ∈N,
x(t) = φ(t) ∈ Ca for a.e t ∈ [−τ, 0],

(16)
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where r1, r2, r3 : [0,∞) −→ [0, τ] are continuous functions. The conditionsH .2 −H .4 are replaced with the
following ones:

(H .2′) The mapping Γi : J × X × X→ X, i = 1, 2, satisfies the following conditions.

(i) The function Γ1 is continuous in the quadratic mean sense, i.e for x1, x2, y1, y2 ∈ X

lim
t−→s
E∥Γ1(t, x1, y1) − Γ1(s, x2, y2)∥2 = 0.

(ii) There exist positive constants γi, i = 1, 2 such that for t ∈ J, x1, x2, y1, y2 ∈ X

E∥Γi(t, x1, y1) − Γi(t, x2, y2)∥2 ≤ γi[E∥x1 − x2∥
2 + E∥y1 − y2∥

2],

and Γi(t, 0, 0) = 0.

(H .3′) The functions µi : D × X → X, i = 1, 2 satisfies the following condition. There exists a constant
δi > 0, i = 1, 2, such that for x1, x2 ∈ X we have

E∥

∫ t

0
[µi(t, s, x1) − µi(t, s, x2)]ds∥2 ≤ δiE∥x1 − x2∥

2, t ∈ J,

and µi(t, s, 0) = 0, for (t, s) ∈ D.

(H .4′) There exist a positive constant k > 0 such that, for all t ∈ J and x, y ∈ X

E

∫
U

∥ f (t, x, η) − f (t, y, η)∥2ν(dη) ≤ kE∥x − y∥2,

and f (t, 0, η) = 0, for η ∈ U.

Using the same arguments as in theorem 3.2 and the fact that

E∥x(t − ri(t))∥2 ≤ (M0∥φ∥
2
Ca +M∗)e−b(t−ri(t)) ≤ (M0∥φ∥

2
Ca +M∗)e−btebτ

≤Me−bt,

where M = (M0∥φ∥2Ca +M∗)ebτ, we can easily obtain the following result.

Theorem 4.1. Assume the assumptions H .1,H .2′ − H .4′, and H .5 − H .6 hold, then the unique mild solution to
the system (16) exists and is exponentially stable in mean square provide that the inequality 12 is satisfied.

5. example

As an application for our theoretical result, let us consider the stochastic system:

∂
∂t [u(t, ξ) − F1(t,u(t − b1, ξ),

∫ t

0
f1(t, s,u(s − b1, ξ))ds)]

= ∂2

∂2ξ
[u(t, ξ) − F1(t,u(t − b1, ξ),

∫ t

0
f1(t, s,u(s − b1, ξ))ds)] + F2(t,u(t − b2, ξ),

∫ t

0
f2(t, s,u(s − b2, ξ))ds)

+
∫ t

0
a(t − s) ∂2

∂2ξ
[u(t, ξ) − F1(t,u(t − b1, ξ),

∫ t

0
f1(t, s,u(s − b1, ξ))ds)]ds

+σ(t) dBH (t)
dt +

∫
U

h(t,u(t − b3, ξ), η)Ñ(dt, dη), t ∈ J = [0,T], 0 ≤ ξ ≤ π,

u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ T,

u(s, ξ) = φ(s, ξ), −τ < s ≤ 0, 0 ≤ ξ ≤ π,

(17)
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where 0 ≤ bi ≤ τ < ∞, i = 1, 2, 3, BH is a fractional Brownian motion, F1, F2 : J ×R ×R −→ R, a: J −→ R are continuous
functions and φ : [−τ, 0] × [0, π] −→ R is a given continuous function such that φ(s, .) ∈ L2([0, π]) is measurable and
satisfies E∥φ(t)∥2 ≤M0∥φ∥2Cae

−bt,−τ ≤ t ≤ 0.
Let X = L2([0, π]). Define the operator A : D(A) ⊂ X −→ X given by A = ∂2

∂2ξ
with domain D(A) = H2([0, π])∩H1

0([0, π]),
then we get

Au =
∞∑

n=1

n2 < u, en >X en, u ∈ D(A),

where en :=
√

2
π sin nu, n = 1, 2, .... is an orthogonal set of eigenvector of −A. It is well known that A is the infinitesimal

generator of a strongly continuous semigroup of bounded linear operators {S(t)}t≥0 in X, thus (A.1) is true. Furthermore,
{S(t)}t≥0 is given by (see [21])

S(t)u =
∞∑

n=1

e−n2t < u, en > en,

for u ∈ X and t ≥ 0, that satisfies ∥S(t)∥ ≤ e−π2t for every t ≥ 0.
Let B : D(A) ⊂ X −→ X be the operator given by B(t)u = a(t)Au, for t ≥ 0 and u ∈ D(A). If a is bounded and C1

function such that a′ is bounded and uniformly continuous, then (A.1) and (A.2) are satisfied and hence, by Theorem
2.6, Equation (17) has a resolvent operator (R(t))t≥0 on X.
Let q(t)t>0 be a Poisson point process with a σ-finite measure ν(dη). Denote by N(dt, dη) the Poisson counting measure,
which is induced by q(·), then Ñ(dt, dη) = N(dt, dη) − dtν(dη) is the compensating martingale measure. Let Q : Y :=
L2([0, π],R) −→ Y, we choose a sequence {λn}n∈N ⊂ R+, set Qen = λnen, and assume that tr(Q) =

∑
∞

n=1

√
λn < ∞. Define

the fBm in Y by BH(t) =
∑
∞

n=1

√
λnbH

n (t)en, where H ∈ ( 1
2 , 1) and {bH

n }n∈N is a sequence of one-dimensional fBm mutually

independent. Let us assume the function σ : [0,+∞)→ L0
2(L2([0, π]),L2([0, π])) satisfies

∫ T

0
e2λs
∥σ(s)∥2

L
0
2
ds < ∞, ∀T > 0.

Then the condition (H .5) is satisfied. Suppose further that there exist positive constants ki, k̂i, k3, i = 1, 2, and M j, j =
1, 2, ...,m, such that

Fi(t, 0, 0) = fi(t, s, 0) = h(t, 0,η) = I j(0) = 0, (18)

E∥Fi(t,u1, v1) − Fi(t,u2, v2)∥2 ≤ ki[E∥u1 − u2∥
2 + E∥v1 − v2∥

2], (19)

E∥

∫ t

0
[ fi(t, s,u1) − fi(t, s,u2)]ds∥2 ≤ k̂iE∥u1 − u2∥

2, (20)∫
U

E∥h(t,u1, η) − h(t,u2, η)∥2ν(dη) ≤ k3E∥u1 − u2∥
2 (21)

E∥I j(u1) − I j(u2)∥2 ≤M jE∥u1 − u2∥
2, (22)

for t ∈ [0,T], ui, vi ∈ X, i ∈ {1, 2}. For (t, ψ) ∈ J×Ca, where ψ(s)(ξ) = ψ(s, ξ), (s, ξ) ∈ [−τ, 0]× [0, π], we put y(t)(ξ) = y(t, ξ).
Define the functions Γi : J × Ca ×X→ X, i = 1, 2, f : J × Ca ×U → X and v : [0,+∞)→ L0

2(L2([0, π]),L2([0, π])) as follow

Γi(t, ψ,
∫ t

0
µi(t, s, ψ)ds)(ξ) = Fi(t, ψ(−bi, ξ),

∫ t

0
fi(t, s, ψ(−bi, ξ))ds), i = 1, 2

f (t, ψ, η)(ξ) = h(t, ψ(−b3, ξ), η),

v(t) = σ(t).

Thus, we can rewrite system (17) in the abstract form of system (1). Moreover, if we assume that

∥R(t)∥ ≤Me−λt for t ≥ 0, where M ≥ 1 and λ > 0. (23)

It follows from assumptions (4.2), (4.3), (4.4), (4.5), (4.6) and (4.7) that the functions Γ1,Γ2, f , v satisfy all assumptions on
theorem 3.2. Hence, system (17) has a unique mild solution, which is exponentially stable provided that

4
(
k1(1 + k̂1) +M2k2(1 + k̂2)λ−2 +M2k3(2λ)−1 +mM2

( m∑
j=1

M j

))
< 1.
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6. Conclusion

In the paper sufficient conditions for the existence, uniqueness, and exponential stability of a class of delayed
neutral stochastic integro-differential systems driven by a fBm in a separable Hilbert space and Poisson jumps with
instantaneous impulses have been established. In the proof resolvent operator, stochastic analysis, and a fixed-point
strategy have been used. Finally, an example is provided to illustrate the applicability of the obtained result. Here, the
result was obtained for delayed neutral stochastic integro-differential systems with instantaneous impulses. Recently,
there have been an increasing interest in studying dynamic systems with non-instantaneous impulses, see for example
[9, 10] and references therein. So as a future work, one can consider solvability and exponential stability of system (1)
with non-instantaneous impulses.
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