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Conditional Wiener integral associated with Gaussian processes and
applications

Jae Gil Choi?

?School of General Education, Dankook University, Cheonan 31116, Republic of Korea

Abstract. Let Cy[0, T] denote the one-parameter Wiener space and let C;[0,T] be the Cameron-Martin
space in Co[0, T]. Given a function k in C}[0, T], define a stochastic process Z; : Co[0, T] x [0, T] — R by

Zi(x, 1) = ﬁ Dk(s)dx(s), where Dk = %k. Let a random vector Xg : Co[0, T] — R” be given by

Xoi(x) = (91, Ze(x, )" oo (G, Zi(x,9))7),

where G = {g1,..., 94} is an orthonormal set with respect to the weighted inner product induced by the
function k on the space Cj[0, T], and (g, Zx(x, -))~ denotes the Paley—Wiener-Zygmund stochastic integral.
In this paper, using the reproducing kernel property of the Cameron-Martin space, we establish a very

general evaluation formula for expressing conditional generalized Wiener integrals, E(F (Zx(x, -))|X§,k(x) =
17), associated with the Gaussian processes Zi. As an application, we establish a translation theorem for

the conditional Wiener integral and then use it to obtain various conditional Wiener integration formulas
on Co[0, T].

1. Introduction

Let Co[0, T] denote the one-parameter Wiener space; that is, the space of all real-valued continuous
functions x on [0, T] with x(0) = 0. Let M denote the class of all Wiener measurable subsets of Cy[0, T]
and let m denote the Wiener measure. Then, as is well known, (Co[0, T], M, m) is a complete probability
measure space. The coordinate process W = {Wi}e(o17 given by Wi(x) = W(x, t) = x(t) on Co[0, T] x [0, T]
forms a standard Brownian motion. Thus the Wiener measure m is the Gaussian measure on Cy[0, T] with
mean zero and covariance function (s, t) = min{s, t}. Throughout this paper, we denote the Wiener integral
of a Wiener integrable functional F by

E[F] = E.[F(%)] = fc o F(x)dm(x).

We start this paper with the definition of the conditional Wiener integral [9, 10, 20-22].
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Definition 1.1. Let X : Co[0,T] — IR" be a Wiener measurable function whose probability distribution mx is
absolutely continuous with respect to Lebesgue measure on R", and let F be a complex-valued Wiener integrable
functional on Co[0, T]. Then, by the definition of conditional expectation, the conditional Wiener integral of F given
X, denoted by E(F|X = 1), is a Lebesgue measurable and myx-integrable function of 1j, unique up to null sets in R",
satisfying the equation

f F(x)dm(x) = fE(FlX = dmx (7))
X-1(B) B

for all Borel sets B in IR".

Using the Fourier transform, Yeh [21] derived an inversion formula for a conditional expectation on
probability spaces. Since then, in [22, 23], Yeh applied the inversion formula to the conditional Wiener
integral in order to derive very useful formulas to analyze the Kac-Feynman integral equation and the
conditional Cameron-Martin translation theorem. See [2, 3, 8] for further work involving Yeh's inversion
formula. The evaluation formulas for the conditional Wiener integrals in [3, 8, 22, 23] were performed on
the functionals of standard Brownian motion paths in the Wiener space Cy[0, T].

In [16], Park and Skoug pointed out that Yeh's inversion formula for evaluating the conditional Wiener
integral is very complicated and difficult to use. But, in [16], Park and Skoug established a simple formula
for expressing the conditional Wiener integrals, E(F|X; = 7)), in terms of ordinary Wiener integrals, with the
conditioning function X, : Cy[0, T] — R” given by

Xe(x) = (x(tr), ..., x(tn)), (L.1)

where T = {t1,...,t,} is a partition of [0, T withO =ty < t; <--- <t, < T.

In [17], Park and Skoug improved this simple formula from the conditional Wiener integral to the
conditional ‘generalized” Wiener integral. The generalized Wiener integral [10, 19] was defined by the
Wiener integral

amme=f Fzn(x, ) (),

Col0,T]

where zj, : Co[0, T] x [0, T] — R is the stochastic process given by
t ~
0 = [ HE), (12)
0
with h € [,[0,T], and where fot h(s)dx(s) denotes the Paley-Wiener—Zygmund stochastic integral [14, 15].
Given a partitiont = {t1,...,t,} of [0, T]with0 =ty < t; <--- <t, =T, let X, . : Co[0, T] — R" be defined by

Xh,T(x) = (Zh(x/ tl)/ s /Zh(xr tn)) (13)

In this setting, the evaluation formula obtained by Park and Skoug in [17] was given by

E(F(zn(x, WX () = ) = Ex[FGaa(x, ) = 203, )10) + [710)]

(1.4)
sf F(zn(, ) — (2405 910 + [1()dm()
Col0,T]

where

Bu(t) = Bu(tj-1)

[Zh(xr )](t) = Zh(x/ tj—l) + ﬁh(t]) _ ,Bh(tj—l)

(zh(x, i']') - zh(x, (t]'_l)), tj—l <t< t]', ] (S {1, . ,I’l} (15)
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and

Br(t) = Bu(tj-1)

O =i+ g =)

(T]] — T]]'_l), t]'_l < t < t], ] € {11 . *rn}r

where 19 = 0 and B (f) = fot h?(s)ds. One can see that equation (1.3) with /i = 1 reduces equation (1.1).

We emphasized that the evaluation formulas studied in [16, 17] expressed the conditional Wiener
integrals in terms of ordinary (i.e., nonconditional) Wiener integrals. But, as seen equation (1.3), the
conditioning functions used in [17], as well as in [16], are depended upon the values of z,(x, -) at the set T
of finitely many time moments in (0, T].

The aim of this paper is to establish a more general evaluation formula for the conditional generalized
Wiener integral with much more general conditioning functions. The conditioning function suggested in
this paper is generally not rely on the time moments; see equation (3.2) below. Nevertheless, the result
established in this paper includes the results in [16-18], as special cases. As an application, we establish a
translation theorem for the conditional Wiener integral and then use it to obtain various conditional Wiener
integration formulas on Cy[0, T].

2. Gaussian processes

In order to establish our evaluation formula involving the Gaussian processes, we follow the exposition
of [4-7].

For each v € [,][0,T] and x € Cy[0, T], we let (v,x) = fOT v(t)dx(t) denote the Paley-Wiener—Zygmund
stochastic integral [5, 12, 14, 15]. It is well known that for each v € L,[0, T], the Paley-Wiener-Zygmund
stochastic integral (v, x) exists for m-a.e. x € Cy[0, T] and it is a Gaussian random variable with mean zero
and variance ||v]|2, where || - ||, denotes the L,[0, T]-norm. It is also known that for v1, v, € L,[0, T],

EMWMMMEI (on, x)(0n, X)dm(x) = (01, 0)2 @.1)
Co[0,T]

where (-, -)2 denotes the Ly-inner product. Furthermore, if v € L,[0, T] is of bounded variation on [0, T], then

the Paley-Wiener—Zygmund stochastic integral (v, x) equals the Riemann-Stieltjes integral fOT u(t)dx(t).
Throughout the rest of this paper, we consider the Cameron—-Martin space

¢
CGolo, T] = {w cw(t) = f v(s)ds for some v € [0, T]}
0

to define the Gaussian processes used in this paper. For w € C}[0, T], with w(t) = fot v(s)ds for t € [0, T], let
D : C([0,T] — L2[0, T] be defined by the formula

Dw(t) = %w(t) =o(t). (2.2)
Then, as is well-known, the space Cj, = C{[0, T] with inner product
T
(wl,wz)q) = f Dw1 (t)Dw,(t)dt (2.3)
0

is a separable Hilbert space. Note that the two separable Hilbert spaces L,[0, T] and C;[0, T] are isometric
under the linear operator given by equation (2.2). The inverse operator of D is given by

¢
(D‘lv)(t):fov(s)ds
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fort € [0, T].
Given a function w € C([0, T] and x € Go[0, T], we let (w, x)~ = (Dw, x) for notational convenience. Then
it follows that for any w and x in C{[0, T], (w, x)™ = (w, x)c;, and equation (2.1) can be rewritten as follows:
for wy, wy € C([0, T],

E[(wy, %)™ (w2, x)7] = (w1, w2)c;. (24)

For each t € [0, T], let

wle) = (0 o)) = [ Ilo,ﬂ(r>dr={j’ S (25)

where I4 denotes the indicator function of A. Then vr is the identity function on the interval [0, T]. Let
C;l0, TT be the set of functions k in C}[0, T] such that Dk is continuous except for a finite number of finite
jump discontinuities and is of bounded variation on [0, T]. For any w € C([0, T] and k € Cj[0, T], let the
operation © between C;[0, T] and C;[0, T] be defined by

w Ok = D~Y(DwDk), ie., D(w ®k) = DwDk, (2.6)
where DwDk denotes the pointwise multiplication of the functions Dw and Dk. In this case, (C[0, T], ©)
forms a commutative algebra with the identity vr. We note that given any functions w € C;[0, T] and g1, 92
and g5 in C3[0, T1,

(WO g1 092,93)c;, = (WO Grn(r), Irn2) @ Ir(3))c; (2.7)

for any permutation 7t of the set {1,2, 3}.
Given any k € C}[0, T] with Dk = h and with

lkllc; = [(k, k), 1" = lIhll > 0,

let Zi be the stochastic process on Co[0, T] X [0, T] given by
t B t 5
Zilx, t) = f Dk(s)dx(s) = f h(s)dx(s) = (kO v, x)". (2.8)
0 0

Of course if k(t) = vr(t) on [0, T], then Z,.(x, f) = x(t) is an ordinary Wiener process.

Remark 2.1. By a simple examination, one can see that given a function k in C{[0, T] with Dk = h and ”k”C6 =
llAll2 # O, the Gaussian process Zy given by (2.8) is essentially equal to the process zj, given by (1.2). For further work
with the process zj, see [4-7, 10,17, 19].

Using equations (2.8), (2.6), (2.5), and (2.3), we obtain the following two identities: given any functions
k and w in C[0, T],

t t
Zi(w, t) = (kov,w)” = f Dk(s)dw(s) = f Dk(s)Dw(s)ds = (k © w)(t) (2.9)
0 0
and
T
Zi(w,t) = (wok)(t) = f D(k © w)(s)Dv(s)ds = (w Ok, e (2.10)
0

foreach t € [0, T].
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Remark 2.2. In view of equation (2.10) with k replaced with vr, we assert that the family of functions {vy : 0 < t < T}
from C{[0, T] has the reproducing property w(t) = (w, vt)c(/) for all w € C([0, T]. Note that vi(s) = min{s,t}, the

covariance function of the standard Brownian motion W illustrated in Section 1. We also note that for each
(v, 1) € Go[0, TTx [0, T],

Wi(x, t) = x(t) = fOT Lo a()dx(t) = (v, x)".
Throughout this paper, we let
Suppq) [0,T] = {k € C4[0,T] : Dk # 0 mi-a.e on [0, T1}
and
Suppca [0, T] = {k € C3[0, T] : Dk # 0 my-a.e on [0, T},

where my, denotes the Lebesgue measure on [0, T]. Then one can see that Suppca [0,T] c Suppq) [0, T].
Given a function k in Suppc(,) [0, T] with Dk = h, let

t t
Bi(t) = fo [Dk(u)du = fo [h(u)]?du. (2.11)

It is easy to see that Z is a Gaussian process with mean zero and covariance function

min{s,t}
EL[Z(x, ) Zk(x, )] = f [Dk(u)Pdut = Bi(min(s, ).
0

In addition, by [24, Theorem 21.1], Zx(:,t) is stochastically continuous in ¢ on [0, T] and for any ki, k; €
Supp, [0, T],

min{s,t}
EAZu(9Zut0]= [ DloDkod
0
It is also easy to check that for w € C([0, T] and k € SuppCB [0,T],

(w, Zk(x,))” = (wok,x)~ (2.12)

for m-a.e. x € Co[0,T]. Thus it follows that E,[(w, Zk(x,-))"] = 0. Furthermore, for any function k in
Suppca [0,T], Zk is a continuous process. For our evaluation formula for the conditional generalized

Wiener integral, we thus require k to be basically in Suppca [0, T] rather than simply in C{[0, T].

3. Evaluation formula

In this section, we establish an evaluation formula for expressing conditional generalized Wiener in-
tegrals in terms of nonconditional generalized Wiener integrals for a very general conditioning function
Xg x(x) given by (3.2) below.

Given a function k in Suppcz) [0, T], we consider the weighted inner product (-, -)’é?k given by
T
(w1, o)k = f Duw; (t)Dw,(t) Dk(t)Dk(t)dt = (w1 © k, w2 © k). (3.1)
0 0
Given a positive integer 1, let G = {g1, ..., g,} be an orthonormal set of functions in (C;[0, T1], || - III(‘:‘?") where

Il IIIE?‘ = /G, ')’ggk . These orthonormal sets with respect to the weighted inner product given by (3.1) will be

called a k © k-orthonormal set in C{[0, T].
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Remark 3.1. Every vr © vr-orthonormal set G of functions in C([0, T] is an orthonormal set in (C([0, T1, || - llcy)-

In order to establish an evaluation formula for conditional generalized Wiener integral, we will always
condition by the function Xg : Co[0, T] — R” defined by

Xg () = (91, Z6x, )+, (90, Zilx, ), (32)

where G = {g1,..., g} is a k © k-orthonormal set in C{[0, T]. Using (2.12) and (2.9) with w replaced with g;,
jefl,...,n}, it follows that

Xgx(®) = (1067, (9. 0k 0)) = (Zelg1, ), ), ., (Ze(Gn, ), %))
for m-a.e. x € Cy[0, T].

Remark 3.2. Since {g1,...,gn} is a k © k-orthonormal set in Co[0, T1, it follows that for j,l € {1,--- ,n},

Ex[(9;, Zx(x, )" (g1, Zi(x,))"] = 67

where 0;) denotes the Kronecker delta. Thus (g;, Zk(x,-))™'s are (stochastically) independent.

Given a function k in Suppca [0,T], and a k © k-orthonormal set G = {91, ..., g} of functions in C{[0, T],
we define a map [-]gx : R" — Co[0, T] by

[lg, = Z 190k Ok = Z 1iZk(g; Ok, ) (3.3)
=1 j=1
forj=(m,...,Mu) € R" and we write

[Xlgx = [Xgi(¥)] = ) (9; 0k, x)g;0k0k= ) (7;0k ) Zi(g; Ok, ) (34)

j=1 =1
for x € Cy[0, T].

Lemma 3.3. Let k be a function in SuppCB [0,T], and let G = (g1, ..., gu} be a k © k-orthonormal set of functions in
Col0, T1. Then, the processes {Zx(x,) — [x]gx : t € [0, T]} and {[x]gx : t € [0, T} are (stochastically) independent.

Proof. Since the processes are Gaussian with mean zero, it suffices to show that for every s, t € [0, T],
Ex[(Zk(x, 5) = [xIg 1(5))[xlgx(8)] = 0.
Using equations (2.8) and (3.4), we observe that for any s, ¢ € [0, T,
(Zetx,s) - [xlgk(s))[xlgka)
= (kov,n - Z(g] ok 2 (g0 k0RO Z(gj © k2 (g;0 ko K1)
j=1

= (kove,x) Z(gl Ok ) (g;0k0R(W) = ) }(4;0kx) (5 0k2)"(g; 0k OR)S)(g1 Ok O R
j=1 j=1 I=1
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Then, using equations (2.4), (2.6), (2.5), and (3.1), it follows that
E(Zx(x,9) = [xIgx(5))[xlg(t)]

=Y Ef{kov,0 (g ok ]giokok®n - Y Y Efg ok (@ ok |gokobe)gokokr

j=1 =1 I=1

- Z [ f D(k©v,)(T)D(g; © k)(T)dT](g] okok)(b

ZZ f (9 © HODgr © (DT ig; © k@ KY(E) (g1 © k@ K)(D)

j=1 I=1

n T
= Z [jo‘ Dk(T)DVs(T)ng(T)Dk(T)dT](g]' Okok)t)
=1

=

n

T
) [ fo ng(T)Dk(T)Dgl(T)Dk(T)dT](_qj ko k)s)(g 0kok)()

j=1 1=1

-Y| f Dy;()YDK(®)DK(D)d|(g; © k@ () - }:2(91,%)"@"(;7,@k@k)(s)(g,@k@k)(t)
1

j =1 I=1

s |

g 0koREE ko RO - Y 5:(5 0k NG ko k()

j=1 j=1 I=1
=0,

where 0 il denotes the Kronecker delta. Hence the theorem is proved. O

Throughout the remainder of this section, we assume that F(Zx(x, -)) is Wiener integrable with respect
to x on Cy[0, T1].

Lemma 3.4. Let k and G be as in Lemma 3.3. Let F(Zx(x,-)) be a functional in L1(Co[0, T], M, m), and let Xg be
given by (3.2). Then it follows that

fc oy T ) = fm EJF(Zulx, )~ [¥lg () + [lgx()) [4m © X5l (3.5)

Proof. Let? and 3 be the Wiener measurable map from Cy[0, T] to Co[0, T] given by
D (x) = Zi(x, ") = [x]gk()

and

3(x) = [xlgi() = [Xgr)] = ([gx © Xg)(x),

respectively. Let S; = 9(Co[0, T]) and S; = 3(Co[0, T]). Since ) and J are independent processes by Lemma
3.3, it follows that

[z pine = [z - a0 + xlos)dno
Co[0,T] Col0,T]
= [ Hr 0o n xmo 37,2 66)

= L fs F(y(-) + z(-))d(m o Q_l)(y)d(m . 3_1)(2)
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by the change of variable theorem [11, p. 163]. Applying the change of variable theorem again, and using
(3.3) and (3.4), it follows that

I [ ot +20)i(m 09 pd(mo 37

= [[ [ A 209 Yordm e )

= fs : fs 1 Fy() +2())d(m o 97 )m)d(m o X5l o [15})@)

= f ) fs F(y() + [ilga())d(m 0 D7 )w)d(m o X5L ) (i)

= f ) fq)m] F(Zi(x, ) = [xlg () + [flg () )dm)d(m o X} )

- f ,, Eo[F(Zi(x, ") = [x]gx() + [Tlgx()) [d(m o XL ).

This, together with equation (3.6), completes the proof. [

The next lemma is crucial in the proof of our main assertion for the conditional generalized Wiener
integral.

Lemma 3.5. Let k, G, F, and Xgx be as in Lemma 3.4. Then
f F(Zi(x, ))dm(x) = f E[F(Zx(x, ) = [xlgi() + [flga () [dm o X)) (3.7)
X55(B) B

for every B € B(R").
Proof. Given a k © k-orthonormal set G = {g1,--- , gu}, let

Yg(x) = (91, %), ., (gn, X)7). (3.8)
Then we first see that Xg (x) = Y(Zk(x, -)) in view of (3.2), and that for j, I € {1, ...,n},

(9, 10kOk)” =(g;, 10k Ok)c, = (g, gl)lé?k =0j, (3.9)

since G = {g1,...,gx} is a k © k-orthonormal set. Next, using equations (3.8), (2.12), (3.4), (3.9), and (3.3), it
follows that

Yo(Zi(x, ) = [xlga() = Yg(Zi(x, ) - Yo([xlg ()

= (71 0k0)7,..., (9. 0k, )7) = (g1, [x]g k() - - -, (gn, [XIg ())7) (3.10)
=0
and
Yo[illgx) = ((91, mg,-@k@k) (g 77j!7j®k®k) )
j=1 j=1

L Y . (3.11)
= (Zﬂj(gl'%@k@k) s Y (G0 95 Ok OK) )
p= =

= (nll"'/nn)
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forallj=(m,..., ) € R
Finally, applying equations (3.5), (3.10), and (3.11), it follows that given any Borel set B in B(IR"),

f F(Zi(x, Ndm(x)
X5%(B)

- [ @i e
Col0,T] !
~ [ (o XgnWFZx Mt
Col0,T1]
- [ BRI i)
Col0,T]
- [ (@it MR i)
Col0,T]
= fm CE (U 0 Ye) - F)(Zi(x, ) = [xlgi() + [Tlg0)) Jdm o X5
= fR E15(Ye(Zelw, ) = Ixlgi() + [lgx0))F(Ze(@, ) = [xlgi) + [l ) dm o X5
= f Is(DE[F(Zix, ) = [xlgx() + [lg()) dm o XZ) (@)

~ [ Ed[F(2u0n ) [elost) + [Tl Hem o Xgho(

as desired. O

Remark 3.6. Let F(Zk(x, ")) be in L1(Col0, T1, M, m). Then the conditional generalized Wiener integral of F given
Xg , denoted by

E(F(Zk(x/ N Xgx(x) = ’7)'

is a Lebesque measurable function of ij, unique up to null sets in R", satisfying the equation
fX . F(Zi(x, ))dm(x) = fB E(F(Ze(x, )[Xgx(x) = ) o XZL)() (3.12)
Gk

for all Borel sets B in R".
The main assertion of this paper now follows readily from Remark 3.6 and Lemma 3.5 above.

Theorem 3.7. Let k, G, F, and Xg be as in Lemma 3.4. Then it follows that
E(F(Z(x, )|Xgx(x) = 71) = EJF(Zi(x, ) — [xIgx() + [lgx )]

Ex[F(Zk(x, )= ]an(g] ok, X)Ngj Okok+ i 19, © ko k)] (3.13)

=1

fora.e. 7€R"
Proof. By equations (3.12) and (3.7), it follows that for any B € 8(R"),

| Bz o0 = dmo X = [ FZuta e
B XL (B)

= [ Ed[F(2u00) - (X1 + [l om Xl

for every B € B(IR"). This yields the desired result. O
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Remark 3.8. Note that equation (3.13) is indeed a very simple formula equating the conditional generalized Wiener
integral E(P(Zk(x, -))|Xg,k(x) = ﬁ’) and the nonconditional generalized Wiener integral E[F(Zi(x,-) — [x]gx(-) +
[Tlgx(:D]-

Remark 3.9. Using the linearity of the Paley—Wiener—Zygmund stochastic integral as a random variable on Co[0, T,
equation (3.13) can be rewritten as

F(F@ir DXgx0) = 7) = E[F(Zi ) - Y g0k 0" Zulg;0k )+ Y 1,Zug; O )|

=1 =1

(3.14)

fora.e. 17 €R"

4. Corollaries

Let vr be given by (2.5) with ¢ replaced with T and let m; denote the Lebesgue measure on [0, T]. Given
a positive integer n, let T = {t1,...,t,} be a partition of [0, T withO =ty < t; <--- <t,_1 <t, = T. For each
j=1,...,nlet

I(f/—l,tj](s)ds‘ (41)

! 1
(1) = -
pi(t) f(; '—tj o

Then P, = {p1,...,pn} is a vr © vr-orthonormal (i.e., orthonormal with respect to the Lebesgue measure ;.
on [0, T]) set of functions in C{[0, T]. Then it follows that for each t € [0, T],

n

Y (pjove, ) piovr(t) = Z(P;,x) pi(t)

j=1
Zf I(tﬂt]() ~()f (tllt ()
\/t'—t]' 1 \/t —t] 1 42)
x(t x(t ’
Z =X 10,110 0,8
t—tiq
n t—ti g
= Y vt + =) = 2t Ty
=1 o
and
= 1= -1 = 1= -1
T pjOvr(t) = P pi(t)
j=1 b= tjz1 j=1 b= tj1
N i tl(tnt»(s)
— [t =t t—
]nl v 0 b 4.3)
=Y (0,410t D)
~ t]‘ t]_

fF—tja
= {m‘—l + L (nj - nf—l)}l(t/—lltj](t)
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where 19 = 0.
Next let Xp_,, : Cj[0, T] — R" be defined by

XPTIVT('X) = ((pll 'ZVT(x/ '))N/ ceey (pﬂ' ZVT(x/ ))~)
=((p1oOvy,x)",...,(Pn Ovr,X)7) (4.4)
= ((Pl; x)Nr sy (Pn/ x)~)~

Then, by (4.2), it follows that

[Xlpe = [Xp,n] = ) (O Ve, X) Py OVIOVT = Y (0 2) ). (4.5)

j=1 j=1

Corollary 4.1 ([16]). Let F € L1(Co[0, T1, M, m) and let Xp,_,, be given by (4.4). Then it follows that
E(FQO)|x(t) = nj, j=1,...,1) = EF(x() = [xJe() + [71:()] (4.6)

for a.e. 7] € R", where [x]; = [x]p,_ ., is given by the last expression of (4.2) and [ij]; = [7lp, v, is given by the last
expression of (4.3).

Proof. Using (3.13) with G, k and Xg replaced with P, vr and Xp_,,, respectively, and (4.5), it follows that
fora.e. 7eR",

E(FGO|xt) =y j=1,...,n) = E(F(x(-)) (pj, %) = % j= 1,...,n)
-
= E(F(Zur 0, [0 00 = \/% =) @7)

-z 0- Lo LA )

where 19 = 0. Equation (4.7) together with (4.2) and (4.3) yields equation (4.6) as desired. [

Given a function k in SuppCB [0, T] with Dk = h and a partition T = {t1,...,t,} of [0, T] with 0 = #; < #; <
- <ty <t, =T, let fx be given by (2.11) and let

I(tffl,t]‘](s)ds (48)

t
1
() =
i) fo V) = Bt )

for each j = 1,...,n. Then Ry = {rx1,...,7ka} is @ k © k-orthonormal set of functions in Cj[0, T], and it
follows that for each € [0, T],

I(t,lt] Sh(s) . ! I(tj,l,tj](s)hz(s)
k, kok)(t) = dx d
Z(rk,@ X)(r; Ok R = Zf i [ s
_ Z Zi(x, tj) — Zi(x, tj-1)
= Bi(tj) — Bi(tj-1) [0,10(¢1-1,4]

Ry } Br(t) — Br(tj-1)
B {Zk(x' )+ Br(t;) — Br(tj-1)

=1

K (s)ds (4.9)

(Zutx ) = Zidw -0 M)
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and
n nj — Mj-1 n ni =N t I(t,-,l,t/-](s)hz(S)
(r,; Ok O k)(t) =
j=1 Br(tj) — Bi(tj-1) Tk, j ) ]—Zl \/,Bk(tj) = Br(tj-1) Jo \/,Bk(t]') iy (o) s
—1j-1 )
h=(s)d
Z ﬁk(t]) ﬁk(tj 1) [0,41N(t1-1,4] (5)ds (410)

B Br(t) — Pr(tj-1)
Z{” ORI

where g = 0.
Let Xg_x : C4[0, T] — R" be defined by

X, k() = (1, Zi(x, )™, - -, (Mign, Zi(x,+)) )

4.11
=((r10kx),..., (1, Ok, x)7). ( )
Then, by (4.9), it follows that for each t € [0, T,
[xlk,, k(B) = [Xr,, k(0N = Y (1 © %) (1 © k © k) (8) (412)

j=1
is given by the right-hand side of (1.5).
Corollary 4.2 ([171). Given a function kin Supp..[0, T, let F(Z(x,)) € L1(Co[0, T], M, m) and let Xg_,  be given
by (4.11). Then it follows that
E(F(Zi(x, D Zuety) =0y, j=1,...,n) = Ex[F(Zix,) = [k () + [k ) (4.13)

for a.e. i € R", where [x].x = [x]g, x is given by the last expression of (4.9) and [1].x = [1flx,, x is given by the last
expression of (4.10).

Proof. Using (3.13) with G and Xg replaced with R.x and Xg_«, respectively, and (4.12), it follows that for
ae feR",

E(F(Z(x, )| Zix, ) =7j, j=1,...,n)

- nj —1Mj-1 )
= E|\F(Z(x, - Ok, = ,1=1,...,
( (@it ey 080" = e | n)
~ (. m-—m Mn = -1 (4.14)
= E(F(Zu(x, )| Xr, 1(x) = Ve
( (20 DX s ( VB =Bty Bt - ﬁk(tn_o))

n ~ n T]]—T]]_l
=E |F|Zk(x,)— ) (niOkx)riOkoOk+
[( ¢ ,Z_':‘ o & ]X_':‘ Br(t;) — Br(ti-1)

where 19 = 0. Equation (4.14) together with (4.9) and (4.10) yields equation (4.13). O

Tk,j @k@k)],

Remark 4.3. In view of Remark 2.1, equations (1.4) and (4.13) are essentially same structure.
Choosing k = vt in (3.13), we also have the following corollary.

Corollary 4.4 ([18]). Let F € Li(Col0, T], M, m) and let Xg,, be given by (3.2) with k replaced with vr. Then it
follows that

E(Fl, 7 = 15 1= 1eee) = E[F(r0 - Y0070, + Ym0
= =

fora.e. 7€R"
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5. Examples
In this section we present interesting examples to which equation (3.13) can be applied.

Let S : Ci[0,T] — C[0, T] be a bounded linear operator. In Example 5.1 below, we use equation (3.13)
to obtain the conditional Wiener integration formula

E((Sw, Zktx, ) [Xgax) = 1) = ) ni(Sw, )" (5.1)
j=1
where (-, ~)’§?k is the weighted inner product given by (3.1). In particular, we have
0
E((w, 0" |Xga(x) = 1) = Y mitew, g)iS*. (52)
j=1
Example 5.1. Let S : Cj[0, T] — C{[0, T] be a bounded linear operator. Given a function k in SuppCEJ [0,T], and a
kok-orthonormal set G = {g1, . . ., gn} of functions in C}[0, T, let Xg x be given by equation (3.2), and let w € C}[0, T].
Then using equations (3.13), (2.12), (2.7), and (3.1), it follows that for a.e. ij € R",
E((Sw, Ze(x, ) [Xgu(x) = 1)
n n
= Ex[(Sw, Zi(x, ") — Z(gj Ok,x)"gi0kOk+ Z n9;©k© k)]
=1 =1

n

= E{(Sw) 0k x)"] - ) (Sw,g; 0 k0 k) E(g; 0k x| + ) (5w, 9,0k 0 k),

= ]-:1 (5.3)
=Y ni((sw) ok g;0 k),

j=1

n
=) mi(Sw, )~

j=1

Hence equation (5.1) is established. Equation (5.2) follows from equation (5.3) by letting S be the identity operator on
C)[o,T].
0 4

Let 51 : Cj[0, T] — C[0, T] be the linear operator defined by

¢ ¢
Slw(t):tw(T)—fO w(s)ds:ﬁ[w(T)—w(s)]ds. (5.4)

Then, we see that

T
(S1w, %)™ = fo x(B)dw(t)

and the adjoint operator S] of S is given by

¢
S’iw(t):fow(s)ds. (5.5)
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Example 5.2. Let Sy be the linear operator on C}[0, T] given by (5.4). Given a function k in Suppc6 [0,T] and a

kok-orthonormal set G = {g1, . . ., gn} of functions in C}[0, T, let Xg x be given by equation (3.2), and let w € C{[0, T].
Then, using (5.1) with S replaced with Sy, (3.1), (2.7), and (5.5), it follows that for a.e. 77 € R",

T
E( [ 2 0|0 = ) = E(10, 225,30 = )

=

I
=
92
S
S
S

z (5.6)
nj(w,Si(g;©0ko k))c

f (9; © k © k)(t)dw(t).

=1

In particular, equation (5.6) with Xg, w and k replaced with Xg ., vr and vr, respectively, yields the formula

E( fo ' x(t)dt

T
g, x)"=n,j= 1,...,n) = E(‘fo Zo(x, )dvr (g5, %) =1, ] = 1,...,n)

n T
=Y n f gj(tat
= 0

j=

(5.7)

Example 5.3. Given a partition {t1,...,t,} of [0, T]with0 =ty <t; <--- < t,_1 <t, = T, consider the orthonormal
set P = {p1,...,pn} of functions in C{[0, T] where p; is given by (4.1) above, for each j € {1,...,n}. Applying
equations (5.7) with g; (j € {1,...,n}) replaced with p; (j € {1,...,n}), and (4.3), it follows that for a.e. ij € R",

E( fo ' x(t)dt

~ N1 .
(pj,x) = 7l I]:1,...,n)

T
x(t)=n,j=1,. ..,n) = E(f Lo (x,)dvr(t) m

\/71 f pj(t)dt
j=1 J=

f 0 1+77] 77] 1(t—t] 1))

j=1 tj-

=

(77]""7] Dt = tj-1)
]:

I\JIH

where 1o = 0. This result agrees with the results in [3, 16].

In our next example, we use the following Wiener integration formula which follows quite easily from
the change of variable theorem:

E[ expiA(w,x)7)] = exp {%2”“’”?:5} (5.8)

holds for all A € C and w € C{[0, T].
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Example 5.4. Let S, k, G, Xg, and w be as in Example 5.1 above. Then, using equations (3.13), (3.1), (2.7), (2.12)
and (5.8), it follows that

E(exp{/\(Sw Zi(x, )M Xglx) = ﬁ)

=Ex[exp{ (Sw Zilx, )—Z(g,@kx) %G"@k*Z’Wf@k@k) }]

=1
= exp {A i nj(Sw, gj)lé?k}Ex[ exp {/\([(Sw) Ok- ;(Sw, gi Iécgkgj o k], x)w}] (5.9)
{ Z’?;(Sw 7,k + —[(Sw Sw)kok Z [(Sw g])kek ]}

j=1
forall A € Cand fora.e. = (m,...,1mn) € R

The formulas and results in this paper are more complicated than the corresponding formulas and
results in [16-18]. However, by appropriate choices of k, G, and F in Theorem 3.7, and calculations as done
as in Examples 5.2 and 5.3, the expected results on with standard Brownian motion processes are immediate
corollaries of the results in this paper.

6. Translation result for conditional generalized Wiener integral

In this section, we establish a translation theorem for the conditional Wiener integral and then use it to
obtain conditional Wiener integration formulas for certain Wiener integrable functionals F on Cy[0, T].

We start this section by stating the following well-known translation theorem [1, 13], using the notation
of this article.

Theorem 6.1 (Translation Theorem). Let F € L1(Cy[0, T], M, m) and let x; € Col0, T]. Then
Ed[F(0)] = Ex[Fx + x0)](x0, %)] (6.1)
where
]. 2 ~
Jo, ) = exp { = Slinll, - (x0,%)" . 62)

Using equations (3.1), and (2.12) with w replaced with 6, equation (6.2) with xy replaced with 6 © k can
be rewritten as equation (6.3) below.

Lemma 6.2. Let k be a function in Suppc(,) [0, T]. Then it follows that for each function 6 in Cy[0, T],

[0k x) = exp{ - 21015 - 0, Z4tx, ), (63)
where |- 1% = [, Y42,

Lemma 6.3. Let k be a function in Suppca [0, T] and let G = {g1,...,gn} be a k © k-orthonormal set of functions in
Col0, T1. Then it follows that for each function 6 in C{[0, T],

n

B exp{ - Z(%@kx) (6. 210,05 || = exp{3 Y [©.095 T} (6.4)

=1
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Proof. Applying the fact that (7, ©k,x)™’s, j € {1,...,n}, are independent Gaussian random variables, and
using equations (2.12) and (5.8), one can derive equation (6.4) above, immediately. [J

The following theorem is a translation theorem for conditional generalized Wiener integrals associated
with Gaussian paths on Wiener space Cy[0, T].

Theorem 6.4. Let k, G, F and Xg be as in Lemma 3.4, and let O be a function in Cy[0, T]. Then it follows that for
ae. ij€R?,

E(P(Zk(x, N|Xgxx) = ’7)

=

I 1y
= E(F(Zu(x,) + ZuO 0, )10 0 0[Xgu(x) = - @ O exp | Y mi0,0) - 5
=1 =1

\kok]?
ot

=
=

= E(F(Zu(x, ) + ZuO 0k, )0 0k 0| Xgax+ 00K = T)exp{ ) 10, )" - % ) [©.9)5 T}

j=1 j=1
where J(0 © k, x) is given by (6.3) and
G wE" = (91, w)E -, (g0 WEY). (6.6)

Proof. Given a function k in Suppca [0, T], the conditioning function Xg given by (3.2), and 77 € R", let

Fixg,i(x) = F (Zk(x - Z(!Jj Ok x)"g;0k+ Z 1j9; ©k, ))
= =

n

g () = Zu(x,) = ) (9 0k, X)" Zelg; Ok, ), 67)
j=1
and
T () = ) (9;0k %) Zilg; O, ). (68)
j=1

Using (3.14), (6.1) with F and xo replaced with Fy x, 7 and 0 Ok, respectively, and (6.7), it follows that
B(FZitx DXex) = ) = E[F(Zi(v = Y @r0k g0k + ) nig ok, )
j=1 =1

= E oy

= Eu| Fix, i(x + 00 0](0 0k )] ©9)

- Ex[F(zk(x +00k- Zn“(gj Ok x+ 00K g 0k+ Z nig; 0k, -))](9 ok, x)]
j=1

j=1

B F( @6, + Z@0 k) + ) (1~ (97, 008) Zutg; ok, Jf0 0k, )|
=1
Next, using equations (6.3), (6.7), and (6.8), we rewrite (0 © k, x) in the form

JO0kx) = exp{ - 31015 - (0, Z4{x - ]Zi;(g; ok gok)) -(0.2: jzz;(gj ok0g;0k)) |

= exp{ - %[nen’g"]z - (9, G xg (X, '))~ - (9/ T xg, (X, '))~}‘
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Using this, equation (6.9) can be rewritten by
E(F(Zx(x, )| Xgx(x) = 7])

[ (6k Xox (%) + ZW(O O, ) + Z ~ (91,05 Zug; oF, ‘)) (6.10)

x exp{ - §[||9||kcfk] ~ (6, Sixpux, -))N}exp{ (6, T, (v, -))N}].

Since

{Stxg, (D) £ €10, T1) = {Zix, 1) — [xIgi(t) : t € [0, T}
and

{Tixp )t €0, T1} = {[xlgx(t) : t € [0,T])
are independent processes by Lemma 3.3, we see that the random variables appeared in the last expression
of (6.10),

F(u0 09+ Zo00 k) + Y (1) - (0, 002) 205 0k, Jexp { - 100 (6, Bu,06) )
j=1

and

exp{ - (6, Tux,, (x,) |

are independent. Using this fact and applying equations (6.7), (6.8), (6.4), (6.3), and (3.14) with F(Z(x, -))
replaced with F(Zk(x, -))J(0 © k, x), we next have that

E(F(Zi(x,)|Xgx(x) = 1)
= E[F(Six ) + Zu0 0K, )+2 - (9, 052400 k) exp{ = {101 - (0, S, 09) ]

X Ex[EXP{ - (6’ T xg, (%, ')) }]

= Ex[F(Sk,xg,k(x, )+ Z (le - (9j, Q)E?k)Zk(gj Ok,)+ Zi(0 Ok, '))
=1

n

xexp{ = 31015 T = (6, Suxeu(w0) = Y (1 - (93, 005)(6, Zutg; 0k, ), ]

=1
Xexp{ 17]( ,Zi(gj Ok, ) Z(g],e)kOk , Zi(gj Ok, )) }
j=1 =1
xexp{% [(G,gj)’é?k }

= ef({ziw ) - Z(g]okx) Zu(g ok, )+2 - (97, 0/8)Zug; 0k )} + ZuO 0k, )
xexp - {161 ] - (6, Zitx, >—Z(g]okx> Zug; ok, >+Z -9, 0Z4g10%,) }|

j=1

Xexp{Zm(@@k 9,0k, - Z(e 9O Ok g0 ke, + 5 Z ©,9)5' |

j=1 =1
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= E(F(Z4x,) + ZiO 0 k)0 0k 0[Xgu0) = 1 - 03,00 exp { Y 00,90 - 2 " [0,0)2T )
j=1 j=1

which completes the proof of the theorem. [J

Next we use Theorem 6.4 to obtain various conditional generalized Wiener integration formulas.
Example 6.5. Let k, G, and Xg be as in Example 5.1 above. Also for ij € R, let if = & + (§, W) where (§, w)
0 0
is given by (6.6) above. Then, using equation (6.5) with F(x) = 1 on Co[0, T], we obtain that

1= E(F(Zi(x, D[Xgs) = £+ (G w))

= E(j0 0k 0[Xgx) = D) exp{ Y (& + 0,90, - 3 Y [©.9) T}

p= =
E(exp{ - S[101T - 0,246 )" Hxoa = E)exp { 1 (& + 0,000,995 - 3 Y [©.09T
1

j=1

=1

j=
= E(exp{ - (0, Zu6 ) |Xox() = E)exp { = 101 + Y. (& + ©,0) 0,905 - 5 ) (@00}
(6.11)

Using equation (6.11), we immediately obtain the conditional generalized Wiener integration formula

Eexp{ - (0, Zito ) fXaut0 = &) = exp {S[101E ] - Y €109 - 5
=1

22 [(Q,Qj)}é?klz}- (6.12)

Example 6.6. Let S, k, G, Xg x, and w be as in Example 5.1 above. Then replacing 0 and é_) =(&y,..., &) with —ASw

and 77 = (M, ..., M), respectively, in equation (6.12) above yields the conditional generalized Wiener integration
formula

E( exp {()\Sw, Zilx, -))~}|Xg,k(x) = 5) = exp {/\72[||)\Sw||’éi>k]2 + Ai &i(ASw, gj)lé?k _ )L; - [(/\Sw, !7]‘)](‘3?"]2}
=1 =t

=

A2 2 - 2
- kok kok kok
- exp {A 2 Ei(ASw, gk + 7([n)\s@uugg] - Z{ [(Asw0, 9] )}
j= =
(6.13)
Remark 6.7. It can be shown, using analytic continuation, that equation (6.13) holds for all A € C; this gives an

alternate proof of the conditional generalized Wiener integration formula given by (5.9) above.

We finish this paper with various corollaries of Theorem 6.4. Each conditional generalized Wiener
integration formula provided in the following two corollaries agrees with the main results in [16, 18].

Corollary 6.8 ([16]). Let F € L1(Co[0, T], M, m), and given a partition Tt = {t1,...,t,} of [0, T with 0 =ty < t; <
c <ty <ty =T, let Xp_,, be given by (4.4). Then it follows that for any function 0 in C{[0, T] and for a.e.
7eR",
E(FCO() =1y, j=1,...,n) = Ex(F(x() + 60))1(6, 0|x(t) = n; = 6, j = 1,.....n)
5 (1) — nj-)(0(t) — O(tj- 5 (O(t)) — 6(tj-1))?
Xexp{z(m 1i-)0(t) = 0(ti-1)) 1 v~ (0() — 0(t-1)) }

= (tj —tj-1) 2 = ti-t)

where J(0, x) is given by (6.2) with xq replaced with 6, and 1o = 0.
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Proof. In (6.5), choose k = vr, and replace Xg with Xp_,, given by (4.4). Then, using (4.1), it follows that
for each function 0 in Cj[0, T],

E(Fa()|(t) =nj, j=1,...,n)

_ . _ m—"o Mn — Nn-1
= B[P e, = (e )
= E{F0) + 0O, 01,0 = (G = (71 Oy o) e = (0 )

XeXP{Z \/_777;]1(6, pic, - 22(9 pi) }

) . . B (m 0(t1)) — (0 — O(to)) (1 = O(tn)) — (Nu-1 — O(tn-1))
= E(FG) + 00)(0, 9[Xp,, (1) = Vich Ve =t )
(0= i) O) = 0(ti-1) 1 <& (O() — O(t-1))?
X exp { ; ti—ti "2 p bj—tja }

= Ei(FG() + OC)J(O, 0|x(t)) = nj = 6(t)), j=1,...,n)
X exp { i (M —nj-)(0(t) — 6(ti-1)) 1y (O(E) — 6(tj-1)) }/

= (tj = tj-1) 2 = (tj = tj-1)

fora.e. 7€ R", as desired. [

Corollary 6.9 ([18]). Let F € Li1(Co[0, T], M, m), and given an orthonormal set G = {g1, ..., g} of functions in
Col0, T, let X, be given by (3.2) with k replaced with vr. Then it follows that for each 6 € C([0, T],

E(F(x))(gj,x)N =1 j= 1,...,n)
z (6.14)

= E(F(x + 0)J(0,9)(g;,x+ 0)" =n;, j=1,...,n) exp{ m(&%‘)q] - % (e. 9])2 }
=1 =1

n

for a.e. ij € R", where (6, x) is given by (6.2) with xq replaced with O.

Proof. Any orthonormal set of functions in C([0, T] is a vr @ vr-orthonormal set in C)[0, T]. Choosing k = vr,
equation (6.5) yields equation (6.14). [

The following conditional translation theorem also can be derived by the main results in [17].

Corollary 6.10. Given a function k in Supp.[0, T, let F(Zk(x,+)) € L1(Col0, T1, M, m), and given a partition
T={t,..., ta} of [0, Tl withO = to <t; <--- <ty <t, =T, let Xg_, be given by (4.11). Then it follows that for
each function 6 in C)[0, T] and for a.e. ij € R",

E(F(Ztx, N Zew ) = nj, j=1,...,n)
= E(F(Zk(x/ )+ Zi(0 Ok, .))1(9 Ok, x)|Z(x, tj) =ni— Z(O Ok t), j=1,..., n)

5 (0 = 0-)(ZO Ok, t) = Z(O Ok, t-1)) (ZHO Ok ty) = Zi(0 Ok, ti-1))?
xexp { Z Br(t;) — Br(ti-1) Z‘ .Bk(t ) = Br(tj-1) }

j=1

for a.e. ij € R", where J(6 ® k, x) is given by (6.3) and ng = 0.
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Proof. First, we note that R.x = {rx1,...,7kx} is @ k O k-orthonormal set in Cj[0, T] for any function k in
Suppca [0, T], where rij, j € {1,...,n}, is given by (4.8). In (6.5), next, replace Xgx with Xz x given by (4.11).
Then, using (4.8), it follows that for each function 6 in C[0, T],

T,k /!

E(F(Zi(x, N|Zule t) =1y, j=1,...,n)

m—"1o M — Mn—-1
= E\F(Zk(x, )| Xr . k(x) = T
( R (\/ﬁk(tl) = Pr(to) VBr(t) —ﬁk(tn—1)))

= E(F(Zu(x,) + ZuO ok, )10 0k, )

Xoaal0) = (e = (0 O e~ (1 OO

VB - Belto) " Bt — Brlta)
- = 1j-1 kok 1 - kok]?
0,1 )~ — = 0,1 )~
X exp{; (—ﬁk(tj) —ﬁk(f]‘_1)( rk,])co > = [( rk,])co ] }
= E(F(Z4(x,) + ZiO 0k, )10 0k )

Xg_o4(x) = ((m — Zk(0 Ok 1)) — (0 — Zi(0 Ok, to)), " (1w — ZK(0 O k, ) = (Nu-1 — Zk(0 Ok, t1-1)) ))

Br(t1) — Pr(to) vVBr(tn) = Br(tu-1)

- (77] - nj—l)(Zk(G Ok ty) = Z(O 0Ok ti-1) 1 (Z(6 0k t,) - Z OOk, tn71))2
con(¥: }

Br(tj) = Br(tj-1) 24 Pitj) = Piltj)

=1

= E[F(Zu(x,) + ZuO ok, )10 0k, )

Zi(x, tj) =nj— Zr(0 Ok, t)), j = 1,...,n)

< ex {i (j = 1j-1)(Z0 Ok ty) - ZKO Ok 1)) 1 i (Z(O Ok t,) — ZOOK, tn_1))2}
p Pl = Betry) 25 Bi(t)) = Bi(tj1)

j=1

forae. 7eR". O
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