

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some Euclidean Berezin number inequalities of a pair of operators and their applications

Messaoud Guesbaa

^aFaculty of Exact Sciences, Department of Mathematics, El Oued University, 39000 Algeria

Abstract. In this paper, we present several sharp lower and upper bounds for the Euclidean Berezin number of a pair of bounded linear operators defined on a reproducing kernel Hilbert space. As applications of these bounds we deduce some new results in this field. Further, some applications of the newly obtained inequalities are also provided.

1. Introduction and Preliminaries

Let $\mathcal{B}(\mathcal{H})$ denote the C^* - algebra of all bounded linear operators on a non trivial complex Hilbert space \mathcal{H} with inner product $\langle \cdot, \cdot \rangle$ and associated norm $\|.\|$. Recall that an operator $A \in \mathcal{B}(\mathcal{H})$ is said to be positive if $\langle Ax, x \rangle \geq 0$ for all $x \in \mathcal{H}$. For $A \in \mathcal{B}(\mathcal{H})$, let W(A), $\omega(A)$ and $\|A\|$ denote the numerical range, numerical radius and the usual operator norm of A, respectively. Recall that

$$W(A) = \{\langle Ax, x \rangle : x \in \mathcal{H}, ||x|| = 1\},$$

$$\omega(A) = \sup\{|\langle Ax, x \rangle| : x \in \mathcal{H}, ||x|| = 1\},$$

and

$$||A|| = \sup \{ |\langle Ax, y \rangle| : x, y \in \mathcal{H}, ||x|| = ||y|| = 1 \}.$$

It is well known that $\omega(\cdot)$ defines a norm on $\mathcal{B}(\mathcal{H})$, which is equivalent to the usual operator norm. In fact, for every $A \in \mathcal{B}(\mathcal{H})$, we have [15, 17]

$$\frac{1}{2} \|A\| \le \omega(A) \le \|A\|.$$

For some results about the numerical radius inequalities and their applications, we refer to see [2, 3, 11–13].

Let Ω be a nonempty set. A functional Hilbert space $\mathcal{H} = \mathcal{H}(\Omega)$ is a Hilbert space of complex valued functions, which has the property that point evaluations are continuous i.e., for each $\lambda \in \Omega$ the map $f \mapsto f(\lambda)$ is a continuous linear functional on \mathcal{H} . The Riesz representation theorem ensues that for each

2020 Mathematics Subject Classification. 47A05, 47A55, 47B15.

Keywords. Euclidean Berezin number, Berezin number, Berezin norm, reproducing kernel Hilbert space.

Received: 18 December 2022; Accepted: 16 May 2023

Communicated by Dragan S. Djordjević

Email address: guesbamessaoud2@gmail.com, guesba-messaoud@univ-eloued.dz (Messaoud Guesba)

 $\lambda \in \Omega$ there exists a unique element $k_{\lambda} \in \mathcal{H}$ such that $f(\lambda) = \langle f, k_{\lambda} \rangle$ for all $f \in \mathcal{H}$. The set $\{k_{\lambda} : \lambda \in \Omega\}$ is called the reproducing kernel of the space \mathcal{H} . If $\{e_n\}_{n\geq 0}$ is an orthonormal basis for a functional Hilbert space

 \mathcal{H} , then the reproducing kernel of \mathcal{H} is given by $k_{\lambda}(z) = \sum_{n=0}^{+\infty} \overline{e_n(\lambda)} e_n(z)$ (see [17]). For $\lambda \in \Omega$, let $\hat{k}_{\lambda} = \frac{k_{\lambda}}{\|k_{\lambda}\|}$ be the normalized reproducing kernel of \mathcal{H} .

Let A be a bounded linear operator on \mathcal{H} , the Berezin symbol of A, which firstly have been introduced by Berezin [6, 7] is the function \tilde{A} on Ω defined by

$$\tilde{A}(\lambda) := \langle A\hat{k}_{\lambda}, \hat{k}_{\lambda} \rangle.$$

The Berezin set and the Berezin number of the operator A are defined respectively by

Ber
$$(A) := \{\langle A\hat{k}_{\lambda}, \hat{k}_{\lambda} \rangle : \lambda \in \Omega \},$$

and

ber
$$(A) := \sup \{ |\langle A\hat{k}_{\lambda}, \hat{k}_{\lambda} \rangle| : \lambda \in \Omega \}.$$

Recall that, for $A \in \mathcal{B}(\mathcal{H})$ its Crawford number c(A) is defined by

$$c(A) = \inf\{|\langle Ax, x\rangle| : x \in \mathcal{H}, ||x|| = 1\}.$$

Similarly, the Crawford-Berezin number of A, denoted by $\tilde{c}(A)$, was defined in [24] as

$$\tilde{c}(A) := \inf \left\{ \left| \left\langle A\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right| : \lambda \in \Omega \right\}.$$

It is clear that the Berezin symbol \tilde{A} is the bounded function on Ω whose value lies in the numerical range of the operator A and hence for any $A \in \mathcal{B}(\mathcal{H})$,

Ber
$$(A) \subset W(A)$$
 and **ber** $(A) \leq \omega(A)$,

Moreover, the Berezin number of an operator A satisfies the following properties:

- (i) **ber** $(A) \le ||A||$.
- (ii) **ber** $(\alpha A) = |\alpha|$ **ber** (A) for all $\alpha \in \mathbb{C}$.
- (iii) $\operatorname{ber}(A + B) \leq \operatorname{ber}(A) + \operatorname{ber}(B)$ for all $A, B \in \mathcal{B}(\mathcal{H})$.

Notice that, in general, the Berezin number does not define a norm. However, if \mathcal{H} is a reproducing kernel Hilbert space of analytic functions, (for instance on the unit disc $D = \{z \in \mathbb{C} : |z < 1|\}$), then **ber**(.) defines a norm on $\mathcal{B}(\mathcal{H}(D))$ (see [19, 20]).

The Berezin symbol has been studied in detail for Toeplitz and Hankel operators on Hardy and Bergman spaces. A nice property of the Berezin symbol is mentioned next. If $\tilde{A}(\lambda) = \tilde{B}(\lambda)$ for all $\lambda \in \Omega$, then A = B. Therefore, the Berezin symbol uniquely determines the operator. The Berezin symbol and Berezin number have been studied by many mathematicians over the years, a few of them are [4, 5, 8, 14, 16, 25–28].

Now, for any operator $A \in \mathcal{B}(\mathcal{H})$, the Berezin norm of A denoted as $||A||_{ber}$ is defined by

$$||A||_{ber} := \sup \left\{ \left| \left\langle A\hat{k}_{\lambda}, \hat{k}_{\mu} \right\rangle \right| : \lambda, \mu \in \Omega \right\},$$

where \hat{k}_{λ} , \hat{k}_{μ} are normalized reproducing kernels for λ , μ , respectively.

For $A, B \in \mathcal{B}(\mathcal{H})$ it is clear from the definition of the Berezin norm that the following properties hold:

- (i) $\|\lambda A\|_{ber} = |\lambda| \|A\|_{ber}$ for all $\lambda \in \mathbb{C}$,
- (ii) $||A + B||_{ber} \le ||A||_{ber} + ||B||_{ber}$

(iii) $||A||_{ber} = ||A^*||_{ber}$,

(iv) **ber** $(A) \le ||A||_{ber}$.

Recall that the Euclidean operator radius of $A, B \in \mathcal{B}(\mathcal{H})$ defined as

$$\omega_{e}(A, B) = \sup \left\{ \sqrt{\left| \langle Ax, x \rangle \right|^{2} + \left| \langle Bx, x \rangle \right|^{2}} : x \in \mathcal{H}, \ \|x\| = 1 \right\}.$$

For more details of Euclidean operator radius and related inequalities we refer to [10, 18, 22, 23].

Similarly, the Euclidean Berezin number of a pair of operators $\mathbf{T} = (T_1, T_2) \in \mathcal{B}(\mathcal{H})^2$ denoted by **ber**(**T**) or **ber**(T_1, T_2), is defined as

$$\mathbf{ber}(\mathbf{T}) := \sup \left\{ \sqrt{\left| \left\langle T_1 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^2 + \left| \left\langle T_2 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^2} : \lambda \in \Omega \right\}.$$

In this paper, we prove several lower and upper bounds for the Euclidean Berezin number of a pair of bounded linear operators defined on a reproducing kernel Hilbert space.

2. Main results

Our first result can be stated as follows.

Theorem 2.1. Let $T = (T_1, T_2) \in \mathcal{B}(\mathcal{H})^2$ be a 2-tuple of operators. Then

$$\frac{1}{2}\max\left\{\mathbf{ber}^{2}\left(T_{1}+T_{2}\right)+\tilde{c}^{2}\left(T_{1}-T_{2}\right),\mathbf{ber}^{2}\left(T_{1}-T_{2}\right)+\tilde{c}^{2}\left(T_{1}+T_{2}\right)\right\}\leq\mathbf{ber}^{2}\left(\mathbf{T}\right).$$

Proof. Let \hat{k}_{λ} be the normalized reproducing kernel of \mathcal{H} . Then, we have

$$\left| \left\langle T_1 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle + \left\langle T_2 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^2 + \left| \left\langle T_1 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle - \left\langle T_2 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^2$$

$$= 2 \left(\left| \left\langle T_1 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^2 + \left| \left\langle T_2 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^2 \right).$$

Therefore,

$$\left| \left\langle (T_1 + T_2) \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^2 + \left| \left\langle (T_1 - T_2) \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^2 = 2 \left(\left| \left\langle T_1 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^2 + \left| \left\langle T_2 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^2 \right) \\ \leq 2 \mathbf{ber}^2 (\mathbf{T}) .$$

This implies that

$$\left| \left\langle (T_1 + T_2) \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^2 \leq 2 \mathbf{ber}^2 (\mathbf{T}) - \left| \left\langle (T_1 - T_2) \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^2$$

$$\leq 2 \mathbf{ber}^2 (\mathbf{T}) - \tilde{c}^2 (T_1 - T_2).$$

Taking supremum over $\lambda \in \Omega$, we get

$$\mathbf{ber}^2(T_1 + T_2) \le 2\mathbf{ber}^2(\mathbf{T}) - \tilde{c}^2(T_1 - T_2).$$

So,

$$\mathbf{ber}^{2}(T_{1}+T_{2})+\tilde{c}^{2}(T_{1}-T_{2})\leq 2\mathbf{ber}^{2}(\mathbf{T}). \tag{1}$$

Replacing T_2 by $-T_2$ in (1) we obtain

$$ber^{2}(T_{1}-T_{2})+\tilde{c}^{2}(T_{1}+T_{2})\leq 2ber^{2}(T).$$
(2)

Combining the inequalities (1) and (2), we get

$$\frac{1}{2} \max \left\{ \mathbf{ber}^2 \left(T_1 + T_2 \right) + \tilde{c}^2 \left(T_1 - T_2 \right), \mathbf{ber}^2 \left(T_1 - T_2 \right) + \tilde{c}^2 \left(T_1 + T_2 \right) \right\} \leq \mathbf{ber}^2 \left(\mathbf{T} \right),$$

as desired. \square

Lemma 2.2. [8] Let $A \in \mathcal{B}(\mathcal{H})$ be a positive operator. Then

$$||A||_{ber} = \mathbf{ber}(A).$$

The following corollary is an immediate consequence of Theorem 2.1 and Lemma 2.2.

Corollary 2.3. If $T = (T_1, T_2) \in \mathcal{B}(\mathcal{H})^2$ is a 2-tuple of operators, such that T_1 and T_2 are positive operators, then

$$\frac{1}{2} \max \left\{ ||T_1 + T_2||_{ber}^2 + \tilde{c}^2 (T_1 - T_2), \mathbf{ber}^2 (T_1 - T_2) + \tilde{c}^2 (T_1 + T_2) \right\} \le \mathbf{ber}^2 (\mathbf{T}).$$

Next lower bound for Euclidean Berezin number of a pair of operators reads as follows.

Theorem 2.4. Let $T = (T_1, T_2) \in \mathcal{B}(\mathcal{H})^2$ be a 2-tuple of operators. Then

$$\max \{ \mathbf{ber}^2(T_1) + \tilde{c}^2(T_2), \mathbf{ber}^2(T_2) + \tilde{c}^2(T_1) \} \le \mathbf{ber}^2(\mathbf{T}).$$

Proof. Let \hat{k}_{λ} be the normalized reproducing kernel of \mathcal{H} . Then, we have

$$\left|\left\langle (T_1 + T_2)\hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\right|^2 + \left|\left\langle (T_1 - T_2)\hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\right|^2 = 2\left(\left|\left\langle T_1\hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\right|^2 + \left|\left\langle T_2\hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\right|^2\right).$$

This implies that

$$ber^{2}(T_{1} + T_{2}, T_{1} - T_{2}) = 2ber^{2}(T).$$
(3)

Replacing T_1 by $T_1 + T_2$ and T_2 by $T_1 - T_2$ in Theorem 2.1, we get

$$2 \max \left\{ \mathbf{ber}^2 (T_1) + \tilde{c}^2 (T_2), \mathbf{ber}^2 (T_2) + \tilde{c}^2 (T_1) \right\} \le \mathbf{ber}^2 (T_1 + T_2, T_1 - T_2).$$

Now, by (3) we deduce the desired result. This completes the proof. \Box

As a consequence of Theorem 2.4, we have the following result.

Corollary 2.5. If $\mathbf{T} = (T_1, T_2) \in \mathcal{B}(\mathcal{H})^2$ is a 2-tuple of operators, such that T_1 and T_2 are positive operators, then $\max \left\{ ||T_1||_{ber}^2 + \tilde{c}^2(T_2), ||T_2||_{ber}^2 + \tilde{c}^2(T_1) \right\} \leq \mathbf{ber}^2(\mathbf{T}).$

The following lemma plays a crucial role in our next proofs, which can be found in [9].

Lemma 2.6. Let a, b, e be vectors in \mathcal{H} and ||e|| = 1. Then

$$|\langle a,e\rangle\,\langle e,b\rangle|\leq \frac{1}{2}\left(||a||\,||b||+|\langle a,b\rangle|\right).$$

Now, we are in a position to prove the following result.

Theorem 2.7. Let $\mathbf{T} = (T_1, T_2) \in \mathcal{B}(\mathcal{H})^2$ be a 2-tuple of operators. Then

$$\mathbf{ber}^2(\mathbf{T}) \leq \min \left\{ \mathbf{ber}^2(T_1 + T_2), \mathbf{ber}^2(T_1 - T_2) \right\} + \frac{1}{2} \left\| T_1 T_1^* + T_2^* T_2 \right\|_{ber} + \mathbf{ber}(T_1 T_2).$$

Proof. Let \hat{k}_{λ} be the normalized reproducing kernel of \mathcal{H} . Then, we have

$$\left| \left\langle T_{2}\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^{2} - 2\operatorname{Re}\left(\left\langle T_{2}\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \overline{\left\langle T_{1}\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle} \right) + \left| \left\langle T_{1}\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^{2}$$

$$= \left| \left\langle T_{2}\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle - \left\langle T_{1}\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^{2}$$

$$= \left| \left\langle (T_{2} - T_{1})\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^{2}$$

$$\leq \operatorname{ber}^{2}\left(T_{2} - T_{1} \right).$$

Therefore,

$$\begin{aligned} \left| \left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} + \left| \left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} \\ &\leq \ \mathbf{ber}^{2} \left(T_{2} - T_{1} \right) + 2 \operatorname{Re} \left(\left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \overline{\left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle} \right) \\ &\leq \ \mathbf{ber}^{2} \left(T_{2} - T_{1} \right) + 2 \left| \left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right| \\ &\leq \ \mathbf{ber}^{2} \left(T_{2} - T_{1} \right) + \left\| T_{2}\hat{k}_{\lambda} \right\| \left\| T_{1}^{*}\hat{k}_{\lambda} \right\| + \left| \left\langle T_{2}\hat{k}_{\lambda},T_{1}^{*}\hat{k}_{\lambda} \right\rangle \right| \\ &\quad \text{(by Lemma 2.6)} \\ &\leq \ \mathbf{ber}^{2} \left(T_{2} - T_{1} \right) + \frac{1}{2} \left(\left\| T_{2}\hat{k}_{\lambda} \right\|^{2} + \left\| T_{1}^{*}\hat{k}_{\lambda} \right\|^{2} \right) + \mathbf{ber} \left(T_{1}T_{2} \right) \\ &= \ \mathbf{ber}^{2} \left(T_{2} - T_{1} \right) + \frac{1}{2} \left(\left(T_{1}T_{1}^{*} + T_{2}^{*}T_{2} \right) \hat{k}_{\lambda}, \hat{k}_{\lambda} \right) + \mathbf{ber} \left(T_{1}T_{2} \right) \\ &\leq \ \mathbf{ber}^{2} \left(T_{2} - T_{1} \right) + \frac{1}{2} \left\| T_{1}T_{1}^{*} + T_{2}^{*}T_{2} \right\|_{ber} + \mathbf{ber} \left(T_{1}T_{2} \right). \end{aligned}$$

Thus,

$$\left| \left\langle T_2 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^2 + \left| \left\langle T_1 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^2$$

$$\leq \mathbf{ber}^2 \left(T_2 - T_1 \right) + \frac{1}{2} \left\| T_1 T_1^* + T_2^* T_2 \right\|_{ber} + \mathbf{ber} \left(T_1 T_2 \right).$$

Taking supremum over $\lambda \in \Omega$ in the above inequality, we get

$$\mathbf{ber}^{2}(\mathbf{T}) \leq \mathbf{ber}^{2}(T_{2} - T_{1}) + \frac{1}{2} \left\| T_{1} T_{1}^{*} + T_{2}^{*} T_{2} \right\|_{ber} + \mathbf{ber}(T_{1} T_{2}). \tag{4}$$

Now, replacing T_2 by $-T_2$ in (4), we obtain

$$\mathbf{ber}^{2}(\mathbf{T}) \leq \mathbf{ber}^{2}(T_{2} + T_{1}) + \frac{1}{2} \|T_{1}T_{1}^{*} + T_{2}^{*}T_{2}\|_{ber} + \mathbf{ber}(T_{1}T_{2}).$$
 (5)

From the inequalities (4) and (5), we have

$$\mathbf{ber}^{2}(\mathbf{T}) \leq \min \left\{ \mathbf{ber}^{2}(T_{1} + T_{2}), \mathbf{ber}^{2}(T_{1} - T_{2}) \right\} + \frac{1}{2} \left\| T_{1}T_{1}^{*} + T_{2}^{*}T_{2} \right\|_{ber} + \mathbf{ber}(T_{1}T_{2}),$$

as desired.

If we take $T_1 = T_2 = T$, then we get the following new inequality.

Corollary 2.8. *Let* $T \in \mathcal{B}(\mathcal{H})$ *. Then*

$$\mathbf{ber}^{2}(T) \leq \frac{1}{4} \|TT^{*} + T^{*}T\|_{ber} + \frac{1}{2}\mathbf{ber}(T^{2}).$$

Remark 2.9. Corollary 2.8 is an improvement of the inequality $\mathbf{ber}(T) \leq ||T||$. Indeed, since $\mathbf{ber}(X) \leq ||X||_{ber} \leq ||X||$ for every $X \in B(\mathcal{H})$, it can observe that

$$\mathbf{ber}^{2}(T) \leq \frac{1}{4} \|TT^{*} + T^{*}T\|_{ber} + \frac{1}{2}\mathbf{ber}(T^{2})$$

$$\leq \frac{1}{4} \|TT^{*} + T^{*}T\| + \frac{1}{2} \|T^{2}\|$$

$$\leq \frac{1}{4} (\|TT^{*}\| + \|T^{*}T\|) + \frac{1}{2} \|T\|^{2}$$

$$= \|T\|^{2}.$$

Thus,

$$\mathbf{ber}(T) \le \sqrt{\frac{1}{4} \|TT^* + T^*T\|_{ber} + \frac{1}{2}\mathbf{ber}(T^2)} \le \|T\|.$$

The following lemma will be useful in the proof of the next result.

Lemma 2.10. *Let* α , $\beta \in \mathbb{C}$. *Then*

$$|\alpha - \beta|^2 = |\alpha|^2 + |\beta|^2 - 2 \operatorname{Re}(\overline{\alpha}\beta).$$

Proof. The proof is trivial. \Box

We prove now another upper bound for the Euclidean Berezin number of a pair of operators on $\mathcal{B}(\mathcal{H})$.

Theorem 2.11. Let $\mathbf{T} = (T_1, T_2) \in \mathcal{B}(\mathcal{H})^2$ be a 2-tuple of operators. Then

$$\operatorname{ber}(\mathbf{T}) \leq \left(\operatorname{ber}^{2}(T_{1} - T_{2}) + 2\operatorname{ber}(T_{1})\operatorname{ber}(T_{2})\right)^{\frac{1}{2}}.$$

Proof. Let \hat{k}_{λ} be the normalized reproducing kernel of \mathcal{H} . Applying Lemma 2.10 with $\alpha := \langle T_1 \hat{k}_{\lambda}, \hat{k}_{\lambda} \rangle$ and $\beta := \langle T_2 \hat{k}_{\lambda}, \hat{k}_{\lambda} \rangle$, we get

$$\begin{aligned} \left| \left\langle T_{2}\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^{2} - 2\operatorname{Re}\left(\left\langle T_{2}\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \overline{\left\langle T_{1}\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle} \right) + \left| \left\langle T_{1}\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^{2} \\ &= \left| \left\langle T_{2}\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle - \left\langle T_{1}\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^{2} \\ &= \left| \left\langle (T_{2} - T_{1})\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^{2} \\ &\leq \operatorname{ber}^{2}\left(T_{2} - T_{1} \right). \end{aligned}$$

Thus,

$$\left| \left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle \right|^{2} + \left| \left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle \right|^{2} \leq \mathbf{ber}^{2}\left(T_{2} - T_{1}\right) + 2\operatorname{Re}\left(\left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle \overline{\left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle}\right) \\ \leq \mathbf{ber}^{2}\left(T_{2} - T_{1}\right) + 2\left| \left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle \right| \left| \left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle \right|.$$

Taking supremum over all $\lambda \in \Omega$, we obtain the desired inequality. \square

The following corollary follows from Theorem 2.11.

Corollary 2.12. *If* $\mathbf{T} = (T_1, T_2) \in \mathcal{B}(\mathcal{H})^2$ *is a 2-tuple of operators, then*

$$\mathbf{ber}(\mathbf{T}) \le \left(||T_1 - T_2||_{ber}^2 + 2 ||T_1||_{ber} ||T_2||_{ber} \right)^{\frac{1}{2}}.$$

Proof. The result follows immediately by using the fact **ber**(X) ≤ $||X||_{ber}$ for every $X \in B(\mathcal{H})$ in Theorem 2.11. \square

Another upper bound of Euclidean Berezin number of a pair of operators can be stated as follows.

Theorem 2.13. Let $T = (T_1, T_2) \in \mathcal{B}(\mathcal{H})^2$ be a 2-tuple of operators. Then

$$\mathbf{ber}(\mathbf{T}) \leq \left[2 \min \left\{\mathbf{ber}^2(T_1), \mathbf{ber}^2(T_2)\right\} + \mathbf{ber}(T_1 - T_2)\mathbf{ber}(T_1 + T_2)\right]^{\frac{1}{2}}$$

Proof. By using Theorem 2.11 for $T_1 - T_2$ and $T_1 + T_2$ instead of T_1 , T_2 we obtain

$$ber^2(T_1 - T_2, T_1 + T_2) \le 4ber^2(T_2) + 2ber(T_1 - T_2)ber(T_1 + T_2).$$

Therefore, it follows from (3) that

$$ber^{2}(T) \le 2ber^{2}(T_{2}) + ber(T_{1} - T_{2})ber(T_{1} + T_{2}).$$
(6)

Now, in (6) we swap T_2 with T_1 we have

$$ber^{2}(T) \le 2ber^{2}(T_{1}) + ber(T_{1} - T_{2})ber(T_{1} + T_{2}).$$
(7)

By (6) and (7) we conclude the result. \Box

The following lemma is useful in proving our next result.

Lemma 2.14. [10] *If* $y, u, v \in \mathcal{H}$, then

$$\left|\left\langle y,u\right\rangle \right|^{2}+\left|\left\langle y,v\right\rangle \right|^{2}\leq\left\|y\right\|^{2}\left[\max\left\{\left\|u\right\|^{2},\left\|v\right\|^{2}\right\}+\left|\left\langle u,v\right\rangle \right|\right].$$

Theorem 2.15. Let $T = (T_1, T_2) \in \mathcal{B}(\mathcal{H})^2$ be a 2-tuple of operators. Then

$$\mathbf{ber}^{2}\left(\mathbf{T}\right) \leq \max\left(\left\|T_{1}^{*}T_{1}\right\|_{ber},\left\|T_{2}^{*}T_{2}\right\|_{ber}\right) + \mathbf{ber}\left(T_{2}^{*}T_{1}\right).$$

Proof. Let \hat{k}_{λ} be the normalized reproducing kernel of \mathcal{H} . Replacing $y = \hat{k}_{\lambda}$, $u = T_1 \hat{k}_{\lambda}$ and $v = T_2 \hat{k}_{\lambda}$ in Lemma 2.14, we conclude that

$$\begin{aligned} \left| \left\langle T_{1}\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^{2} + \left| \left\langle T_{2}\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^{2} & \leq & \max\left\{ \left\| T_{1}\hat{k}_{\lambda} \right\|^{2}, \left\| T_{2}\hat{k}_{\lambda} \right\|^{2} \right\} + \left| \left\langle T_{1}\hat{k}_{\lambda}, T_{2}\hat{k}_{\lambda} \right\rangle \right| \\ & = & \max\left\{ \left\langle T_{1}^{*}T_{1}\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle, \left\langle T_{2}^{*}T_{2}\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right\} + \left| \left\langle T_{2}^{*}T_{1}\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|. \end{aligned}$$

Therefore,

$$\left| \left\langle T_1 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^2 + \left| \left\langle T_2 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^2 \le \max \left\{ \left\langle T_1^* T_1 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle, \left\langle T_2^* T_2 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right\} + \left| \left\langle T_2^* T_1 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|. \tag{8}$$

Taking supremum over all $\lambda \in \Omega$ in (8), we deduce that

$$\operatorname{ber}^{2}(\mathbf{T}) \leq \max \left(\operatorname{ber}\left(T_{1}^{*}T_{1}\right), \operatorname{ber}\left(T_{2}^{*}T_{2}\right)\right) + \operatorname{ber}\left(T_{2}^{*}T_{1}\right).$$

Using the fact **ber** $(X) \le ||X||_{ber}$ for every $X \in B(\mathcal{H})$, we get

$$\mathbf{ber}^{2}(\mathbf{T}) \leq \max(\|T_{1}^{*}T_{1}\|_{ber}, \|T_{2}^{*}T_{2}\|_{ber}) + \mathbf{ber}(T_{2}^{*}T_{1}).$$

This completes the proof. \Box

Corollary 2.16. *Let* $T \in \mathcal{B}(\mathcal{H})$ *, then we have*

$$\mathbf{ber}^{2}\left(T\right) \leq \frac{1}{2} \left(\max\left(\left\|T^{*}T\right\|_{ber}, \left\|TT^{*}\right\|_{ber} \right) + \mathbf{ber}\left(T^{2}\right) \right).$$

Proof. In view of Theorem 2.15 we choose that $T_1 = T$ and $T_2 = T^*$, then we can see that

$$\mathbf{ber}^{2}(T, T^{*}) \leq \max(\|T^{*}T\|_{ber}, \|TT^{*}\|_{ber}) + \mathbf{ber}(T^{2}).$$

Let \hat{k}_{λ} be the normalized reproducing kernel of \mathcal{H} . Then, we have

$$\mathbf{ber}^{2}(T, T^{*}) = \sup_{\lambda \in \Omega} \left(\left| \left\langle T\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^{2} + \left| \left\langle T^{*}\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^{2} \right)$$

$$= \sup_{\lambda \in \Omega} \left(\left| \left\langle T\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^{2} + \left| \left\langle \hat{k}_{\lambda}, T\hat{k}_{\lambda} \right\rangle \right|^{2} \right)$$

$$= 2 \sup_{\lambda \in \Omega} \left| \left\langle T\hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^{2} = 2\mathbf{ber}^{2}(T).$$

Therefore, we infer that

$$\mathbf{ber}^{2}(T) \leq \frac{1}{2} \left(\max (\|T^{*}T\|_{ber}, \|TT^{*}\|_{ber}) + \mathbf{ber}(T^{2}) \right).$$

Hence, we get the desired inequality. \Box

Remark 2.17. From Corollary 2.16, we obviously have

$$\mathbf{ber}^{2}(T) \leq \frac{1}{2} \left(\max (\|T^{*}T\|_{ber}, \|TT^{*}\|_{ber}) + \mathbf{ber} \left(T^{2} \right) \right)$$

$$\leq \frac{1}{2} \left(\max (\|T^{*}T\|, \|TT^{*}\|) + \|T^{2}\| \right)$$

$$= \frac{1}{2} \left(\|T^{*}T\| + \|T^{2}\| \right)$$

$$= \frac{1}{2} \left(\|T\|^{2} + \|T^{2}\| \right)$$

$$\leq \|T\|^{2}.$$

Then, Corollary 2.16 is another improvement of inequality **ber** $(T) \leq ||T||$.

Corollary 2.18. *If* $T \in \mathcal{B}(\mathcal{H})$ *is a selfadjoint operator, then*

$$\mathbf{ber}^2(T) \leq \mathbf{ber}(T^2).$$

Proof. From Corollary 2.16 and Lemma 2.2, it follows that

$$\mathbf{ber}^{2}(T) \leq \frac{1}{2} \left(\max \left(\|T^{*}T\|_{ber}, \|TT^{*}\|_{ber} \right) + \mathbf{ber} \left(T^{2} \right) \right)$$

$$= \frac{1}{2} \left(\max \left(\mathbf{ber} \left(T^{*}T \right), \mathbf{ber} \left(TT^{*} \right) \right) + \mathbf{ber} \left(T^{2} \right) \right)$$

$$= \frac{1}{2} \left(\mathbf{ber} \left(T^{2} \right) + \mathbf{ber} \left(T^{2} \right) \right)$$

$$(\text{since } T^{*} = T)$$

$$= \mathbf{ber} \left(T^{2} \right).$$

Thus,

$$\mathbf{ber}^2(T) \leq \mathbf{ber}(T^2).$$

Next, we prove the following inequality.

Theorem 2.19. Let $\mathbf{T} = (T_1, T_2) \in \mathcal{B}(\mathcal{H})^2$ be a 2-tuple of operators. Then

$$\mathbf{ber}^{2}\left(\mathbf{T}\right) \leq \frac{1}{2} \left(\left\| T_{1}^{*} T_{1} + T_{2}^{*} T_{2} \right\|_{ber} + \left\| T_{1}^{*} T_{1} - T_{2}^{*} T_{2} \right\|_{ber} \right) + \mathbf{ber} \left(T_{2}^{*} T_{1} \right). \tag{9}$$

Proof. Let \hat{k}_{λ} be the normalized reproducing kernel of \mathcal{H} . By using (8) and since $\max\{\alpha,\beta\} = \frac{1}{2}\left(\alpha + \beta + \left|\alpha - \beta\right|\right)$ for any $\alpha,\beta \in \mathbb{R}^+$, we can observe that

$$\left| \left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle \right|^{2} + \left| \left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle \right|^{2}$$

$$\leq \frac{1}{2} \left(\left\| T_{1}\hat{k}_{\lambda} \right\|^{2} + \left\| T_{2}\hat{k}_{\lambda} \right\|^{2} + \left\| \left\| T_{1}\hat{k}_{\lambda} \right\|^{2} - \left\| T_{2}\hat{k}_{\lambda} \right\|^{2} \right| \right) + \left| \left\langle T_{1}\hat{k}_{\lambda},T_{2}\hat{k}_{\lambda}\right\rangle \right|.$$

$$(10)$$

Since

$$||T_1\hat{k}_{\lambda}||^2 = \langle T_1\hat{k}_{\lambda}, T_1\hat{k}_{\lambda} \rangle = \langle \hat{k}_{\lambda}, T_1^*T_1\hat{k}_{\lambda} \rangle,$$

and

$$\left\|T_2\hat{k}_{\lambda}\right\|^2 = \left\langle \hat{k}_{\lambda}, T_2^*T_2\hat{k}_{\lambda} \right\rangle.$$

Then (10) can be written as

$$\left| \left\langle T_{1} \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^{2} + \left| \left\langle T_{2} \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|^{2}$$

$$\leq \frac{1}{2} \left(\left\langle \hat{k}_{\lambda}, \left(T_{1}^{*} T_{1} + T_{2}^{*} T_{2} \right) \hat{k}_{\lambda} \right\rangle + \left| \left\langle \hat{k}_{\lambda}, \left(T_{1}^{*} T_{1} - T_{2}^{*} T_{2} \right) \hat{k}_{\lambda} \right\rangle \right| \right) + \left| \left\langle T_{2}^{*} T_{1} \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \right|.$$

By taking supremum over $\lambda \in \Omega$, we get

$$\mathbf{ber}^{2}(\mathbf{T}) \leq \frac{1}{2} \left(\mathbf{ber} \left(T_{1}^{*} T_{1} + T_{2}^{*} T_{2} \right) + \mathbf{ber} \left(T_{1}^{*} T_{1} - T_{2}^{*} T_{2} \right) \right) + \mathbf{ber} \left(T_{2}^{*} T_{1} \right)$$

$$\leq \frac{1}{2} \left(\left\| T_{1}^{*} T_{1} + T_{2}^{*} T_{2} \right\|_{ber} + \left\| T_{1}^{*} T_{1} - T_{2}^{*} T_{2} \right\|_{ber} \right) + \mathbf{ber} \left(T_{2}^{*} T_{1} \right).$$

Hence, we obtain the desired inequality. \Box

The following corollary follows from Theorem 2.19.

Corollary 2.20. Let $\mathbf{T} = (T_1, T_2) \in \mathcal{B}(\mathcal{H})^2$ be a 2-tuple of operators. Then

$$\mathbf{ber}^{2}\left(\mathbf{T}\right) \leq \frac{1}{2} \left(\left\| T_{1}^{*}T_{1} + T_{2}^{*}T_{2} \right\|_{ber} + \left\| T_{1}^{*}T_{2} + T_{2}^{*}T_{1} \right\|_{ber} + \mathbf{ber} \left[\left(T_{1}^{*} - T_{2}^{*} \right) \left(T_{1} + T_{2} \right) \right] \right).$$

Proof. By the inequality (9) for $T_1 + T_2$, $T_1 - T_2$ instead of T_1 , T_2 and perform the required calculations, then we get

$$\mathbf{ber}^2 \left(T_1 + T_2, T_1 - T_2 \right) \le \left\| T_1^* T_1 + T_2^* T_2 \right\|_{her} + \left\| T_1^* T_2 + T_2^* T_1 \right\|_{her} + \mathbf{ber} \left(\left(T_1^* - T_2^* \right) (T_1 + T_2) \right).$$

Furthermore, by using the inequality (3) we get

$$2\mathbf{ber}^{2}\left(\mathbf{T}\right) \leq \left\|T_{1}^{*}T_{1} + T_{2}^{*}T_{2}\right\|_{ber} + \left\|T_{1}^{*}T_{2} + T_{2}^{*}T_{1}\right\|_{ber} + \mathbf{ber}\left(\left(T_{1}^{*} - T_{2}^{*}\right)\left(T_{1} + T_{2}\right)\right).$$

Thus,

$$\mathbf{ber}^{2}\left(\mathbf{T}\right) \leq \frac{1}{2} \left(\left\| T_{1}^{*}T_{1} + T_{2}^{*}T_{2} \right\|_{ber} + \left\| T_{1}^{*}T_{2} + T_{2}^{*}T_{1} \right\|_{ber} + \mathbf{ber} \left(\left(T_{1}^{*} - T_{2}^{*} \right) (T_{1} + T_{2}) \right) \right),$$

as required.

The next theorem provides an upper and lower bound of Euclidean Berezin number of a pair of operators.

Theorem 2.21. Let $T = (T_1, T_2) \in \mathcal{B}(\mathcal{H})^2$ be a 2-tuple of operators. Then

$$\frac{\sqrt{2}}{2} \max \{ \mathbf{ber}(T_1 + T_2), \mathbf{ber}(T_1 - T_2) \} \le \mathbf{ber}(\mathbf{T}) \le \frac{\sqrt{2}}{2} \sqrt{\mathbf{ber}^2(T_1 + T_2) + \mathbf{ber}^2(T_1 - T_2)}.$$

Proof. Let \hat{k}_{λ} be the normalized reproducing kernel of \mathcal{H} . Then, we have

$$\begin{aligned} \left| \left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle \right|^{2} + \left| \left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle \right|^{2} & \geq & \frac{1}{2} \left(\left| \left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle \right| + \left| \left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle \right| \right)^{2} \\ & \geq & \frac{1}{2} \left(\left| \left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle \pm \left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle \right| \right)^{2} \\ & = & \frac{1}{2} \left(\left| \left\langle \left(T_{1} \pm T_{2}\right)\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle \right| \right)^{2}. \end{aligned}$$

Therefore,

$$\sqrt{\left|\left\langle T_1 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle\right|^2 + \left|\left\langle T_2 \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle\right|^2} \ge \frac{\sqrt{2}}{2} \left|\left\langle (T_1 \pm T_2) \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle\right|.$$

Taking supremum over $\lambda \in \Omega$, we get

$$\mathbf{ber}(\mathbf{T}) \geq \frac{\sqrt{2}}{2}\mathbf{ber}(T_1 \pm T_2).$$

This implies that

$$\mathbf{ber}(\mathbf{T}) \ge \frac{\sqrt{2}}{2} \max \{ \mathbf{ber}(T_1 + T_2), \mathbf{ber}(T_1 - T_2) \}.$$

This proves the first inequality.

For the second inequality, we have

$$\left|\left\langle T_1\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle\right|^2+\left|\left\langle T_2\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle\right|^2\leq \mathbf{ber}^2\left(\mathbf{T}\right).$$

Now, we apply the parallelogram identity for complex numbers, we obtain

$$\begin{aligned} \left| \left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} + \left| \left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} &= \frac{1}{2} \left(\left| \left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle + \left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} + \left| \left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle - \left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} \right) \\ &= \frac{1}{2} \left(\left| \left\langle (T_{1} + T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} + \left| \left\langle (T_{1} - T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} \right) \\ &\leq \frac{1}{2} \left(\mathbf{ber}^{2} \left(T_{1} + T_{2} \right) + \mathbf{ber}^{2} \left(T_{1} - T_{2} \right) \right). \end{aligned}$$

Thus,

$$\sqrt{\left|\left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle\right|^{2}+\left|\left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle\right|^{2}}\leq\frac{\sqrt{2}}{2}\sqrt{\mathbf{ber}^{2}\left(T_{1}+T_{2}\right)+\mathbf{ber}^{2}\left(T_{1}-T_{2}\right)}.$$

Taking supremum over $\lambda \in \Omega$, we get

$$\mathbf{ber}(\mathbf{T}) \leq \frac{\sqrt{2}}{2} \sqrt{\mathbf{ber}^2(T_1 + T_2) + \mathbf{ber}^2(T_1 - T_2)}.$$

Hence, the proof of this theorem is complete. \Box

As a consequence of Theorem 2.21, we have the following two corollaries.

Corollary 2.22. Let $\mathbf{T} = (T_1, T_2) \in \mathcal{B}(\mathcal{H})^2$ be a 2-tuple of operators. If T_1 and T_2 are positive operators, then

$$\frac{\sqrt{2}}{2}\max\{\|T_1+T_2\|_{ber}, \mathbf{ber}(T_1-T_2)\} \leq \mathbf{ber}(\mathbf{T}) \leq \frac{\sqrt{2}}{2}\sqrt{\|T_1+T_2\|_{ber}^2 + \|T_1-T_2\|_{ber}^2}$$

Corollary 2.23. *Let* $T \in \mathcal{B}(\mathcal{H})$ *and* $\alpha, \beta \in \mathbb{C}$ *. Then*

$$\frac{\sqrt{2}}{2} \max \left\{ \mathbf{ber} \left(\alpha T + \beta T^* \right), \mathbf{ber} \left(\alpha T - \beta T^* \right) \right\} \leq \sqrt{|\alpha|^2 + |\beta|^2} \mathbf{ber} \left(T \right)$$

$$\leq \frac{\sqrt{2}}{2} \sqrt{\mathbf{ber}^2 \left(\alpha T + \beta T^* \right) + \mathbf{ber}^2 \left(\alpha T - \beta T^* \right)}.$$

Proof. Choosing $T_1 = \alpha T$ and $T_2 = \beta T^*$ in Theorem 2.21, we get the desired result. \square Next, we need the following lemma.

Lemma 2.24. [1] Let $a_1, a_2, ..., a_n$ be finite positive sequence of real numbers and $p \ge 2$. Then

$$\left(\frac{1}{n}\sum_{k=1}^{n}a_{k}\right)^{p} \leq \frac{1}{n}\sum_{k=1}^{n}a_{k}^{p} - \frac{1}{n}\sum_{k=1}^{n}\left|a_{k} - \frac{1}{n}\sum_{j=1}^{n}a_{j}\right|^{p}.$$

We now prove the following theorem.

Theorem 2.25. Let $T = (T_1, T_2) \in \mathcal{B}(\mathcal{H})^2$ be a 2-tuple of operators. Then

$$\mathbf{ber}^{2r}\left(\mathbf{T}\right) \leq \frac{1}{2} \left(\mathbf{ber}^{2r}\left(T_{1} + T_{2}\right) + \mathbf{ber}^{2r}\left(T_{1} - T_{2}\right)\right) - 2^{r} \inf_{\lambda \in \Omega} \left| \operatorname{Re}\left\langle T_{1}\hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle \overline{\left\langle T_{2}\hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle} \right|,$$

for all $r \ge 1$.

Proof. Let \hat{k}_{λ} be the normalized reproducing kernel of \mathcal{H} . Then, we have

$$\left(\left| \left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} + \left| \left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} \right)^{r}$$

$$= \left(\frac{1}{2} \left| \left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle + \left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} + \frac{1}{2} \left| \left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle - \left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} \right)^{r}$$

$$= \left(\frac{1}{2} \left| \left\langle (T_{1} + T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} + \frac{1}{2} \left| \left\langle (T_{1} - T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} \right)^{r}$$

$$\leq \frac{1}{2} \left| \left\langle (T_{1} + T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} + \frac{1}{2} \left| \left\langle (T_{1} - T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} \right|^{r}$$

$$- \frac{1}{2} \left| \frac{1}{2} \left\langle (T_{1} + T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} - \frac{1}{2} \left| \left\langle (T_{1} - T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} \right|^{r}$$

$$- \frac{1}{2} \left| \frac{1}{2} \left\langle (T_{1} - T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} - \frac{1}{2} \left| \left\langle (T_{1} + T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} \right|^{r}$$

$$(by Lemma 2.24)$$

$$= \frac{1}{2} \left| \left\langle (T_{1} + T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} + \frac{1}{2} \left| \left\langle (T_{1} - T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} \right|^{r}$$

$$- \frac{1}{2^{r}} \left| \left| \left\langle (T_{1} - T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} - \left| \left\langle (T_{1} + T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} \right|^{r}$$

$$= \frac{1}{2} \left| \left\langle (T_{1} + T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} + \frac{1}{2} \left| \left\langle (T_{1} - T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} \right|^{r}$$

$$= \frac{1}{2} \left| \left\langle (T_{1} + T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} + \frac{1}{2} \left| \left\langle (T_{1} - T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} \right|^{r}$$

$$= \frac{1}{2} \left| \left\langle (T_{1} + T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} + \frac{1}{2} \left| \left\langle (T_{1} - T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} \right|^{r}$$

$$= \frac{1}{2} \left| \left\langle (T_{1} + T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} + \frac{1}{2} \left| \left\langle (T_{1} - T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} \right|^{r}$$

$$= \frac{1}{2} \left| \left\langle (T_{1} + T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \left|^{2} \left\langle (T_{1} - T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} \right|^{r}$$

$$= \frac{1}{2} \left| \left\langle (T_{1} + T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \left|^{2} \left\langle (T_{1} - T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} \right|^{r}$$

$$= \frac{1}{2} \left| \left\langle (T_{1} + T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \left|^{2} \left\langle (T_{1} - T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \left|^{2} \left\langle (T_{1} - T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \right|^{2} \right|^{r}$$

$$= \frac{1}{2} \left| \left\langle (T_{1} + T_{2})\hat{k}_{\lambda},\hat{k}_{\lambda} \right\rangle \left$$

Therefore, we infer that

$$\left(\left|\left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle\right|^{2}+\left|\left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle\right|^{2}\right)^{r}\leq\frac{1}{2}\left(\mathbf{ber}^{2r}\left(T_{1}+T_{2}\right)+\mathbf{ber}^{2r}\left(T_{1}-T_{2}\right)\right)\\-2^{r}\inf_{\lambda\in\Omega}\left|\operatorname{Re}\left\langle T_{1}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle\overline{\left\langle T_{2}\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle}\right|.$$

Taking supremum over $\lambda \in \Omega$ in the above inequality, we get the desired inequality. \square

Next, we need the following lemma.

Lemma 2.26. [21] Let $T \in B(\mathcal{H})$ and let f and g be non-negative continuous functions on $[0, +\infty)$ such that f(t)g(t) = t for all $t \in [0, +\infty)$. Then

$$\left|\langle Tx, y \rangle\right| \le \left\| f(|T|) x \right\| \left\| g(|T^*|) y \right\|,$$

for all $x, y \in \mathcal{H}$.

Finally, we present the following result.

Theorem 2.27. Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ and let f, g be two non-negative continuous functions on $[0, +\infty)$ satisfying f(t) g(t) = t for all $t \in [0, +\infty)$. Then

$$\frac{1}{2}\left\|T_{1}+T_{2}\right\|_{ber}^{2}\leq\mathbf{ber}\left(f^{2}\left(\left|T_{1}\right|\right),f^{2}\left(\left|T_{2}\right|\right)\right)\mathbf{ber}\left(g^{2}\left(\left|T_{1}^{*}\right|\right),g^{2}\left(\left|T_{2}^{*}\right|\right)\right).$$

Proof. Let \hat{k}_{λ} and \hat{k}_{μ} be two normalized reproducing kernels of \mathcal{H} . Then, we have

$$\begin{aligned} & \left| \left\langle (T_{1} + T_{2}) \hat{k}_{\lambda}, \hat{k}_{\mu} \right\rangle \right|^{2} \\ &= \left| \left\langle T_{1} \hat{k}_{\lambda}, \hat{k}_{\mu} \right\rangle + \left\langle T_{2} \hat{k}_{\lambda}, \hat{k}_{\mu} \right\rangle \right|^{2} \\ &\leq \left(\left| \left\langle T_{1} \hat{k}_{\lambda}, \hat{k}_{\mu} \right\rangle \right| + \left| \left\langle T_{2} \hat{k}_{\lambda}, \hat{k}_{\mu} \right\rangle \right|^{2} \\ &\leq 2 \left(\left| \left\langle T_{1} \hat{k}_{\lambda}, \hat{k}_{\mu} \right\rangle \right|^{2} + \left| \left\langle T_{2} \hat{k}_{\lambda}, \hat{k}_{\mu} \right\rangle \right|^{2} \right) \\ &\leq 2 \left(\left\| f \left(|T_{1}| \right) \hat{k}_{\lambda} \right\|^{2} \left\| g \left(|T_{1}^{*}| \right) \hat{k}_{\mu} \right\|^{2} + \left\| f \left(|T_{2}| \right) \hat{k}_{\lambda} \right\|^{2} \left\| g \left(|T_{2}^{*}| \right) \hat{k}_{\mu} \right\|^{2} \right) \\ &\leq 2 \left(\left\| f \left(|T_{1}| \right) \hat{k}_{\lambda} \right\|^{2} \left\| g \left(|T_{1}^{*}| \right) \hat{k}_{\mu} \right\|^{2} + \left\| f \left(|T_{2}| \right) \hat{k}_{\lambda} \right\|^{2} \left\| g \left(|T_{2}^{*}| \right) \hat{k}_{\mu} \right\|^{2} \right) \\ &\leq 2 \left(\left\langle f^{2} \left(|T_{1}| \right) \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \left\langle g^{2} \left(|T_{1}^{*}| \right) \hat{k}_{\mu}, \hat{k}_{\mu} \right\rangle + \left\langle f^{2} \left(|T_{2}| \right) \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \left\langle g^{2} \left(|T_{2}^{*}| \right) \hat{k}_{\mu}, \hat{k}_{\mu} \right\rangle \right). \end{aligned}$$
(Lemma 2.26)
$$= 2 \left(\left\langle f^{2} \left(|T_{1}| \right) \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \left\langle g^{2} \left(|T_{1}^{*}| \right) \hat{k}_{\mu}, \hat{k}_{\mu} \right\rangle + \left\langle f^{2} \left(|T_{2}| \right) \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \left\langle g^{2} \left(|T_{2}^{*}| \right) \hat{k}_{\mu}, \hat{k}_{\mu} \right\rangle \right).$$

Thus,

$$\begin{aligned} & \left| \left\langle (T_1 + T_2) \hat{k}_{\lambda}, \hat{k}_{\mu} \right\rangle \right|^2 \\ & \leq & 2 \left(\left\langle f^2 \left(|T_1| \right) \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \left\langle g^2 \left(\left| T_1^* \right| \right) \hat{k}_{\mu}, \hat{k}_{\mu} \right\rangle + \left\langle f^2 \left(|T_2| \right) \hat{k}_{\lambda}, \hat{k}_{\lambda} \right\rangle \left\langle g^2 \left(\left| T_2^* \right| \right) \hat{k}_{\mu}, \hat{k}_{\mu} \right\rangle \right). \end{aligned}$$

Now, on utilizing the elementary inequality: $ab + cd \le \sqrt{a^2 + c^2} \sqrt{b^2 + d^2}$ for $a, b, c, d \in \mathbb{R}$, we get

$$\left|\left\langle (T_{1}+T_{2})\hat{k}_{\lambda},\hat{k}_{\mu}\right\rangle\right|^{2}$$

$$\leq 2\left(\left\langle f^{2}\left(|T_{1}|\right)\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle^{2}+\left\langle f^{2}\left(|T_{2}|\right)\hat{k}_{\lambda},\hat{k}_{\lambda}\right\rangle^{2}\right)^{\frac{1}{2}}\left(\left\langle g^{2}\left(\left|T_{1}^{*}\right|\right)\hat{k}_{\mu},\hat{k}_{\mu}\right\rangle^{2}+\left\langle g^{2}\left(\left|T_{2}^{*}\right|\right)\hat{k}_{\mu},\hat{k}_{\mu}\right\rangle^{2}\right)^{\frac{1}{2}}$$

$$\leq 2\mathbf{ber}\left(f^{2}\left(|T_{1}|\right),f^{2}\left(|T_{2}|\right)\right)\mathbf{ber}\left(g^{2}\left(\left|T_{1}^{*}\right|\right),g^{2}\left(\left|T_{2}^{*}\right|\right)\right).$$

Taking supremum over λ , $\mu \in \Omega$, we get

$$\frac{1}{2} \|T_1 + T_2\|_{ber}^2 \le \mathbf{ber} \left(f^2 (|T_1|), f^2 (|T_2|) \right) \mathbf{ber} \left(g^2 \left(\left| T_1^* \right| \right), g^2 \left(\left| T_2^* \right| \right) \right),$$

as desired. \square

If we take $f(t) = g(t) = \sqrt{t}$ in the above theorem, then we get the following corollary.

Corollary 2.28. *If* T_1 , $T_2 \in \mathcal{B}(\mathcal{H})$, then

$$\frac{1}{2} \|T_1 + T_2\|_{ber}^2 \le \mathbf{ber}(|T_1|, |T_2|) \, \mathbf{ber}(|T_1^*|, |T_2^*|).$$

Acknowledgements

The author is very grateful to the referee for careful reading and for helpful comments on the original draft.

References

- [1] S. Abramovich, G. Jameson and G. Sinnamon, Refining Jensen's inequality, Bull. Math. Soc. Sci. Math. Roumanie 47 (2004), 3-14.
- [2] A. Abu-Omar, F. Kittaneh, Upper and lower bounds for the numerical radius with an application to involution operators, Rocky Mountain J. Math. 45(4) (2015), 1055-1064.
- [3] H. Albadawi, K. Shebrawi, Numerical radius and operator norm inequalities. J. Inequal. Appl. (2009), Article ID 492154, 11 pp.
- [4] M. Bakherad, MT. Garayev, Berezin number inequalities for operators. Concr Oper. 2019; 6:33-43.
- [5] M. Bakherad, U. Yamanci, New estimations for the Berezin number inequality, J. Inequal. Appl. 2020, 40 (2020).
- [6] F.A. Berezin, Covariant and contravariant symbols for operators, Math. USSR-Izv. 6 (1972), 1117-1151.
- [7] F.A. Berezin, Quantization, Math. USSR-Izv. 8 (1974), 1109-1163.
- [8] P. Bhunia, A. Sen, K. Paul, Development of the Berezin number inequalities, Acta Math. Sin. (Engl. Ser.) (2023) https://doi.org/10.1007/s10114-023-2090-1.
- [9] ML. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz (Italian). Rend Sem Mat Univ e Politech Torino. 1974;31:405-409.
- [10] S.S. Dragomir, Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces, Linear Algebra Appl. 419(1) (2006), 256-264.
- [11] S.S. Dragomir, Inequalities for the numerical radius of linear operators in Hilbert spaces, Springer Briefs in Mathematics, 2013.
- [12] S.S. Dragomir, Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Tamkang J. Math. 39 (1) (2008), 1-7.
- [13] M. El-Haddad, F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II, Studia Math. 182(2) (2007) 133-140.
- [14] M.T. Garayev, U. Yamanci, Čebyšev's type inequalities and power inequalities for the Berezin number of operators, Filomat 33(8) (2019), 2307-2316.
- [15] K.E. Gustafson and D.K.M. Rao, Numerical range, Springer-Verlag, New York, 1997.
- [16] M. Hajmohamadi, R. Lashkaripour, and M. Bakherad, Improvements of Berezin number inequalities, Linear Multilinear Algebra 68(6) (2020), 1218-1229.
- [17] P.R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer, New York, 1982.
- [18] S. Jana, P. Bhunia and K. Paul, Euclidean operator radius inequalities of a pair of bounds linear operators and their applications, (2022), rXiv:2204.05150v1 [math.FA].
- [19] M.T. Karaev, Berezin symbol and invertibility of operators on the functional Hilbert spaces, J. Funct. Anal. 238 (2006), 181-192.
- [20] M.T. Karaev, Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory 7 (2013), 983-1018.
- [21] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci, 24(2) (1988), 283-293.
- [22] G. Popescu, Unitary invariants in multivariable operator theory, Mem. Amer. Math. Soc. 200(941) (2009), 91 pp.
- [23] M. Sattari, M.S. Moslehian and T. Yamazaki, Some genaralized numerical radius inequalities for Hilbert space operators, Linear Algebra Appl. 470 (2014), 1-12.
- [24] U. Yamanci, M.T. Garayev, C. Celik, Hardy-Hilbert type inequality in reproducing kernel Hilbert space: its applications and related results, Linear Multilinear Algebra 67(4) (2019), 830-842.
- [25] U. Yamanci, M. Guesba, Refinements of some Berezin number inequalities and related questions, J. Anal. 31 (2023), 539-549. https://doi.org/10.1007/s41478-022-00470-6.
- [26] U. Yamanci, M. Tapdigoglu, Some results related to the Berezin number inequalities, Turk J. Math. 43 (4) (2019), 1940-1952.
- [27] U. Yamanci, T. Remziye, M. Gürdal, Berezin number, Gruss-type inequalities and their applications, Bull. Malays. Math. Sci. Soc. 43 (2020), 2287-2296.
- [28] U. Yamanci, I.M. Karh, Further refinements of the Berezin number inequalities on operators, Linear Multilinear Algebra, **70**(20) (2022), 5237-5246.