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Some Euclidean Berezin number inequalities of a pair of operators and
their applications

Messaoud Guesba?

*Faculty of Exact Sciences, Department of Mathematics, EI Oued University, 39000 Algeria

Abstract. In this paper, we present several sharp lower and upper bounds for the Euclidean Berezin number
of a pair of bounded linear operators defined on a reproducing kernel Hilbert space. As applications of
these bounds we deduce some new results in this field. Further, some applications of the newly obtained
inequalities are also provided.

1. Introduction and Preliminaries

Let B(H) denote the C*- algebra of all bounded linear operators on a non trivial complex Hilbert space
H with inner product (-, -) and associated norm ||.||. Recall that an operator A € B(H) is said to be positive
if (Ax,x) > 0 for all x € ‘H. For A € B(H), let W(A), w (A) and ||A|| denote the numerical range, numerical
radius and the usual operator norm of A, respectively. Recall that

W (A)
w (A)

{(Ax,x) :x e H, |Ix|| = 1},
sup {[{Ax,x)| : x € H, |lx|| = 1},

and
1Al = sup {[¢Ax, )| - 2,y € H, Ixll = ||y]| = 1}.

It is well known that w (-) defines a norm on B(H), which is equivalent to the usual operator norm. In
fact, for every A € B(H), we have [15, 17]

1
5 Al < @A) < 1Al

For some results about the numerical radius inequalities and their applications, we refer to see [2, 3, 11—
13].

Let Q) be a nonempty set. A functional Hilbert space H = H (Q) is a Hilbert space of complex valued
functions, which has the property that point evaluations are continuous i.e., for each A € Q the map
f ¥ f(A)is a continuous linear functional on H. The Riesz representation theorem ensues that for each

2020 Mathematics Subject Classification. 47A05, 47A55, 47B15.

Keywords. Euclidean Berezin number, Berezin number, Berezin norm, reproducing kernel Hilbert space.
Received: 18 December 2022; Accepted: 16 May 2023

Communicated by Dragan S. Djordjevié¢

Email address: guesbamessaoud2@gmail.com, guesba-messaoud@univ-eloued.dz (Messaoud Guesba)



M. Guesba / Filomat 37:26 (2023), 8777-8790 8778

A € Q) there exists a unique element k; € H such that f (1) = (f, k) for all f € H. The set {k) : A € Q} is
called the reproducing kernel of the space H. If {e,},( is an orthonormal basis for a functional Hilbert space

~+00
H, then the reproducing kernel of H is given by k, (z) = Z en (M)en (2) (see [17]). For A € Q, letk, = ”’ﬁ be
n=0
the normalized reproducing kernel of H.
Let A be a bounded linear operator on H, the Berezin symbol of A, which firstly have been introduced
by Berezin [6, 7] is the function A on Q defined by

A ()\) = <Ai(/\,]2)\> .

The Berezin set and the Berezin number of the operator A are defined respectively by

Ber(A4) := {(Aky, ki) : 1 € O,
and
ber (A) := sup {|<AIA<A,IA<A>| A€ Q}.

Recall that, for A € B(H) its Crawford number ¢ (A) is defined by
c(A) = inf{{Ax, x)| : x € H, |Ixl| = 1}.

Similarly, the Crawford-Berezin number of A, denoted by ¢ (A), was defined in [24] as
E(A) = inf{|(Ai<A,f<A>| de Q}.

It is clear that the Berezin symbol A is the bounded function on Q whose value lies in the numerical
range of the operator A and hence for any A € B(H),

Ber (A) c W(A) and ber(A) < w (A),

Moreover, the Berezin number of an operator A satisfies the following properties:

(i) ber (A) < [|A]l.

(ii) ber (@A) = |a| ber (A) for all « € C.

(iii) ber (A + B) < ber (A) + ber (B) for all A, B € B(H).

Notice that, in general, the Berezin number does not define a norm. However, if H is a reproducing
kernel Hilbert space of analytic functions, (for instance on the unit disc D = {z € C : |z < 1|} ), then ber(.)
defines a norm on B(H (D)) (see [19, 20]).

The Berezin symbol has been studied in detail for Toeplitz and Hankel operators on Hardy and Bergman
spaces. A nice property of the Berezin symbol is mentioned next. If A (1) = B(A) forall A € Q, then A = B.
Therefore, the Berezin symbol uniquely determines the operator. The Berezin symbol and Berezin number
have been studied by many mathematicians over the years, a few of them are [4, 5, 8, 14, 16, 25-28].

Now, for any operator A € B(H), the Berezin norm of A denoted as ||All., is defined by

1Al := sup {'(Aiq,icyﬂ A Q},

where &y, IACH are normalized reproducing kernels for A, i, respectively.

For A, B € B(H) itis clear from the definition of the Berezin norm that the following properties hold:
(i) IAAllper = |AI[|Allpe, for all A € C,

(11) ”A + B“her < ||A“ber + ”BHber/
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(iii) |Allper = A" lloer,
(iv) ber (A) < [|Allper-
Recall that the Euclidean operator radius of A, B € B (H) defined as

w. (A, B) = sup { AR, 0P + (B, 0+ x € H, |l = 1}.
For more details of Euclidean operator radius and related inequalities we refer to [10, 18, 22, 23].

Similarly, the Euclidean Berezin number of a pair of operators T =(T4,T2) € 8 (H)* denoted by ber (T)
or ber (Tq,T»), is defined as

ber (T) := sup { \/|<T1IA<A,IA</\>

In this paper, we prove several lower and upper bounds for the Euclidean Berezin number of a pair of
bounded linear operators defined on a reproducing kernel Hilbert space.

g '(Tg%ﬂh}'z e Q}.

2. Main results
Our first result can be stated as follows.
Theorem 2.1. Let T =(T,T,) € B(H )2 be a 2-tuple of operators. Then
%max {ber2 (T1 + To) + & (Ty - T,) , ber? (Ty — To) + & (T + Tz)} < ber*(T).

Proof. Let k) be the normalized reproducing kernel of . Then, we have
2

|<T1]2A;IA</\> + <T2]2A;IA</\>|2 + |<T1]A</\/I%/\> - <T2i</\/]%/\>
a2 2
= 2(’<T1k/\,k/\>’ + '(Tzk/\,k)\>| )

Therefore,

|<(T1 +T>) fc/\/f(/\>|2 + |<(T1 -T>) IA{/\/]A(A>'2 = 2(|<T1]A</\/i</\>|2 + '(TZIAC/\/IA()\»Z)
< 2ber*(T).
This implies that
K(Tl + T2) i%,\,]%/\>’2 < 2ber2 (T) - K(Tl - Tz)]z')\,i%,\>‘2
< 2ber* (T) — & (T - Ta).

Taking supremum over A € (), we get

ber’ (T + T,) < 2ber’ (T) - & (T; - T»).
So,

ber’ (T; + T») + & (T — T») < 2ber” (T). (1)
Replacing T, by —T> in (1) we obtain

ber? (T; — T») + & (T1 + T») < 2ber* (T). )
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Combining the inequalities (1) and (2), we get

%max {ber2 (T + Tp) + & (Ty — To),ber? (T1 — T») + & (T, + Tz)} < ber* (T),

as desired. O

Lemma 2.2. [8] Let A € B(H) be a positive operator. Then
|Alleer = ber (A).
The following corollary is an immediate consequence of Theorem 2.1 and Lemma 2.2.

Corollary 2.3. If T =(T1,T2) € B(H )2 is a 2-tuple of operators, such that Ty and T, are positive operators, then

1
5 max (IT1 + Tal,, + & (T1 - To), ber’ (Ty — Ty) + & (T + To)} < ber’ (T).

Next lower bound for Euclidean Berezin number of a pair of operators reads as follows.

Theorem 2.4. Let T =(T1,T2) € B(H )2 be a 2-tuple of operators. Then
max (ber’ (Ty) + & (Ty), ber? (Ty) + & (T1)} < ber’ (T).
Proof. Let k) be the normalized reproducing kernel of . Then, we have
[+ Tk k) (= Tk k)| = 2Tk )|+ (o)),
This implies that
ber’ (Ty + Tp, Ty — T2) = 2ber’ (T). 3)
Replacing Ty by T1 + T and T, by T1 — T5 in Theorem 2.1, we get
2 max {ber2 (Ty) + @ (T») , ber* (T») + & (T1)} <ber’ (Ty + T, T1 — T).

Now, by (3) we deduce the desired result. This completes the proof. [J

As a consequence of Theorem 2.4, we have the following result.
Corollary 2.5. If T =(T1,T2) € B(H ) is a 2-tuple of operators, such that T and T, are positive operators, then
max {|T[f3, + & (T2), ITalf, + & (T1)} < ber® (T).
The following lemma plays a crucial role in our next proofs, which can be found in [9].

Lemma 2.6. Let a, b, e be vectors in H and ||e|| = 1. Then

1
Ka, e) ¢e, b)l < = (llall 1Bl + Ka, b))

Now, we are in a position to prove the following result.
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Theorem 2.7. Let T =(T1,T,) € B(H )2 be a 2-tuple of operators. Then
1
ber’ (T) < min {ber’ (T; + T), ber’ (T — To)} + 5 |T1T; + T3 T2, + ber (T1T2).
Proof. Let k) be the normalized reproducing kernel of H. Then, we have

|<T2i€/\,i%/\> ’ —2Re ((Tzl%\,ib\) <T1i€/\,i€)\>) + |<T1]2/\,i€/\>|2

|<T2i%/\,i%/\> - <T1i%/\,i%/\> ’

|<(T2 - Tl)fCA,f(A>'2

< ber’ (T, -Ty).
Therefore,
|<T2i%/\,i%/\>’2 + ’(le,\,l%/\ﬂz
< berZ (Tz - Tl) +2Re ((Tzi%,\,]%\) <T1]A(/\,7%A>)
< ber2 (T2 - Tl) +2 KTQI%A,],(\.')O <T1]2A,]2,\>‘
< ber2 (T2 - Tl) + ”Tzi%}\” ”TI]%,\” + ‘<T2i(\j/\, TI]%,\)’
(by Lemma 2.6)
< ber (T = 1)+ 3 [Tkl + [T ) + ber (172)

1 IR
= bel‘2 (Tz - Tl) + E <<T1T1 + T;Tz) k}\,k}\> + ber (Tsz)
1
< ber’ (Tp = Ty) + 5 |1 T} + TyTaf|,, + ber (T1T2).
Thus,
~ A2 A~ A2
|<T2k/\/k/\>| + |<T1k/\/k/\>|
1
< ber’ (T, -T)+ 5 |T:T; + T3, + ber (T1T2).
Taking supremum over A € Q in the above inequality, we get
ber? (T) < ber” (T, — T4) + % |T1T; + T3To||,,, + ber (T1T2). 4)
Now, replacing T, by —T in (4), we obtain
1 % %
ber’ (T) < ber’ (T2 + T1) + 5 [T1T; + TyTu |, + ber (T1T2). ®)
From the inequalities (4) and (5), we have
ber’ (T) < min {ber’ (T) + T»), ber’ (Ty — To)} + % 11T} + T3To|,,, + ber (T2 T2),

as desired. O

If we take Ty = T, = T, then we get the following new inequality.
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Corollary 2.8. Let T € B(H). Then
1 . . 1 2
ber? (T) < T+ T Tl + Eber(T )-

Remark 2.9. Corollary 2.8 is an improvement of the inequality ber (T) < ||T||. Indeed, since ber (X) < || Xllper < IX]|
for every X € B(H), it can observe that

1 1
ber’ (T) < ZITT" + T Tl + Eber(trz)

1 . . 1 2

< ZITT + 7T+ 5 |77

< Yarrysirm « 2yme

- 4 2

- TP,

Thus,

1 1
ber(T) < \/Z ITT* + T*T||per + Eber (T?) < ||

The following lemma will be useful in the proof of the next result.

Lemma 2.10. Let a,f € C. Then
2 2 _
la = B|" = laP + || - 2Re @p).
Proof. The proof is trivial. [

We prove now another upper bound for the Euclidean Berezin number of a pair of operators on B (H).

Theorem 2.11. Let T =(Ty,T) € B(H )2 be a 2-tuple of operators. Then
1
ber (T) < (ber’ (Ty — T2) + 2ber (T1) ber (T))* .

Proof. Let k; be the normalized reproducing kernel of H. Applying Lemma 2.10 with a := <T112A,IA<A> and
B = <T2fc/\,fq>, we get

|<T2]A(A, IAC/\>|2 —2Re ((Tzi(}\, IA(A> <T1]A{/\,]A€/\>) + |<T1]A(A, IAC/\>|2
|<T2i</\/lz/\> - <T1i</\/lz/\>|2
|<(T2 - Tl)fc/\rf()\>'2

< bel’2 (Tz - T1)
Thus,

(ko k)| + [(Tik, )

A

2

IA

ber” (T, — T1) + 2Re ((Tya,iq) (Tﬂh,fm))

’<T11A€A,I%/\>

Taking supremum over all A € (), we obtain the desired inequality. [

IA

ber’ (T, — T1) + 2 |<T2i€/\/i%/\>
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The following corollary follows from Theorem 2.11.

Corollary 2.12. If T = (Ty, T2) € B(H)” is a 2-tuple of operators, then

1
ber (T) < (IIT1 = T2l + 2[Tillpr [ T2llser)” -

ber

Proof. The result follows immediately by using the fact ber (X) < [|X]l,, for every X € B(H) in Theorem
211. O

Another upper bound of Euclidean Berezin number of a pair of operators can be stated as follows.

Theorem 2.13. Let T = (T}, T,) € B(H)* be a 2-tuple of operators. Then

ber (T) < [2min {ber’ (T1) , ber’ (T2)} + ber (Ty — T2) ber (T + TZ)]% :
Proof. By using Theorem 2.11 for Ty — T, and T; + T instead of T;, T, we obtain

ber? (T1 — To, Ty + T») < 4ber? (T,) + 2ber (T; — T,) ber (T; + T») .
Therefore, it follows from (3) that

ber® (T) < 2ber” (T,) + ber (T; — T,) ber (T + T»). (6)
Now, in (6) we swap T, with T; we have

ber? (T) < 2ber® (T;) + ber (T; — T) ber (T; + T»). 7)
By (6) and (7) we conclude the result. [J

The following lemma is useful in proving our next result.
Lemma 2.14. [10]If y,u,v € H, then

Ky )+ [ o < |yl [max {1 et} + ¢, o)1)

Theorem 2.15. Let T =(Ty,T,) € B (7{)2 be a 2-tuple of operators. Then

ber’ (T) < max (“T;Tl

“her ’ TZTZ“ber) + ber (T;Tl) ’

Proof. Let k; be the normalized reproducing kernel of H. Replacing y = ki, u = Tiky and v = Tk, in
Lemma 2.14, we conclude that

‘(Tlfq,fq>|2 + |<T2i<\f/\,i€/\>|2 < max{”TllAcA 2, Tzi%/\ 2} + |<T1i(\f/\, Tzi%/\>
= max {<TIT1’2A/ i%/\> , <T;T2i%/\, ]2/\>} + |<T§T1]}A, ]2/1>| .
Therefore,
‘(Tli(\.')\,]%,\ﬂz + |<T2]2,\,]2/\>|2 < max {<T;T1]}A,i€,\>, (T;Tzi%)‘,i%/\» + |<T;T17(\.')\,i%,\>| . (8)
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Taking supremum over all A € Q in (8), we deduce that
ber’ (T) < max (ber (T;T1), ber (T;T,)) + ber (T;T1).
Using the fact ber (X) < ||X|ly, for every X € B(H), we get

ber? (T) < max(“T{Tl

“ber ¢ T;Tzllber) + ber (TETl) '

This completes the proof. [

Corollary 2.16. Let T € B(H), then we have

1 * *
ber’ (T) < 5 (max (IT"Tlher , ITT llr) + bex (72)).

Proof. In view of Theorem 2.15 we choose that T1 = T and T, = T*, then we can see that

ber’ (T, T) < max ([T Tlluy , ITTer) + ber (T%).

Let k) be the normalized reproducing kernel of H. Then, we have

sup (KTI%/\,]%)O'Z + KT*]’%A/ ]2/\>‘2)

AeQ

sup ([(7R &) + (&, ) )

AeQ

= 2sup KTIACA,IAC,O‘Z = 2ber’ (T).

AeQ

ber? (T, T*)

Therefore, we infer that
1 1% %
ber’ (T) < 5 (max (1T Tller, ITT llr) + ber (T2)).

Hence, we get the desired inequality. [

Remark 2.17. From Corollary 2.16, we obviously have

ber’ (T) < %(max(IIT*Tllber,llTT*llber)+bef(T2))
< % (max (ITT1, ITT7ID + || 72]))
= (i 7))
= 2 (i + |72
< TP

Then, Corollary 2.16 is another improvement of inequality ber (T) < ||T]|.

Corollary 2.18. If T € B(H) is a selfadjoint operator, then

ber? (T) < ber (Tz).

8784
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Proof. From Corollary 2.16 and Lemma 2.2, it follows that

L (MaX (IT Tl ITTlher) + ber (T2))

ber*(T) < >
= % (max (ber (T"T) ,ber (TT")) + ber (Tz))
= % (ber (TZ) + ber (Tz))
(sinceT" = T)
= ber (Tz) .
Thus,

ber? (T) < ber (Tz).
[

Next, we prove the following inequality.

Theorem 2.19. Let T = (T}, T,) € B(H)* be a 2-tuple of operators. Then
ber’ (T) < % (7371 + T3To||,,, + |IT5 T2 = T3T2,,,) + ber (T3T1). 9)

Proof. Let ky be the normalized reproducing kernel of H. By using (8) and since max{a, f} = 1 (a +B+ |ac - ,8))
for any «a, g € R*, we can observe that
A a2 2
‘(le/\, k/\)’

1
< —(|
2

Since

+ ’(Tzie/\,]%/\>

(10)

Tlf{)\ ? + ”Tzf{/\

Pl

2 ||T21%AH2|) + [(Tuk, Takn) -

|Tika||” = (Toka, ik ) = (ka, T3 ik ),
and
[Toka||” = (ka, T3Takn)
Then (10) can be written as
(k)| + [(Tako, )

< %((I%A,(TITl +T3To) k) + [(, (T3 - T;Tz)lh>|) + (T k)|

2

By taking supremum over A € Q, we get

A

ber’(T) < % (ber (T; Ty + T;T2) + ber (T; Ty — T;T2)) + ber (T;T; )

1
< s(InT+ BT, + 137 - TTal|,) + ber (T3T3).

Hence, we obtain the desired inequality. [J

The following corollary follows from Theorem 2.19.
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Corollary 2.20. Let T =(Ty, T2) € B(H)* be a 2-tuple of operators. Then

TiT1 + TyTal|,,, + || T3 T2 + T3 T4, + ber [(T; —T3)(Ty + Tz)]).

ber? (T) < %(|

Proof. By the inequality (9) for T; + T, T1 — T instead of Ty, T, and perform the required calculations, then
we get

ber’ (Ty + Tp, T1 - T2) < |TiT1 + TyTa|,,, + | TiT2 + T34, + ber ((T; - T3) (T1 + T2)).
Furthermore, by using the inequality (3) we get

2ber® (T) < | TTy + TyTh||,,, + ber ((T} - T3) (T1 + T)).

TITl + T;Tznber + ‘

Thus,

ber’ (T) < % (|73 Ty + T3Ta|,,, + [|IT3 T2 + TyT |, + ber (T3 = T3) (T1 + T))),

as required. [

The next theorem provides an upper and lower bound of Euclidean Berezin number of a pair of operators.

Theorem 2.21. Let T = (T}, T,) € B(H)* be a 2-tuple of operators. Then

% max {ber (T, + T2), ber (T; — T»)} < ber (T) < % \/ber2 (Ty + T2) + ber® (Ty — Ty).

Proof. Let k) be the normalized reproducing kernel of . Then, we have

(rik k) (ko ) 2 % (ks k)| + |(Tak )|
(ks ki) = (ks R ))

2
- % (|<(T1 +Ty) l%A,ch>|)2.

\

[\

Therefore,

Jlmkok)f « mk k) = 2[(cr 2 T )

Taking supremum over A € (), we get

ber (T) > gber(Tl L T,).

This implies that

ber(T) > % max {ber (T + T,),ber (T — T5)} .

This proves the first inequality.
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For the second inequality, we have

(ko k)| + (T, )| < ber? (D).

Now, we apply the parallelogram identity for complex numbers, we obtain

2 ([(maka k) + (T k)| (oo k) - (o )] )

(ko k)| + (T, )|

= % (|<(T1 + 1) ’A@\,fCA>|Z + |<(T1 -T2) ’AC/\,lAfA>'2)
< % (ber” (Ty + T2) + ber* (Ty — T2)).
Thus,
\/KTll%A,icA)r + |(T212A,12A>|2 < ? \Jber® (T +Ty) + ber® (T; — T).

Taking supremum over A € Q), we get

ber(T) < % \/ber2 (T1 + To) + ber® (T; — Tb).

Hence, the proof of this theorem is complete. [

As a consequence of Theorem 2.21, we have the following two corollaries.

Corollary 2.22. Let T =(Ty, Ta) € B(H)* be a 2-tuple of operators. If Ty and T, are positive operators, then

V2 V2
—- max{[ITy + Tallye; , ber (T — To)} < ber (T) < —= \/||T1 + Tolli, + T2 = Tolly,,-

Corollary 2.23. Let TeB(H) and a, € C. Then

\lal? + |p ber (T)

g \/berz (aT + BT*) + ber® (aT — BT*).

% max {ber (aT + BT"),ber (aT — BT7)}

IN

Proof. Choosing T = aT and T, = T* in Theorem 2.21, we get the desired result. [

Next, we need the following lemma.

Lemma 2.24. [1] Let a1, ay, ..., a, be finite positive sequence of real numbers and p > 2. Then

n p n n
[%Zak] dygoly

k=1 k=1 k=1

n

P
1
ai — —‘E:Laj
n

=

We now prove the following theorem.

Theorem 2.25. Let T =(Ty,T,) € B (‘H)2 be a 2-tuple of operators. Then

Re <T17€A, f</\> <Tzf<m kA)

ber” (T) < 1 (berzf (Ty + T») + ber” (T — Tz)) — 2" inf
2 1eQ

7
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forallr>1.

Proof. Let k; be the normalized reproducing kernel of . Then, we have

(|<T11A<A b+ (mako b))
le/\ k/\ TzkA k/\>' % ‘<T17A€A,f</\> - <T27A€A,f</\>
1 27
: )

(
< 2@k k) + 5 (G AT

y

_ (% (T1+T2)k/\ k}t 2+ |<(T1 Tz)f(mfﬂ)

-3 “5 ((T1 +T) fcMh) - % K(Tl - Tz)f‘/‘/f‘/‘>|2’

2 - % K(T1 + TZ)IA(A,’AC/\>|2 r

—% "% <(T1 - T>) i%/\/f(/\>

(by Lemma 2.24)

|2r

= '((Tl + T5) k}\ k/\ (T1 = Tr) k/\ k/\ |

(Ty - To) ky, k/\

[
- Tk, k)\ l K(Tl +To)ky, k/\
= '<(T1 +Ta)ky, k/\ |2r |<

222r Re <T1k/\, k/\> <T2k/\,k)\>

IA

1 2r 2r T
3 (ber (Ty + T,) + ber” (T71 — Tz)) -2 )1\25

Re <T1]A</\, IAC/\> <T2]%)\, ]A(A> .
Therefore, we infer that
(|<T1]A(A, ]A(/\>|2 + |<T2]A(A, IAC/\>|2)7 < % (berzr (T1 + Tz) + berzr (T1 - Tz))

=2 /{1;(1; Re <T1i%mi%)l> <T212A,]2A> .

Taking supremum over A € Q in the above inequality, we get the desired inequality. [

Next, we need the following lemma.

Lemma 2.26. [21] Let T € B(H) and let f and g be non-negative continuous functions on [0, +co) such that
f(H)g(t) =tforallt €0, +co0). Then

[, vy < || £ aTn | [lg 4D o]

forallx,y € H.
Finally, we present the following result.

Theorem 2.27. Let T1,T, € B(H) and let f, g be two non-negative continuous functions on [0, +o0) satisfying
f®)g)=tforallte[0,+c0). Then

% ITy + T2y, < ber(f2(Tal), 2 (Tal)) ber (g (|T3]), * (|T3])).
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Proof. Letky and ky be two normalized reproducing kernels of . Then, we have

| (T1 +To)ky, k '
- | Tuky, k) + Tk, & )'2
< (| Tiky, k)| + (ko & )|)2

IA

(|<T1kA,kH>' '(Tzkmky>|2)

2l amnalF o (T &+ arp&alf o (imah) |
(Lemma 2.26)
= 2((2 4T ki k) (2 (|IT3) K k) + (2 (T2 ka i) (9 (|T)) oo ) -

IN

Thus,

|<(T1 +T>) I%AJA(HMZ
2 «fz (IT41) IAC/\,’ACA> <_l]2 (‘Tﬂ)fcy,fc» + <f2 (|T2|)]A<)\,7A<A> <£72 (|T§|)f<y,f<y>) .

IA

Now, on utilizing the elementary inequality: ab + cd < Va? + c> Vb?> + d? fora,b,c,d € R, we get

|<(T1 +To)ky k >'2

1

2((2 Tk k) + (£ (TaD R ko 2) ((( Y+ (T ko))
2ber (f2(IT1l), 2 (IT2))) ber (42 (|T3]), 4 (| 2|)).

IA

IA

Taking supremum over A, u € Q, we get
STy + Tl < ber (£ (T3l £ (o) ber (¢ (|T3]), 2 (1T3).
as desired. [

If we take f (t) = g (t) = Vt in the above theorem, then we get the following corollary.

Corollary 2.28. If Ty, T» € B(H), then

% ITy + TR, < ber(ITu, |T)) ber(|T;|,|T3]).
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