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Remark on the dilation of truncated Toeplitz operators
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Abstract. An operator S, on L? is called the dilation of a truncated Toeplitz operator if for two symbols
@, € L* and an inner function u,
Souf = OPuf +PQuf

holds for f € L? where P, is the orthogonal projection of L? onto K? and Q, = I — P,,. In this paper, we study
the squares of the dilation of truncated Toeplitz operators and the relation among its component operators.
In particular, we provide characterizations for the square of the dilation of truncated Toeplitz operators 5¢ ,
to be an isometry and a self-adjoint operator, respectively. As applications of the results, we find the cases
where (S;‘,, " ) is self-adjoint (resp., isometric) but S;‘W is not self-adjoint (resp., isometric).

1. Introduction

Let L(H) be the algebra of all bounded linear operators on a separable complex Hilbert space H. An
operator T € L(H) is said to be self-adjoint if T* = T, unitary if T'T = TT* = I, and isometric if T*T = I,
respectively, where T* denotes the adjoint of T.

Let H be a subspace of a Hilbert space K and let P be the orthogonal projection from K onto H. Then
Ris called a (weak) dilation of T to K if T = PRP, i.e., Tf = PRf for each f € H (see [1] or [9]). In this case,
the operator T is called the compression of R to H. Since K = H & H+, it follows that R is a dilation of T if
and only if the matrix representation of R has the following form

[ 2)

The concept of a dilation is related to model theory which means the representation of some class as pieces
of operators in a smaller, better-understood, class.

Using the concept of singular integral operators, the authors in [13] introduced the dilation of truncated
Toeplitz operators on L2. Moreover, the authors in ([10], [11], and [13]) have studied normality and
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hyponormality of the dilation of a truncated Toeplitz operator on L2. In 2018, Gu and Kang [7] gave a
complete characterization of self-adjoint, isometric, coisometric and normal truncated singular integral
operators.

Let T € L(H). Then we consider the following question. When does T have a square root?, i.e., does
there exist an operator A € £L(H) such that T = A?? Any operator does not have a square root, in general.
In 1970, Halmos ([9]) proved that the unilateral shift given by Sf = zf on the Hilbert Hardy space does not
have a square root. In 1971, H. Radjavi and P. Rosenthal ([18]) studied roots of normal operators. In 1999, M.
K. Kim and E. Ko ([14]) studied square roots of hyponormal operators. In 2003, E. Ko ([15]) studied scalar
extension of square roots of semi-hyponormal operators. Recently, ]. Mashreghi, M. Ptak, and W. Ross
([12]) have studied the square roots of the unilateral shift, Toeplitz operators, truncated Toeplitz operators,
the Hilbert matrix, certain compressed shifts, and the Volterra integral operator, respectively.

In this paper, we concentrate on the following questions; When operators have special properties, i.e.,
isomerty, unitary, etc, we study their square roots. In particular, when such square roots become the dilation of
truncated Toeplitz operators, we consider the connections of such dilation and their symbol functions.

2. Preliminaries

Let L? be the Lebesgue (Hilbert) space on the unit circle and let L™ be the Banach space of all functions
in L? essentially bounded on dID. The Hilbert Hardy space, denoted by H?, consists of all analytic functions
f on D having square-summable Taylor coefficients at 0. Let P denote the orthogonal projection of L? onto
H?. Then Q = I — P is the orthogonal projection of L? onto (H*)* := L2© H> = L> N (H?*)*. For any ¢ € L*,
let M,, denote the multiplication operator on L? such that M,,f = ¢f for f € L2. For any ¢ € L™, the Toeplitz
operator T, : H* — H? is defined by the formula

T(PfZP((Pf)rfEHZ

where P is the orthogonal projection of L? onto H?. It is known that T,, is bounded if and only if ¢ € L*,
and in this case, [Tyl = [|¢llco-

In 2007, Sarason [16] initiated the study of truncated Toeplitz operators which are the compressions of
Toeplitz operators. A function u € H? is called inner if [u| = 1 a.e. The model space is given by K2 := H*ouH?>
for a nonconstant inner function u. For any ¢ € L* and an inner function u, the fruncated Toeplitz operator
Al Kz — K is defined by the formula

ALf = Pu(f) for f € K,

where P,, is the orthogonal projection of L? onto K?2. Various aspects of this operator were studied in [3]-[8],

[16], and [17]. For any ¢ € L™ and an inner function u, let E:‘;, denote the operator on (K2)* := L?> ©K? such
that

AL f = Qu(pf) for f € (K2)*

where Q,, is the orthogonal projection of L onto (K?2)*. Recently, AZ‘) is called a dual truncated Toeplitz operator
(see [2] and [5]). Let I'y, be the truncated Hankel operator of K2 to (K2)* such that

[ = Qu(pf) for f € K.
Let f:”(; be the operator of (K2)* to K2 such that

Ty f = Pulef) for f € (KD)*.
It is obvious that (Ag)" = A% and (ZE;)* = f’% So we can consider the following dilation of a truncated
Toeplitz operator Al on K & (K;7)* = L? (see [13]).
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Definition 2.1. An operator S¢ , on L? is called the dilation of a truncated Toeplitz operator if for two symbols
@, € L* and an inner function u,

St f = PPuf + 0Quf

holds for f € L? where P, is the orthogonal projection of L* onto K? and Q, = I — Py,. In particular, if p = ¢, then
Sgp = My is a multiplication operator on L?. Moreover, if ¢ = 1 is inner, then || = 1 a.e. Thus S =My isa
unitary operator on L2.

Notice that an operator S, € L(L?) has the following block matrix representation:

Al Eﬁ]
Ty Al

u
5 (2

on K @ (K;)* = L? where AY, fg, Iy, and ZE[’} are defined as before.

We outline the paper as follows. In Section 2 we study the squares of the dilation of truncated Toeplitz
operators. In particular, we give necessary and sufficient conditions for the dilation of truncated Toeplitz
operators to be the square roots of an isometry and a self-adjoint operator, respectively. As applications for
such operators, we find the cases where (Sz, 1;;)2 is self-adjoint (resp., isometric) but S; " is not self-adjoint
(resp., isometric).

3. Main Results

u ﬁ/
In this section, we study the square of the dilation of a truncated Toeplitz operator Sop = {I‘ZJ ;fl:é on
» 4

L? and the relation among the components of SZ) . In 2019 the authors in [10] provided a characterization

of the self-adjointness of the dilation of truncated Toeplitz operators. We first study the self-adjointness of
the square of S$ " where ¢, 1 € L.

Lemma 3.1. ([10]) Let ¢ € L* and let u be a nonconstant inner function. Then the following statements hold.
(1) 1}2: 0 if and only if ¢ € C.

(i) I, = O if and only if ¢ € C.

(iii) AT”;, = 0ifand only if o = 0.

Lemma 3.2. ([10, Theorem 4.2]) Let @, € L™ and let u be a nonconstant inner function. Then S is self-adjoint
if and only if for somea € C, o —p=d € R, =, ¢ — ¢ € C, and d = au(0) + au(0) hold.

In the following theorem, when the square of the dilation of a truncated Toeplitz operator Sy 18
self-adjoint, we consider the relation among its component operators.

Theorem 3.3. Let ¢, € L™ and let u be a nonconstant inner function. If v = @ — 1, then (S; w)Z is self-adjoint if
and only if the following equations hold.

() ¥y - (T3Ty) = A"
(ii) Ty, = (F;’l"i
(iii) A;‘Fi - ([TAY) = _FZZ—W'

2_527
¢

) = —A%z, and
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. Ay T 4 I
Proof. Since S, , = r A?y by (1) and so (S, )" = F% ;%,we get that

u\2 4 TuTU uTu 4 TU AU
(Aw) +1"¢1"(P A¢F¢+FLA¢

Au T 2
F(';,A(‘I‘) + AQF; I’ﬁl‘jl’i + (Az)

2 _
(S, =

and
(A“)2 + TET®  AUTH 4 THAL
((Su )2)* — P _f P q’ﬂ:f _({i, Y .
144 TLAL + ALT  TUTE + (AL)?
A

If (S, w)z is self-adjoint, then we get from (2) and (3) that for any f € K2,
(Ag)*f +TTy f = (AL)*f ~ T f
= Pul@Pulpf) + YQu(@f) ~ PPu@f) ~ P /)]
= Pulo( = Q@) + ¥Qulef) = I~ Q@S) ~ PQu ]
= Pul@’f— (@ - P)Qu@f) — 9 f + PQu@f) - PQuUf)]
= P@*-9)f — (¢ - )Qu(@f) + PQu(@ - ¥) )]
= Al f T T f+TITE L f.

Setv =@ — . Then

0

_ u _fu T ru , Tutu
0 = A% L -TT my+Tir
= A" —Tir,+TIr

— Au

4~ DTy + (OTy)".

4
Hence — ~

T, — (I0Tg)" = AZZ_EZ.
Similarly, we get that

u

uTn _ (TUTHV — _ Au
l"vl“lp (l“vl"w) = AL/JZ—EZ'

Finally, it suffices to show that (iii) holds. For any g € (K?)*, we get from (2) and (3) that
AR + Ty~ AGTeg ~ToAsy

= PulePu(g) + $Qu(tg) — PPu(@g) — PQu()9)]

= P+ 0)Pu(g) + vQu(Wg) — PP.®9) — pQu(Pg)]

= PuvPu(g) + Y{Pu(¥g) + Qu(g)} — PPu(®9) — PQu(9)]
= PuvPu(Yg) + Y79 — PP + P)g) — PQu(y9)]

= PJvPu(Yg) + Y*g — PPu(Vg) — PYg]

u

= ATUg+T" __g— (TUA%)g.
Lyg+ T, 9 IvAL) g

0

Hence we have . .
AT, — (AL = _r?PZ—W'
The converse statement holds by a similar method. So we complete the proof. [

8768

)



E. Ko, J. E. Lee / Filomat 37:26 (2023), 8765-8776 8769
As some applications of Theorem 3.3, we obtain the following corollaries.

Corollary 3.4. Let ¢, € L*, let v = ¢ — 1, and let u be a nonconstant inner function. Assume that (S; lP)Z is
self-adjoint. Then the following statements hold.

(i) ﬁ‘l"” and F”ﬁ are self-adjoint if and only if Y? = EZ and ¢* — @ € uH? + uH2.
(i) Ifv=@p -1 eC, then vl"” = (vF )" holds.

Proof. (i) If (S* l,b)z is self-adjoint, then (i), (ii), and (iii) in Theorem 3.3 hold. If ¢? (p € uH? + uH? and
Y? = Lp it follows from [10] and [16] that AZ)Z—? =0and A:Z - = 0. Hence F}fl’ pand T f,’l”z are self-adjoint

from Theorem 3.3. ey
Conversely, if F”F“ and F”l"” are self-adjoint, then A("P2 5= 0and A* _, = 0 from Theorem 3.3. Hence
- vy
@ - 9> € uH? + UH2 and Y? = ¢ from [10] and [16].
(i) Ifv=¢p—-1y eC, thenl’ =0 =TI% by Lemma 3.1. Since (5" w)z is self-adjoint, it follows from Theorem
33thatA, =0, Ar”\i = 0,and AYTY = _Flz . Then ¢? — ¢° € uH? + WH2 by [16] and ¢ = 3 by [10].
lp _

Hence 0 = A"F“ + I’E@ . AVF v F” For any g € (K?)*, we have

0 = (Azrv ru )g
= P,[vP, (W) llw]

= VPu(lzbg) vP (I,Dg)
= (VI“” VF:L)g.

Hence vfg — _F” = 0. So, vF“ = (vF ) holds. O

Corollary 3.5. Let ¢,y € L™. If ¢* — ? € uH? + uH?, Y=, and p — = id € C for d € R, then (S" ¢)2 is
self-adjoint, but SZW is not self- ad]mnt

Proof. If ¢ = —¢, then ¢* = ¢ and so AIMPZ—JZ = 0. Since ¢* - " € uH? + uH?, A:,Z_az = 0 by [16]. If
@ —1 =1id € C, then F“ = 0 and 1’:”\/ = 0 by Lemma 3.1. Thus (i) and (ii) of Theorem 3.3 hold. On the
other hand, since ¢ = —1/) and F” = 0 we get that forv =¢ -1,
AUTY = (TLAG) +T0 = ALT +T7
v Vo9 v-py
- All ru + 1"1/!
-9 )y
_ u
= A T“ +FZ Aty

For g € (K?)*, we have

(AT = (UARY + T )9 = (ART) + 17 ))g = (id — id)Pu(pg) =

Hence (Sj, 1p)z is self-adjoint from Theorem 3.3. But, since ¢ # 1, S,y is not self-adjoint from Lemma 3.2. [J

As some applications, for given ¢, we want to find conditions of 1 for (Sg, w)z to be self-adjoint.
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Corollary 3.6. Let u(z) = z and ¢(z) = a1z + a_1z for nonzero aj,a_1 € C. If (S, lp)Z is self-adjoint where
P(z) = L2, bz, then a1b_y + a_1by is real.

j:—oo

Proof. Assume that (S; ¢)2 is self-adjoint. If u(z) = z, then K2 = v{1}. Form Theorem 3.3, we get that

i1 — (TiTh)'1 = A, 1 (4)

2_62 .
Now, forv=¢ -1,
TiT81 = THQu(mz +a-12)
= Tiaiz +a.2)

= Pz +a1z— ) a1z +a1z)]
= 2ma_y — Py[(mz +a12)Y],

P[@iZ + a2) @z + a1z = Qu(¥)]
2 — Pul@z + a12)Qu(y)],
and A;2—¢21 = 2(a1a-1 — ma—7) holds. Thus (4) implies

(TiTy)1 = T2

P,l(a1z + EZ)Qu(E) = (mz +a_1z)y] = 0. (5)

Set (z) = Y. _., bjz/. Then Qu(y) = Y b_j? + Z];l_oo b_]Ej . Therefore, (5) becomes

j:—oo

00 -1 00
0 = Pl@z+aa( b7 + ) bF) ~(mz+aad) ) bl

=R =
= a,lbl + alb,l — 611[771 - Llel. (6)

Hence a;b_1 + a_1by isreal. O

Example 3.7. Let u(z) = z", p(z) = iz + %Z, and Y(z) = 2iz + z. Since a_1by + a1b_q1 = 2i is not real, (Sz 1P)z is not
self-adjoint from Corollary 3.6.

Corollary 3.8. Let u(z) = z? and ¢(z) = a1z + a1z for nonzero a,a_y € C.. If (S;‘) ¢)2 is self-adjoint where

Y(z) = Z}'i_oo bizf, then ay(a_1 + b_1) is real and ale_z =mb_,.
Proof. If u(z) = 2%, then K2 = V{1,z}. Thus, forv = ¢ — 1,

[Tz = THQu(@z? +a1)) = Ti(@2?)
= P,mz® +a_qaz - Ll122l/)]
= a.mz - P,[mz*Y], (7)

i)z = TiTYz
= Pl@z+a2)@a7 - QW)
= Pumasz+a.2 — @z + 232)Qu(Y2)]
= @z - Pul@z + i2)Qu(@2)], ®)

and

A oz = Pl@?-3)]
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P (@} —a7")2 + (@) — )z + 2(may — ma1)z]
2(a1a0-1 — ma_1)z )

holds. From (7), (8), (9), we obtain that

amz — Pylmz* Y] — maz + Pul(@z + a12)Qu(Y2)] = 2aa_y —aa)z. (10)

Thus _
P,[@1Z + 132)Qu(yz) — mz*P] = (ma_1 — maq)z.
Set Y(z) = Y. % _. bjz/. Then (10) implies that

(o8]

0 = Pl@z+Ti)Qu Y bz )~ Y b~ (@an ~ma)z

el et
= P,[@z +a-1z)( i bz~ i ) -y i biZ*?) = (ma- — aa—)z
jm—o
= P[alzbzf a_sz]+alzbzzf ib_ ]—alzbz]+2]
jE=o0 j==oo j==oo

—(a1a1_—a1a_1)z

= P [a(b 1Z+b 2Z + - )+ﬂ1(b22 +b3Z + - )
+a_ 1(b 1Z +b 2Z +b 3Z + - )+61 1(b2+b32+b422 )—al(b,2+b,1z)]
—(ma- —ma—)z

= mbaz+a1by —ay(b_r +b_qz) — (@41 — aa_)z

= (mb_y —aby —ma +ma_1)z + Eb_z —a1b_s.

Hence a1(a_1 + b_1) = ay(a_1 + b_1) and a_1b; = a1b_, hold. [

Proposition 3.9. Let @, ¢ € L* and let u be a nonconstant inner function. Assume that (S;‘) w)z is self-adjoint. If
@ €C, then

ALY = AT + T

(AD" = pAL+ oIy
where ¢ € Ror ¢ € iR.

Proof. If ¢ € C, then the equations of Theorem 3.3 become

Al =0,
-ryry +r1r~z— —AT, (11)
vy
ATV +A“1"" =-T" .
-y Y V2-gy

Since (p eC and @* (p € uH?+uH? by [16], it follows that ¢ = r or ¢ = ir wherer € R. (Indeed, if ¢ = a+10i,

then @2 (p = 4abi € uH? + uH?, which means thata = 0 or b = 0. Hence @ =ror @ =irwherer € R) If
@ =1, then the second and third equations of (11) give that for all g € (K2)*,

QuUPL ()] — QuBPu(Pg)) — Qu(t?g) + Qu(p 9) = 0 (12)

and

rPu(1pg) — PulyPu(g)] + rPu(Pg) + Pu(yp?g) — rPu(Pg) = 0. (13)
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Subtracting (13) from (12), we have

0 = YPu9) ~ QuTPF) ~ Y7 + Qul g) = rPuy)
P = Q)W) = Qu@ - Q)W) - ¥*g + Quy g) — rPu(yg)
—lPQu(W) + Qu(l#Qu(wg)) - rpu(d’!])

forall g € (K2)*. Hence (Z%)z = gb;% + (pfi. Similarly, if ¢ = ir, then the second and third equations of (11)

give that for all g € (K?2)*,

QuUPL()] - QuBP(Pg)) — Qu(t?g) + Qu(p 9) = 0 (14)

and

irPuy(Yg) — PulyPu(g)] - irP,(g) + Pu(yg) + irPu(¢g) = 0. (15)
Subtracting (15) from (14), we have
YP,(P9) - QuBP. (D)) - V29 + Qu( g) — irPu(ig)

= Y- QW) ~ QU ~ Q@) — g + Qu(P 9) — irPu(tg)
_IPQu("bg) + Qu(pou(lpg)) - iT’Pu(BW)

for all g € (K?)*. Hence (/’%)2 = 1#1’4% + (pfi where p e Rorp €iR. [

0

Corollary 3.10. Let @, € L™ and let u be a nonconstant inner function. Assume that (S5, ¢)2 is self-adjoint. If
Ie = Oand% =0, thenp € Rorp € iRand { € R.

Proof. Since l:g = 0gives ¢ € Cby [10], it follows from Proposition 3.9 that ¢ € R or ¢ € iRand (;1%)2 = IPIX%
Since ¢ € C, (;%)2 = zp;% gives that EZ =Y. Thusy = ¢. O

Proposition 3.11. Let ¢, € L* and let u be a nonconstant inner function. Assume that (S; 1P)2 is self-adjoint.
Then the following statements hold.

(i) If Y € C, then (A(‘:))2 is self-adjoint and (A% + E)l"% =0forp e Rorip €iR.

(i) If AE’) = 0, then (AY)? is self-adjoint and pAL K < K.

Proof. (i) If i € C, then Theorem 3.3 forces that

Lpry - (Crp) =AY, .

AT =0,
e
(CpAy)" + I =0.

Since 1 € C and A/i‘z\; = 0, it follows that ¢? = EZ by Lemma 3.1. Thus ¢ € R or ¢ € iR. Hence
Py
rele — Tl = A(’;Z_az and (A% + E)I’% =0for ¢ € Ror ¢ € iR. On the other hand, since I';I'¢ — (TEI0)" =

A;‘Jz_az, it follows that for all f € K2,

0 = Pu[(PQu((Pf) - (P((Pf) - aQu(af) + a@f)]
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Pu[_(PPu(qof) + apu(af)]
—(AQYf + (AD)f. (16)

Thus (Af)* = (A%)z. Hence (Ay)? is self-adjoint and (A% + E)ﬁ% =0fory € Rory €iR.
(ii) If AT;; =0, then 1) = 0 by Lemma 3.1 and so Theorem 3.3 gives that

Tors - @y = A,
(B ALY = 0.
Since (16) means that (A%)* = (A%)2, we obtain that (A)? is self-adjoint and T} A¥, = 0. Hence Q,[pAl f] =0
for any f € K. Thus pAl f € K for any f € K. Therefore, pALK; c Ki. O

We next consider an isometry of (S; 1p)z where ¢, 1 € L*. In 2018, Gu and Kang in [7] showed that S;, "
is an isometry if and only if it is unitary. So we omit its proof.

Lemma 3.12. ([7, Theorem 4.4]) Let @, ¢ € L* and let u be a nonconstant inner function. Then the following
statements are equivalent.

(1) S; " is an isometry.

(ii) lpl =1, Y| =1, and 9y = ¢ € C, where |c| = 1.

(iii) S;/ " is unitary.

From Lemma 3.12, it is easy to show that if Sy, 18 an isometry, then (S; lp)z is also an isometry. However,
the converse does not hold in general. So, we next consider S| , and the relation among its component

operators when (S’(;) w)z is an isometry.

Theorem 3.13. Let @,y € L™ and let u be a nonconstant inner function. Then (Sg, w)z is an isometry if and only if

AVAY 4 TETW  AUTH L TEAU
T S ) PR
THAY 4+ ARTH  TUTE 4 AVAR 700
B A R L
Proof. From (2) and (3), we obtain that
((Su )2)*(511 )2_ a ﬁ (17)
oY ey’ Ty o

where «, §, ¥, and 0 are to be determined later. Now,

Q
|

uy\2 uTU uy\2 u Ut U U AU U AU uTU

[(AE) + I’aI’a][(A(p) + I’QI‘({)] + [A¢r¢ + FﬁAal[FWA‘P +A lpr@]
UN2( AUN2 UN2T U TU UTU ( AUN2 UTUTUTU

(AL (ALY + (AR)TyTy + TiT4 (AL + TETA Ty

117 u u 117’7 u 7’7 u u 777 U
+A5F¢F¢A(p + Aal“ﬁA wl“@ + l"aAal"q,A(p + F<TJA$A wl"@.
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For any f € K72, we have

af = Pu@Pu{@Pu(@Pu(@ )} + PPu{PPu(pQu(@ )} + PQuipPu(@Pu(@ )}
+PQuYP (W Qu@ )} + PPu(PQu@Pu(@ ) + PP Qu@ )
+9Qu {EQu (PPN} + ¢Qu {EQu(pou @l
= Pul@PullplPPu@ )} + @Pul@yQu(ef))
+0Quf E@pu((Pf) b+ 9Qul |¢|2Qu((Pf)

= [ARALRAL + ALTE T+ TIT AL+ TZAS TS,

Hence

@ = ALAL LAy + ASTE Ty + ToT% Ay +TZAR T

On the other hand, we get

B o= [AL+ ﬁrﬁ][A“ﬁT + f‘u’Au] (A% ru + mu][r“ ru + (A A)?]

(A”)ZA“I’“ +(A“)ZI‘“A“ I‘H‘EA”I‘“ rurz)rﬁA;

+A%F(Pjﬁ;ru + AL e “(Ay A2 + rmu T ru + Mu (A Al Y2,
For any g € (K?)*, we have

Bg = Pu@PABP.(PP.(Y9))} + PPAPP.(WQu(9))) + PQIDPL(PPu(9)))
+9Qu{PPu(YQu(Y9)} + PPu{PQu(@Pu(¥9)} + PP {PQu (Y Qu(yg))}
+9Qu{YQu(PPu ()} + QYW Qu ()]

= Pu@PullplPu(¥9)} + PP.{PYQu(1g)}
+0Qu{pPu ()} + PQuAlYPQu(Wg)}]

—_ u u u uu u utTu u u 2 u
= [ARAYLTY + Tars Ty + ALTE A+ 2L AYly.

So,

B = AfAueTy + ToTt T + ALTE A+ TEAL A,
Similarly, we can show that

y =ThAlo Ay +T4TE T + AITS Al + ATALT,

and

0= F“A‘” ‘21"” +F“ F“ A” +A” 1"” F” +A44|LI‘WA”.

Hence we can conclude that

u Au 7 u utTu u
a p\_ 45N TIFG, A rw”J‘W
v 0 LAl + AT r“r" +AJX“ . o
Il b Py Iy

Since (S(‘;, xp)Z is an isometry if and only if &« = 6 = I 'and § = y = 0 by (18), we complete the proof.

As some applications of Theorem 3.13, we present the following corollaries.

8774

(18)
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Corollary 3.14. Let @, € L™ and let u be a nonconstant inner function. Then the following statements hold.
@ 1f (S(‘; ¢)2 is an isometry and ¢ € C, then

PAT (KD < (KR and Ty 9 < G

where |c| = 1.
(ii) If @, Y are inner functions and (S;/ ¢)2 is an isometry, then Sy, 18 an isometry if and only if I (‘;a =0on ran(S; w).

Proof. (i) If ¢ =c € C, thenby Lemma 3.1, I'{ = 1"(% = 0. Then by Theorem 3.13, (S(‘; w)z is an isometry if and
only if

A ATy, AL T
r = u uTuU uTu u Au
FJI ot Al#r@ FET + AJW 0 A
_ (RS
S \T u
where R = A“Al"le“ S = A"All‘lzf“ A“FE’IPAZ), F“Arle“ ;XT’F’LA“ and U = F" ll‘lzf” +A” " F”
rﬁfyw;fi + A” ' WA” If (S 1,0)2 is an isometry, then R = [. Hence for any f € K2 we get that f R f=
AZALAC f. So c| = 1. Since S = 0, for any g € (K?2)* we obtain that
0=Sg = [AZAll‘lzl’“ +A”I’“ Al olg
= Puleyg +TPQu(yg)]-
Then leA lepd = Vg + cpQu(Pyg) € (K2)*. Thus I’DATRP((K‘% L c (K2)* where |c| = 1.

Similarly, since T = 0, we get that for any f € K]

ll’

0= [TLAfL AL + AT AL f = Quled f + PQuEP ]

Thus ¢ f + Q. (Y f) € K2 for any f € K2. Hence @FLC@?@ c K2 where |c| = 1.

(ii) From Theorem 3.13, we get that S* o is an isometry if and only if

AJ“ + U™ AUTH +1““A“

L 7 ey Tyl = (5" Y.
Lq" L+ ALY rzr“ +A44“ . o
lol v e v P [l

Hence 57 y Is an isometry if and only if the following equations hold;
AL (A\<p|2 D+ I”‘ F“ =0,
utTuU u _ _
AEF + T (A|1p|2 ) =0,
I (A“ -+ A“ F“ =0, and

o
FEF“ + AL (Aw)|2 - ) =0.
Since A} , = AL , = 1, it follows that S” is an isometry if and only if the following equations hold;
ol = g y y

ATE =0, TET™ =0,T“T =0, and A“T" = 0.
[l [T v PP VAR

u u u — 1 u u * u — u 1 o 1 1 u —
Thus (S ¢) (F FW) =0,ie., (FW @ (FW) )S(P, 6= 0. Therefore, S(P’ » is an isometry if and only if I*% =0

on ran(5" E]

o)
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Corollary 3.15. Let ¢, € L™ be inner functions and let u be a nonconstant inner function. If (S, ¢)2 is an isometry

and @ is a nonconstant function on ran(S(‘; 1/;)' then S;’J " is not an isometry.

Proof. The proof follows from Corollary 3.14 (ii) and Lemma 3.12. [J
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