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On generalized almost para-Hermitian spaces
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Abstract. Recently, a generalized almost Hermitian metric on an almost complex manifold (M, ) is deter-
mined as a generalized Riemannian metric (i.e. an arbitrary bilinear form) G which satisfies G(JX, JY) =
G(X,Y), where X and Y are arbitrary vector fields on M. In the same manner we can study a generalized al-
most para-Hermitian metric and determine almost para-Hermitian spaces. Some properties of these spaces
and special generalized almost para-Hermitian spaces including generalized para-Hermitian spaces as
well as generalized nearly para-Kéhler spaces are determined. Finally, a non-trivial example of generalized
almost para-Hermitian space is constructed.

1. Introduction

This paper is devoted to the study of generalizations of Hermitian spaces, which generalize the well-
known Kéhler spaces. Asis known, Kidhler spaces were introduced by Kahler in 1934, but independently of
him, these spaces were also studied by P.A. Shirokov, see [11, pp. 160-167]. Generalizations of these spaces
in various directions can be found in research [2], papers [6, 21] and monograph [11]. Holomorphically
projective mappings of Kéhler spaces have been studied by Japanese mathematicians since 1950. One of the
continuations is the 1971 paper [20] by M. Prvanovi¢. Results on holomorphically projective mappings and
transformations are in [10, 11]. An interesting result on holomorphically projective mappings of generalized
Kéhler spaces can be found in [16, 19, 22].

These spaces and mappings are generalized under the notion of F-structures, which have more general
consequences, see e.g., [3, 7]. In this paper, we study generalized almost para-Hermitian spaces. Some
properties of these spaces and special generalized almost para-Hermitian spaces including generalized
para-Hermitian spaces as well as generalized nearly para-Kahler spaces are discussed. Finally, an example
is presented in explicit form.

2. Almost Hermitian spaces and their generalizations
An almost complex structure on a real differentiable manifold M is a (1, 1)-tensor field | such that [23]

]2 = _I/
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where [ is the identity operator.

Let X(M) be the Lie algebra of smooth vector fields on M and let us assume that X, Y € X(M). A real
differentiable manifold M endowed with an almost complex structure | (J> = —I) is said to be an almost
complex manifold or an almost complex space [23]. An almost complex space (M, ]) is said to be an almost
Hermitian space if there exists a Riemannian metric g on M such that [23]

gUJX, JY) = g(X,Y),

ie.,
—9(X,JY) = g(JX,Y),

which evidently means that the fundamental 2-form
F(X,Y) = g(X,]Y)

is skew-symmetric.

M. Prvanovi¢ in 1995 [21] considered an almost Hermitian space (M, g, ]) as a particular generalized
Riemannian space (M, G = g+F) in the sense of Eisenhart [5] and gave a classification of almost Hermitian
spaces which heavily depends on the Einstein connection D determined by (DzG)(X,Y) = 2G(X, T(Z,Y)),
where T is the torsion tensor of D. The classification given in [21] is analogous to the classification of
A. Gray and L.M. Hervella [6]. In [19] a generalized Hermitian metric on an almost complex manifold (M, J)
is defined as a generalized Riemannian metric in the sense of Eisenhart G that is invariant by the almost
complex structure J, i.e.,

GUX,JY) = G(X,Y),
which further implies that

SGUX, ) = GV, X)) = 3G, V) = 61, X))
ie.,
90X V) =g(X,Y) and  FGX,JY) = F(X,Y)

Definition 2.1. [19] An almost complex manifold (M, |) endowed with a generalized Hermitian metric G is called a
generalized almost Hermitian space and it is denoted by (M, G, ]).

In 2001, Minci¢, Stankovi¢ and Velimirovi¢ [14] gave a definition of a generalized Kéhler space assuming
that

]2 = _I/
9(Jdi, J95) = 9(9:,9)),
(V2))9; = 0and (V, ))d, = 0,

1
where V is a non-symmetric linear connection explicitly determined by [5]

1
9(2.2,,3) = 5 (36(9;,0 + Y62, 90 - 4G, 3))

where J; = %, dj = aix/ and J, = ﬁ is standard orthonormal basis of the tangent space T,,(M) at the point p

2 1
of the manifold M. As is well-know a non-symmetric linear connection V which is dual to V is determined

by

2 1
VxY = VyX +[X, Y],
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or in the standard orthonormal basis as
2 1
V,;,B]» = V‘;]&i.

0
Also, as is well-know the torsion-free linear connection V that is associated with the non-symmetric linear

1 2
connections V and V is determined by

In [16] a more general definition of a generalized Kéahler space in the sense of Eisenhart is given as in
Definition 2.2.

Definition 2.2. [16] A generalized Riemannian space (M, G) is called a generalized Kéhler space in the sense of
Eisenhart if there exists a (1, 1)-tensor field | on M such that

]2 == I/
90X, JY) =9(X, Y),
(Vi)Y =0,

0 1 2 1
where VxY = 3(VxY + VxY) is the symmetric part of the non-symmetric linear connection V and I is the identity
operator.

Definition 2.3. A generalized Kiihler space in the sense of Eisenhart (M, g, ]) is said to be a generalized Kahler

1 1 1
space in the sense of Eisenhart with parallel torsion if the torsion tensor T(X,Y) = VxY — VyX — [X, Y] satisfies

01 0 11 2
VT =0, where VxY = E(VXY + VxY).

3. Almost para-Hermitian spaces and their generalizations

An almost product structure on a real differentiable manifold M is a (1, 1)-tensor field ] such that [4]

where I is the identity operator.
Let (M, ]) be an almost paracomplex manifold of dimension 2n > 2 and g be a pseudo-Riemannian
metric on M. The space (M, g, ]) is said to be an almost para-Hermitian space if the condition [4]

gUX,Y) +g9(X,JY) =0,

is satisfied. Almost para-Hermitian spaces were thoroughly studied for instance in [1, 4, 8].
In the same way as M. Prvanovi¢ did in [21] in the case of almost Hermitian manifolds and similar
approach was also used in [9] we can use the following 2-form

F(X,Y) = g(JX, Y) = —g(X, ]Y) = —g(JY, X) = —F(¥, X)
and consider the bilinear form

G'H(X,Y) = g(X,Y)+E(X,Y),
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which is neither symmetric nor skew-symmetric.
Let us consider a 2n-dimensional smooth manifold M endowed with an almost para-complex structure
J and a bilinear form G which satisfies

GUX JY) = -G(X,Y),
or equivalently
GUX,Y)+G(X,JY) = 0.

The bilinear form G, which is neither symmetric nor skew-symmetric, can be described via its symmetric
part g and skew-symmetric part w as follows

GXY) = g9(X,Y) + 0(X Y).
It is not difficult to conclude that the metric g and 2-form w satisfy
gUXJY) = —g(X,Y) and  w(JX,JY) = ~w(X,Y),
Therefore,
gJX,Y)+g(X,JY)=0 and (X Y)+w(X,]JY)=0.

Obviously, the bilinear form G is different than G*.
Let (M, J) be an almost paracomplex manifold and G be a generalized pseudo-Riemannian metric on M.
If the equality

GUX,Y)+G(X,JY) =0,

holds, then the metric G is said to be a generalized almost para-Hermitian metric and consequently the space
(M,G = g+ w,]) is called a generalized almost para-Hermitian space.

Definition 3.1 (Generalized para-Hermitian space). A generalized almost para-Hermitian space (M, g, |), where
] is an integrable almost para-Hermitian structure, is called a generalized para-Hermitian space.

It is well-known that the almost paracomplex structure | is integrable if and only if the Nijenhuis tensor
identically vanishes, i.e., [23]

NX,Y) =[JX, JY] - JUX, Y] = JIX, JY]+ [X, Y] = 0.

As a particular case of generalized almost para-Hermitian space we can consider a generalized nearly
para-Kahler space.

Definition 3.2 (Generalized nearly para-Kihler space). A generalized almost para-Hermitian space (M,G =
g+ w,]) is said to be a generalized nearly para-Kéhler space if

(VIDX =0,
where VY is the Levi-Civita connection of metric g.

The definition of generalized hyperbolic Kdhler spaces introduced in [15] was extended in [? ] and
some other types of generalized para Kéhler spaces were described in [18].

Definition 3.3 (Generalized para-Kahler space). [? | A generalized pseudo-Riemannian space (M, G = g + w)
of dimension 2n > 4 is called a generalized para-Kahler space if there exists a (1,1)-tensor field | on M such that

J* =1,
g(UX,JY) = - g(X, Y),
(V4))Y =0,

where VY is the Levi-Civita connection of metric g and I is the identity operator.
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In the same manner as Example 3.1 in [16] here we construct Example 3.1.

Example 3.1. Let us consider a space (M, G = g+ w, |) of real dimension n = 4, where the components of the bilinear
form G = g + w and the almost product structure | are, respectively, given by

et pcos? O 0 0 0 -1 00
_ 2 _p2(t+7)
y_|~pcostO —e 0 0 m_|-1 0 00
(g,]) = 0 0 ({)2 sinz 0 —go(t + 1’)2 and (L) 1o o o 1l
0 0 Pt +1)> —¢?sin*0 0 0 10

where t,r, # 0and 0 # kr, k € Z.
The bilinear form G = g + w has non-trivial components of the symmetric part g and the skew-symmetric part w
that are respectively given by

g2t 0 0 0 0 @ cos? 0 0 0
0 -t 0 ~pcos?6 0 0 0

@i =1 o 0 ¢?sin?0 0 and (@) =| " 0 0 —pt+r?|
0 0 0 —@?sin® 0 0 0 P(t +1)? 0

Obviously, the metric g is indefinite. Moreover, det(g;j) = ¢***p*sin* @ # 0, which means that the metric g is
reqular. The components of the inverse metric g~ of the metric g are given by

2t g 0 0
- 0 _ 6—2(t+r) 0 0
) = 1
(g ) 0 0 @?sin’ 0 0
0 0 0 B @?sin® 0

It is not difficult to check that qu]f]? =—Gij e, ]fgpq]j = -Gij:

0 -1 00 et pcos?0 0 0 0 -1 00
-1 0 0 0| |-pcos?O —eXtn 0 0 -1 0 00
0 0 0 1] 0 0 P*sin’0 —pt+r)?| [0 0 0 1
0 0 10 0 0 pt+r? —¢?sino) (0 0 1 0
et pcos?0 0 0
—pcos’O —eXH 0 0
T 0 0 P*sin?0 -t +71)? |
0 0 p(t+71? —¢?sin’0

We can conclude that the space (M,G = g + w,]) is a generalized almost para-Hermitian space. The non-zero
components of the Riemannian curvature tensor R;’jk that corresponds to the pseudo-Riemannian metric g are given

by

cos?9 1
RY . =———+— —1,
343 sinf@  ¢?
3 (p? —1)sin® O + ¢? cos? O
Ry =~ :

@2 sin O
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