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Real hypersurfaces in S6(1) equipped with structure Jacobi operator
satisfying LXl = ∇Xl

Djordje Kocića

aFaculty of Mathematics, University of Belgrade, 11000 Belgrade, Serbia

Abstract. The study of hypersurfaces of almost Hermitian manifolds by means of their Jacobi operators
has been highly active in recent years. Specially, many recent results answer the question of the existence
of hypersurfaces with a structure Jacobi operator that satisfies conditions related to their parallelism. We
investigate real hypersurfaces in nearly Kähler sphere S6(1) whose Lie derivative of structure Jacobi operator
coincides with the covariant derivative of it and show that such submanifolds do not exist.

1. Introduction

An almost Hermitian manifold with an almost complex structure J and the Levi-Civita connection ∇̃ is
respectively Kähler or nearly Kähler if the tensor field G(X,Y) = (∇̃X J)Y is vanishing or skew-symmetric.
In [8], it was shown that an arbitrary nearly Kähler manifold can be locally decomposed into manifolds of
three particular types, 6-dimensional nearly Kähler manifolds being one of those types. It is known, see [3],
that there are only four homogeneous 6-dimensional strict nearly Kähler manifolds: the six-dimensional
sphere S6(1) , the manifold S3

× S3, the projective space CP3 and the flag manifold SU(3)/U(1) ×U(1).
If M is a hypersurface of an almost Hermitian manifold with a unit normal vector field N, the tangent

vector field ξ = −JN is said to be characteristic or the Reeb vector field. The Jacobi operator with respect to
a tangent vector field X on M is given by R(·,X)X, where R is the Riemmanian curvature of M. For X = ξ
the Jacobi operator is called structure Jacobi operator and is denoted by l = R(·, ξ)ξ.

We say that a hypersurface M of an almost Hermitian manifold is Hopf if ξ is principal, that is, Aξ = αξ
for a certain function α on M, where A is the shape operator of the hypersurface. We also note that then the
function α is locally constant, see [2]. The classification of the Hopf hypersurfaces of the sphere S6(1) is well
known. Such hypersurfaces are either totally geodesic spheres or tubes around almost complex curves.

The study of real hypersurfaces whose structure Jacobi operator is parallel is a problem widely investi-
gated. In [9] the nonexistence of real hypersurfaces in nonflat complex space form with parallel structure
Jacobi operator (∇l = 0) was proved. In [12] a weaker condition, ∇xl = 0, for any vector field X orthog-
onal to ξ, was studied and it was proved the nonexistence of such hypersurfaces in case of CPn (n ≥ 3).
Nonexistence of real hypersurfaces with parallel structure Jacobi operator in S6(1) was proved in [1].
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Let L denote the Lie derivative on M, i.e. LXY = ∇XY − ∇YX, for any X,Y tangent to M. The Lie
derivative of the structure Jacobi operator, which is given by (LXl)Y = ∇X(lY) + l∇YX − ∇lYX − l∇XY, for
X,Y tangent to M, is another condition that has been studied extensively, see [7, 13–15].

The parallelness of structure Jacobi operator in combination with other conditions was another problem
that was studied by many others. Recently Pérez-Santos (see [16]) studied real hypersurfaces in CPn for
n ≥ 3 whose structure Jacobi operator satisfies the relation Lξl = ∇ξl. Panagiotidou and Xenos in [11]
have completed the investigation of this problem studying the case n = 2 in both complex projective and
hyperbolic spaces. In [10] the nonexistence of real hypersurfaces in CP2 and CH2, whose structure Jacobi
operator satisfies the relation LXl = ∇Xl, for X orthogonal to ξ, was proved.

In this paper, we observe a stronger condition for the real hypersurfaces of the nearly Kähler sphere
S6(1) and prove the following non-existence theorem:

Theorem 1.1. There exist no real hypersurfaces in S6(1) equipped with structure Jacobi operator satisfying
LXl = ∇Xl, for all X ∈ TM.

Note that the skew symmetry of the tensor G imposes a somewhat different approach to analizing
hypersurfaces in nearly Kähler manifolds compared to the one in Kähler manifolds. As a consequence we
constract a suitable moving frame along the hypersurface in order to analyse it.

2. Preliminaries

Let M be a Riemannian submanifold of the nearly Kähler sphere S6(1) with nearly Kähler structure (J, 1),
where J is the almost complex structure and 1 is the metric on S6(1). Then the (2, 1)-tensor field G on S6(1)
defined by G(X,Y) = (∇̄X J)Y, where ∇̄ is the Levi-Civita connection on S6(1), is skew symmetric and also
satisfies

G(X, JY) + JG(X,Y) = 0, 1(G(X,Y),Z) + 1(G(X,Z),Y) = 0.

Moreover, see [5], we have

(∇̄G)(X,Y,Z) = 1(X,Z)JY − 1(X,Y)JZ − 1(JY,Z)X, (1)

for arbitrary vector fields X,Y,Z tangent to S6(1).
Let us denote by ∇ and ∇⊥ the Levi-Civita connection of M and the normal connection induced from

∇̄ in the normal bundle T⊥M of M in S6(1), respectively. Then the formulas of Gauss and Weingarten are
given respectively by

∇̄XY = ∇XY + h(X,Y), ∇̄XN = −ANX + ∇⊥XN,

where X,Y are tangent, N is a normal vector field on M, h and AN are the second fundamental form and
the shape operator with respect to the section N, respectively. The second fundamental form and the shape
operator are related by 1(h(X,Y), ξ) = 1(AξX,Y). Also, for tangent vector fields X,Y,Z and W, we have that
the Gauss equation yields

R(X,Y,Z,W) = 1(X,W)1(Y,Z) − 1(X,Z)1(Y,W) + 1(h(X,W), h(Y,Z)) − 1(h(X,Z), h(Y,W)), (2)

where we denote by R the Riemannian curvature tensor of M.
Now, let M be a hypersurface in S6(1). Using the almost complex structure J on S6(1), for normal

vector field N on M, we define corresponding Reeb vector field ξ = −JN with dual 1-form η(x) = 1(X, ξ).
Let D = Ker η = {X ∈ TM | η(X) = 0}. Then D is a 4-dimensional smooth distribution on M, which is
J-invariant.
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3. The moving frame for hypersurfaces in S6(1)

Now we will present one of the convenient moving frames to work with and the relations between the
connection coefficients in it, for details see [1, 4].

For each unit vector field E1 ∈ D, let E2 = JE1, E3 = G(E1, ξ), E4 = JE3. Then the set {E1,E2,E3,E4,E5 = ξ}
is a local orthonormal frame on M, see [4]. Moreover, the following holds.

Lemma 3.1. ([4]) For the previously defined orthonormal frame the following relations hold

G(E1,E2) = 0, G(E1,E3) = −ξ, G(E1,E4) = N, G(E1, ξ) = E3, G(E1,N) = −E4,

G(E2,E3) = −N, G(E2,E4) = ξ, G(E2, ξ) = −E4, G(E2,N) = −E3, G(E3,E4) = 0,
G(E3, ξ) = −E1, G(E3,N) = E2, G(E4, ξ) = E2, G(E4,N) = E1. (3)

This moving frame is not uniquely determined and depends on the choice of the vector field E1 ∈ D.
Now, we denote the coefficients of the covariant derivatives in the given frame by

1k
i j = 1(DEi E j,Ek), hi j = 1(DEi E j,N), 1 ≤ i, j, k ≤ 5, (4)

where D is Levi-Civita connection on R7. The connection D is metric and the second fundamental form
symmetric, which gives us 1k

i j = −1
j
ik, and hi j = h ji.

Lemma 3.2. ([1]) For the previously defined coefficients we have

13
12 = −1

4
11, 14

12 = 1
3
11, h11 = −1

5
12, h12 = 1

5
11, 13

22 = −1
4
21, 14

22 = 1
3
21,

15
22 = −1

5
11, h22 = 1

5
21, 13

32 = −1
4
31, 14

32 = 1
3
31, h13 = 1 − 15

32, h23 = 1
5
31,

13
42 = −1

4
41, 14

42 = 1
3
41, h14 = −1

5
42, h24 = −1 + 15

41, 13
52 = −1 − 14

51, 14
52 = 1

3
51,

h15 = −1
5
52, h25 = 1

5
51, 15

32 = 2 + 15
14, 15

42 = −1
5
13, 15

31 = −1
5
24, 15

41 = 2 + 15
23,

h33 = −1
5
43, h34 = 1

5
33, 15

44 = −1
5
33, h44 = 1

5
43, h35 = −1

5
54, h45 = 1

5
53.

Lemma 3.3. ([1]) The differentiable functions (4) satisfy

15
52 = 1

2
11 + 1

4
13, 15

51 = −1
2
21 − 1

4
23, 15

54 = 1
2
31 + 1

4
33, 15

53 = −1
2
41 − 1

4
43, h55 = −1

2
51 − 1

4
53. (5)

Since we still have a choice for E1 ∈ D, see [1], from now on let it be parallel with the projection of Aξ
on D. Then there exist differentiable functions α and β such that Aξ = βE1 + αξ. Since the components of
Aξ in direction of E2,E3,E4 vanish, we have

14
13 = −1

2
11 − β, 14

23 = −1
2
21, 14

33 = −1
2
31, 14

43 = −1
2
41, 14

53 = −1
2
51 − α.

The Gauss equation for the different choices of the vector fields yields the following relations.

Lemma 3.4. ([1]) The functions (4), α and β satisfy

(3+215
14)15

21 − 215
111

5
24 − 215

241
5
33 + 1

5
34 + 215

231
5
34 − 2α − 15

14α + 1
5
23α − 1

3
21β + 1

2
31β = 0, (6)

15
11(3 + 215

23) − 15
33 − 215

231
5
33 − 215

241
5
43 + 1

5
24α + 1

5
13(−215

21 + α) − 14
21β + 1

2
41β = 0, (7)

−4−315
23 − 1

5
14(3 + 215

23) + 215
131

5
24 − 2(15

33)2
− 215

341
5
43 + 1

5
34 − 1

5
43αα − 1

4
31β + 1

3
41β = 0. (8)
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4. Proof of the main theorem

Let us denote by ηk
i j = 1(l∇E j Ei−∇lE j Ei,Ek). The conditionLXl = ∇Xl is equivalent to ηk

i j = 0, 1 ≤ i, j, k ≤ 5.
From η5

5i = 0, 1 ≤ i ≤ 4, by using the Gauss equations, we have, respectively,

15
11αβ = 0, (1 + 15

21α)β = 0, 15
24αβ = 0, (1 + 15

23)αβ = 0. (9)

We will now treat the cases of Hopf and non-Hopf hypersurfaces separately.

Case 1:. Suppose that M is a Hopf hypersurface, i.e. β = 0, ξ is an eigenvector field for the shape operator
A and α is a constant.

Note that, in this case, we still have the freedom of choosing the vector field E1 ∈ D. Let us, therefore,
take E1 to be an eigenvector field for the shape operator A. As AE1 = −1

5
12E1 + 1

5
11E2 − (1 + 15

14)E3 + 1
5
13E4,

we get 15
11 = 0, 15

14 = −1, 15
13 = 0.

From 0 = η5
41 = 1 − 15

12α, we have 15
12 , 0 , α and

0 = E2(1 − 15
12α) = −(12

11(15
12 + 1

5
21) + 14

11(1 + 15
23) − 13

111
5
24)α. (10)

From 0 = η2
52 = −1

5
24α,we have 15

24 = 0 and then from 0 = η3
51 = 1

5
33αwe obtain 15

33 = 0. Therefore

0 = E1(15
24) = 12

11 + 1
5
121

3
21 − 1

4
111

5
21 + 1

2
111

5
23 − (14

11 + 1
3
21)15

34. (11)

Now we have 0 = η4
4i = −1

3
i1(1 + 15

23)α, 1 ≤ i ≤ 5. If we assume 1 + 15
23 = 0, then from 0 = η2

51 =

−15
12(15

12 + 1
5
21)α and 0 = η3

52 = −(15
21 + 1

5
34)α we have 15

34 = −1
5
21 = 1

5
12. Further from 0 = η1

52 = 2(15
12 + α) we

have 15
12 = −α, so from 0 = η5

41 = 1 + α2 we have a contradiction. Thus 1 + 15
23 , 0, 13

i1 = 0, 1 ≤ i ≤ 5 and

0 = E1(13
31) = −1 + 214

111
2
31 − 212

111
4
31 − 1

5
121

5
34. (12)

Now, (10) and (11) reduce to 12
11(15

12+1
5
21)+14

11(1+15
23) = 0 and 12

11(1+15
23)−14

11(15
21+1

5
34) = 0, respectively,

so 12
11 = 0 if and only if 14

11 = 0. If we assume 14
11 , 0, from 0 = η3

21 = 1
4
11(−15

12 + 1
5
34)α we have 15

34 = 1
5
12.

Then determinant of the system of equations (10) and (11) is −(15
12 + 1

5
21)2
− (1 + 15

23)2 , 0, so we have only
trivial solution 12

11 = 1
4
11 = 0. Therefore 12

11 = 1
4
11 = 0.

If we add η5
41 to (12) we obtain −15

12(15
34 + α) = 0, so 15

34 = −α. Now (8) becomes −1 − 15
23 + 1

5
43α − α

2 = 0,
so 15

43α − 1
5
23 = 1 + α2, and using 0 = η5

41 = 1 − 15
12αwe obtain

0 = η4
51 = −1 + 215

43α − α
2
− 15

23(1 + 15
12α) = −1 − α2 + 2(15

43α − 1
5
23) = 1 + α2,

which is a contradiction.
Case 2: Suppose that M is not a Hopf hypersurface, i.e. that β , 0. Then the second equation of (9)

implies α , 0, so we obtain

15
11 = 0, 15

21α = −1, 15
24 = 0, 15

23 = −1. (13)

Further, from the Gauss equations and (13), we get

Lemma 4.1.

0 =ξ(15
11) = 1 + 15

211
2
51 + 1

5
131

3
51 + 1

4
51 + 1

5
14(1 + 14

51) + (12
11 − β)β + 1

5
12(15

21 + 1
2
51 − α),

0 =E1(15
24) = −12

11(1 + 15
14) + (15

12 + 1
5
21)12

31 + 1
5
131

3
31 + 1

4
31 + 1

5
141

4
31 − 1

3
111

5
33 − 1

4
11(15

21 + 1
5
34) + (2 + 15

14)β,

0 =ξ(15
24) = −215

34 + 1
5
14(15

21 − 1
2
51) − 12

51 − 1
5
331

3
51 − (15

21 + 1
5
34)14

51 − 1
3
21β − α,

0 =E1(15
23) = −14

111
5
33 − (15

12 + 1
5
21)12

41 − (1 + 15
14)14

41 + 1
3
11(−15

21 + 1
5
43) − 15

13(12
11 + 1

3
41 − β),

0 =ξ(15
23) = 15

13(15
21 − 1

2
51) − 15

211
3
51 + 1

5
431

3
51 − 1

5
33(2 + 14

51) + 14
21β.
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Then, from E2(15
24) = 0 and E2(15

23) = 0 we have

E3(15
21) = −(1 + 15

14)12
21 − 1

3
211

5
33 − 1

4
21(15

21 + 1
5
34), E4(15

21) = 15
131

2
21 + 1

4
211

5
33 + 1

3
21(15

21 − 1
5
43). (14)

Now, by using the Gauss equations and (14), from Ei(15
21α) = 0, i = 2, 3, 4, we obtain

E2(15
21) = −(15

21)2(315
21 − 1

2
51 − α)β, 15

211
3
51β − ((1 + 15

14)12
21 + 1

3
211

5
33 + 1

4
21(15

21 + 1
5
34))α = 0, (15)

15
131

2
21α + 1

4
211

5
33α + 1

3
21(15

21 − 1
5
43)α + 15

21(−2 + 14
51)β = 0. (16)

Further, from 0 = η5
11 = −1

5
13α and 0 = η5

33 = −1
5
33, we have 15

13 = 0 and 15
33 = 0, and hence

0 = E1(15
33) = 14

11(1 + 15
14) + 12

31 + 1
5
141

2
31 − 1

5
121

4
31 − 1

2
11(15

34 + 1
5
43) − 215

34β − 1
5
43(14

31 + β). (17)

Note that, now, (7) has become (−14
21 + 1

2
41)β=0, and therefore 12

41 = 1
4
21.

Lemma 4.2. The coefficients (4) satisfy

15
34 = 1

5
141

5
21,

13
21(2 − 15

121
5
21 + (−1 − 15

14 + 1
5
21(15

12 + 1
5
21))12

31 + 1
5
21(3 + 15

14 + 1
5
141

5
21(−315

21 + 1
2
51 + α))β

+ 15
14(2 + (15

21)2)) = 0,

− 14
31 + 213

41 + 1
2
311

5
43 − 1

5
21(12

31 − 1
5
121

4
31 + 1

5
121

3
41 − 1

4
311

5
43 + 1

5
43β) + 1

5
14(−14

31 + 213
41 + 1

3
21(15

21 − 1
5
43)

+ (15
21)2(13

41 + β)) = 0,

(2 − 15
121

5
21 + 1

5
14(2 + (15

21)2))13
51 + (15

141
2
21 − 1

3
111

5
21 + 1

3
31)β = 0.

Proof. From 0 = η3
52 = (15

141
5
21 − 1

5
34)α,we get the first relation of the Lemma. Now, from Ei(15

141
5
21 − 1

5
34) = 0,

for i = 2, 4, 5, we have the other relations of the Lemma, respectively.

Further,

0 = η3
31 = 1

3
11(1 + 15

14)α, 0 = η3
32 = (1 + 15

14)13
21α, 0 = η1

31 = −(1 + 15
14)13

31α,

0 = η3
34 = (1 + 15

14)13
41α, 0 = η3

35 = (1 + 15
14)13

51α, 0 = η3
42 = (1 + 15

14)(14
21 − 1

2
211

5
21)α. (18)

At this point we can distinct two cases: 1 + 15
14 = 0 or not.

Case 2.1: 15
14 , −1.

Then from (18) we obtain that 13
11 = 1

3
21 = 1

3
31 = 1

3
41 = 1

3
51 = 0 and 14

21 = 1
2
211

5
21, and hence

0 = E2(13
41) = −1 + 2(14

21)2
− 212

211
4
41 − 1

5
211

5
43. (19)

From fifth relation of Lemma 4.1 we have 14
21β = 0, and therefore 14

21 = 0. From (18) we then obtain that
12

21 = 0. From fourth relation of Lemma 4.1 it follows that −(1 + 15
14)14

41 = 0, so 14
41 = 0. From (16) and (19)

we have 15
21(−2+ 14

51)β = 0 and −1− 15
211

5
43 = 0. Therefore 14

51 = 2, and (9) implies that 15
43 = α. Further, from

0 = η4
15 = −214

31βwe have 14
31 = 0. Finally, (7) becomes −1 − α2 = 0, which is a contradiction.

Case 2.2: 15
14 = −1.

Then 0 = E5(15
14) = −(15

12 + 1
5
21)13

51 − 1
3
11β, and from (15) we have 15

211
3
51β = 0, so 13

51 = 0 and therefore 13
11 = 0.

Also, we have

0 = η5
41 = 1 − 15

12α − β
2. (20)
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Now, from fifth relation of Lemma 4.1 and fourth relation from Lemma 4.2 we have, respectively, 14
21β = 0

and (−12
21 + 1

3
31)β = 0, so 14

21 = 0 and 13
31 = 1

2
21. If we compare (8) − η4

51 − η
5
41 = −1 − 15

43α = 0 with (13),
we obtain 15

43 = 1
5
21. Now, using (2), from 0 = ξ(15

21 − 1
5
43) = (12

21 − 1
4
41)β, we have 14

41 = 1
2
21 and then from

0 = E2(15
21−1

5
43) = −(15

21)2(315
21−1

2
51−α)βwe obtain 12

51 = 315
21−α. From (16) we have 15

21(−2+14
51)β = 0, hence

14
51 = 2 and second relation of Lemma 4.1 become (15

12 + 1
5
21)1312 + β = 0, so β = −(15

12 + 1
5
21)12

31 and special
15

21 , −1
5
12. Second relation from Lema 4.2 gives −15

21(15
12+1

5
21)(13

21+1
2
31) = 0 hence 12

31 = −1
3
21. From (17) we

have −15
121

4
31 + 1

5
21(−14

31 + β) = 0. If we multiply it with α, using (13), we obtain β = −(15
12 + 1

5
21)14

31α, hence
14

31 , 0 and 12
31 = 1

4
31α. Further, from (6) and η2

11 = 0, we have, respectively 2(15
21 −α− (15

12 + 1
5
21)(14

31)2α2) = 0
and 12

11(15
12 + 1

5
21)(α + (15

12 + 1
5
21)(14

31)2α2) = 0. From the first relation we have (15
12 + 1

5
21)(14

31)2α2 = 15
21 − α,

and then the second relation reduce to 12
111

5
21(15

12 + 1
5
21) = 0, so 12

11 = 0. Multiplying third relation of Lemma
4.1 with 15

12 + 1
5
21 and subtracting from first relation we obtain 315

121
5
21 + 2(15

21)2
− 15

12α = 0. If we multiply
this with α, using 15

21α = −1, we have −215
21 − 1

5
12(3+ α2) = 0, hence 15

21 = −
1
21

5
12(3+ α2). From 15

21α = −1 we
obtain 15

12 = 2/(3α + α3). Further, (6) became

2(1 + α2)(−3 + ((14
31)2
− 1)α2)

α(3 + α2)
= 0, hence − 3 + ((14

31)2
− 1)α2 = 0.

Finally, from (20) we have

0 = η5
41 = −

(1 + α2)[−3 + (14
31)2 + ((14

31)2
− 1)α2]

(3 + α2)2 = −
(1 + α2)(14

31)2

(3 + α2)2 .

Since 14
31 , 0, we obtain a contradiction.

This completes the proof.
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