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Abstract. In this paper, we investigate Pell and Pell-Lucas numbers what new properties we can obtain
by working on a new number system-hybrid quaternions. Firstly, we present some new identities of Pell
and Pell-Lucas numbers and quaternions. Then, with the help of these identities and previously known
identities, we get new identities on Pell and Pell-Lucas hybrid quaternions, including Binet’s and Cassini’s
identities.

1. Introduction

Number sequences are a great subject studied by mathematicians and physicists for many years. Espe-
cially, Fibonacci numbers are a significant class of number sequences. These numbers have been studied
from algebraic, combinatorial, and geometric perspectives. There are other number sequences that are
similar to Fibonacci numbers with the differences in initial values and recurrence relations. The Pell and
Pell-Lucas numbers are some of them. These numbers can be generated by the second order linear re-
currence relation Fn = 2Fn−1 + Fn−2 for n ≥ 2 with initial conditions P0 = 0, P1 = 1 and PL0 = PL1 = 2
respectively. Generator functions of number sequences, Binet formulas, are necessary in some cases such
as obtaining high index numbers. The Binet’s formulas of the nth Pell and Pell-Lucas numbers are

Pn =
φn
− ωn

φ − ω
, PLn = φ

n + ωn (1)

respectively, where φ and ω are roots of characteristic equation x2
− 2x − 1 = 0. Many identities are given

regarding the Pell and Pell-Lucas numbers in [3, 7, 12, 13]. For example, Horadam gave some identities of
Pell numbers [13];

Pn+r = PrPn+1 + Pr−1Pn,

P2n = PnPn+1 + PnPn−1,

Pn+1Pn−1 − P2
n = (−1)n, (Simson identity)

P2n+1 = P2
n + P2

n+1.
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Hybrid numbers were defined as a general form of complex, hyperbolic(perplex) and dual numbers
[1, 8, 9, 15]. After the number system was defined, it was studied extensively from various perspectives. A
hybrid number is,

k = k0 + ik1 + εk2 + hk3

such that k0, k1, k2 and k3 are real coefficients and i2 = −1, h2 = 1, ε2 = 0 and ih = −hi = ε + i. Note that i
is the unit of complex numbers, ε is the unit of dual numbers and h is the unit of hyperbolic numbers. The
units of hybrid numbers are 1, i, ε and h.

Let a = a0 + ia1 + εa2 + ha3 and b = b0 + ib1 + εb2 + hb3 be hybrid numbers, then sum and subtraction of
hybrid numbers are defined as

a ∓ b = (a0 ∓ b0) + i(a1 ∓ b1) + ε(a2 ∓ b2) + h(a3 ∓ b3).

Moreover, multiplication of hybrid numbers a and b is defined as

a.b = (a0b0 − a1b1 − a3b3 + a1b2 + a2b1) + i(a1b0 + a0b1 + a1b3 − a3b1)
+ ε(a2b0 + a0b2 + a1b3 − a3b3 − a3b1 + a3b2) + h(a3b0 + a0b3 − a1b2 + a2b1).

For multiplication table of hybrid numbers’ units, see Table 1.

· 1 i ε h
1 1 i ε h
i i −1 1 − h ε + i
ε ε 1 + h 0 −ε
h h −ε − i ε 1

Table 1: Multiplication of hybrid numbers’ units

Quaternions were defined by W. R. Hamilton [11] and were studied widely in mathematics and physics
[4, 10, 19, 20]. A quaternion is

q = q0 + iq1 + jq2 + kq3

such that q0, q1, q2 and q3 are real coefficients and i, j and k are the standart orthonormal basis of R3. Units
of quaternions are 1, i, j and k.

Let p = p0 + ip1 + jp2 + kp3 and q = q0 + iq1 + jq2 + kq3 be quaternions, then sum and subtraction of any
two quaternions is defined as

p ∓ q = (p0 ∓ q0) + i(p1 ∓ q1) + j(p2 ∓ q2) + k(p3 ∓ q3).

In addition to this, multiplication of any two quaternions is defined as

p.q = (p0q0 − p1q1 − p2q2 − p3q3) + i(p0q1 + p1q0 + p2q3 − p3q2)
+ j(p0q2 + p2q0 − p1q3 + p3q1) + k(p0q3 + p3q0 + p1q2 − p2q1)

with i2 = j2 = k2 = i jk = −1 rules.
Hybrid quaternions were introduced by Dağdeviren in [5] as a new number system. A hybrid quaternion

is
HQ = Q0 + iQ1 + εQ2 + hQ3

such that Q0, Q1, Q2 and Q3 are quaternions. The other presentation of a hybrid quaternion is

HQ = H0 + iH1 + jH2 + kH3

such that H0, H1, H2 and H3 are hybrid numbers. Sum, subtraction and multiplication operations can be
easily done with the information up to here.
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Some identities, properties and Binet’s formulas of Pell and Pell-Lucas quaternions and related works
have been given by some researchers [2, 4, 6, 18, 19]. The nth Pell and Pell-Lucas quaternions are

PQn = Pn + iPn+1 + jPn+2 + kPn+3,

PQLn = PLn + iPLn+1 + jPLn+2 + kPLn+3

respectively.
Pell and Pell-Lucas hybrid numbers were defined by Liana [16] and have been studied in [14, 17]. Some

identities, such as Cassini’s identity, Binet’s formula and some generalizations of these numbers have been
given. The nth Pell and Pell-Lucas hybrid numbers are, as can be easily inferred,

HPn = Pn + iPn+1 + εPn+2 + hPn+3,

HPLn = PLn + iPLn+1 + εPLn+2 + hPLn+3,

respectively.
In the rest of the article, we introduce Pell and Pell-Lucas hybrid quaternions. Then, we give identi-

ties concerning Pell and Pell-Lucas numbers quaternions. Finally, we present Binet’s formulas for these
numbers. For the rest of the article, we will denote the nth Pell, Pell-Lucas, Pell hybrid, Pell-Lucas hybrid
numbers, Pell quaternions, Pell-Lucas quaternions with Pn, PLn, HPn, HPLn, QPn and QPLn respectively.

2. Pell and Pell-Lucas Hybrid Quaternions

Definition 2.1. The nth Pell and Pell-Lucas hybrid quaternions are

HQPn = HPn + iHPn+1 + jHPn+2 + kHPn+3,

HQPLn = HPLn + iHPLn+1 + jHPLn+2 + kHPLn+3

for n ≥ 2. In other form,

HQPn = QPn + iQPn+1 + εQPn+2 + hQPn+3,

HQPLn = QPLn + iQPLn+1 + εQPLn+2 + hQPLn+3.

We firstly give some new properties about Pell numbers and Pell quaternions.

Proposition 2.2. For all n ≥ 1 integers,

PnPn+1 = 2
n∑

i=1

P2
i .

Proof.

PnPn+1 = Pn(2Pn + Pn−1) = 2P2
n + PnPn−1 = 2P2

n + Pn−1(2Pn−1 + Pn−2) = 2P2
n + 2P2

n−1 + Pn−2Pn−1

= . . . = 2(P2
n + P2

n−1 + . . . + P2
1 + P1P0) = 2

n∑
i=1

P2
i .

Proposition 2.3. For n ∈N, PLn+1 = 2(Pn + Pn+1).

Proof. We continue by induction on n. For n = 1, P1 = 1 and P2 = 2, then PL1 = 2(1+2) as required. Assume
that the claim holds for n = k, PLk+1 = 2(Pk + Pk+1). For n = k + 1,

PLk+2 = 2PLk+1 + PLk = 2(2Pk + 2Pk+1) + 2Pk−1 + 2Pk = 6Pk + 4Pk+1 + 2Pk−1

= 4Pk+1 + 2Pk + 4Pk + 2Pk−1 = 2(Pn + Pn+1).
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Proposition 2.4. For n ∈N, PLn = 2(Pn+1 − Pn).

Proof. If we use the previous proposition, then

2(Pn+1 − Pn) = 2(2Pn + Pn−1 − Pn) = 2(Pn + Pn−1) = PLn.

Proposition 2.5. For n ∈N, PLn+1 − PLn = 4Pn.

Proof. If we use the Proposition 2.3, then

PLn+1 − PLn = 2(Pn+1 + Pn) − 2(Pn + Pn−1) = 2(Pn+1 − Pn−1) = 2(2Pn + Pn−1 − Pn−1) = 4Pn.

We will give some identities about Pell-Lucas quaternions. These have been given in [4] but there are some
differences in this article due to initial values affecting some identities and Binet’s formula of Pell-Lucas
quaternions.

Remark 2.6. We can obtain the following identities about Pell and Pell-Lucas numbers via Proposition 2.3, 2.4 and
2.5, for n ∈N

QPLn+1 = 2(QPn +QPn+1),

QPLn = 2(QPn+1 −QPn),

QPLn+1 −QPLn = 4QPn.

Proposition 2.7 (Cassini’s identity for Pell quaternions). Letφ andω defined as in (1), then following identities
are hold.

QPn+1QPn−1 −QP2
n = (−1)n [(φ2 + 1)AB + (ω2 + 1)BA]

(φ − ω)2 ,

QPLn+1QPLn−1 −QPL2
n = (−1)n−1[(φ2 + 1)AB + (ω2 + 1)BA].

where A = 1 + φi + φ2 j + φ3k, B = 1 + ωi + ω2 j + ω3k [4].

Proof. Using the Binet’s formula for Pell quaternions, then

QPn+1QPn−1 −QP2
n =
(φn+1A − ωn+1B

φ − ω

)(φn−1A − ωn−1B
φ − ω

)
−

(φnA − ωnB
φ − ω

)2
=
φ2nA2

− φn+1ωn−1AB − φn−1ωn+1BA + ω2nB2

(φ − ω)2 −
φ2nA2

− φnωnAB − φnωnBA + ω2nB2

(φ − ω)2

=
φn−2ωn−2(AB + BA)

(φ − ω)2 +
−φn−1ωn−1(φ2AB + ω2BA)

(φ − ω)2 = (−1)n [(φ2 + 1)AB + (ω2 + 1)BA]
(φ − ω)2 .

If we use the Binet’s formula for Pell-Lucas quaternions, then

QPLn+1QPLn−1 −QPL2
n = (φn+1A + ωn+1B)(φn−1A + ωn−1B) − (φnA + ωnB)2

= (φn+1ωn−1AB + φn−1ωn+1BA) − (φnωnAB + φnωnBA)

= [φn−1ωn−1(φ2AB + ω2BA)] − [φnωn(AB + BA)]

= [(−1)n−1(φ2AB + ω2BA)] − [(−1)n(AB + BA)]

= (−1)n−1[(φ2 + 1)AB + (ω2 + 1)BA].



F. Kürüz, A. Dağdeviren / Filomat 37:25 (2023), 8425–8434 8429

In the rest of the article, A and B will be used as defined in the proposition (2.7).

Proposition 2.8. Let HQPn, HQPn and HPn be the nth Pell hybrid quaternion, the conjugate of the nth Pell hybrid
quaternion and the nth Pell hybrid number, respectively. Then the following identity holds for all n ≥ 2 integers.

HQPn +HQPn = 2HPn

Proof. We know that QPn +QPn = 2Pn from [4], then

HQPn +HQPn = QPn +QPn+1i +QPn+2ε +QPn+3h +QPn +QPn+1i +QPn+2ε +QPn+3h
= 2Pn + 2Pn+1i + 2Pn+2ε + 2Pn+3h = 2HPn.

Proposition 2.9. Let HPn and Pn be the nth Pell hybrid number and the nth Pell number respectively, then the
following identity satisfies:

HP2
n = P2

n − P2
n+1 + P2

n+3 + 2Pn+1Pn+2 + i(2PnPn+1) + ε(2PnPn+2) + h(2PnPn+3).

Proof.

HP2
n = (Pn + Pn+1i + Pn+2ε + Pn+3h)(Pn + Pn+1i + Pn+2ε + Pn+3h)

= P2
n + PnPn+1i + PnPn+2ε + PnPn+3h + PnPn+1i − P2

n+1 + Pn+1Pn+2(1 − h) + Pn+1Pn+3(ε + i)

+ Pn+2Pnε + Pn+1Pn+2(1 + h) + Pn+2Pn+3(−ε) + PnPn+3h + Pn+3Pn+1(−ε − i) + Pn+2Pn+3ε + P2
n+3

= P2
n − P2

n+1 + P2
n+3 + 2Pn+1Pn+2 + i(2PnPn+1) + ε(2PnPn+2) + h(2PnPn+3).

Proposition 2.10. Let HQPn, QPn and HPn be the nth Pell hybrid quaternion, the nth Pell quaternion and the nth

Pell hybrid number, respectively. Then the following identities satisfy:

i) HQPn + 2HQPn+1 = HQPn+2,

ii) HQPn −HQPn+1i −HQPn+2ε −HQPn+3h = QPn +QPn+2 − 2QPn+3 −QPn+6 + 2QPn+5ε,

iii) HQPn −HQPn+1i −HQPn+2 j −HQPn+3k = HPn +HPn+2 +HPn+4 +HPn+6.

Proof.

i) We know that QPn + 2QPn+1 = QPn+2 from Proposition 2 in [4]. Then,

HQPn + 2HQPn+1 = QPn +QPn+1i +QPn+2ε +QPn+3h + 2QPn+1 + 2QPn+2i + 2QPn+3ε + 2QPn+4h
= QPn+2 + iQPn+3 + εQPn+4 + hQPn+5 = HQPn+2.

ii) We represent HQPn −HQPn+1i −HQPn+2ε −HQPn+3h as K in proof;

K = HQPn − (QPn+1 +QPn+2i +QPn+3ε +QPn+4h)i − (QPn+2 +QPn+3i +QPn+4ε +QPn+5h)ε
−(QPn+3 +QPn+4i +QPn+5ε +QPn+6h)h
= QPn +QPn+2 − 2QPn+3 −QPn+6 + 2QPn+5ε.

iii) We represent HQPn −HQPn+1i −HQPn+2 j −HQPn+3k as T in proof;

T = HPn +HPn+1i +HPn+2 j +HPn+3k − (HPn+1 +HPn+2i +HPn+3 j +QPn+4k)i
−(HPn+2 +HPn+3i +HPn+4 j +QPn+5k) j − (HPn+3 +HPn+4i +HPn+5 j +QPn+6k)k
= HPn +HPn+2 +HPn+4 +HPn+6.



F. Kürüz, A. Dağdeviren / Filomat 37:25 (2023), 8425–8434 8430

There are some special relationships between the Pell and Pell-Lucas hybrid quaternions. Following
theorem gives some of them.

Theorem 2.11. The following equations are hold:

i) 2(HQPn +HQPn+1) = HQPLn+1,

ii) 2(HQPn+1 −HQPn) = HQPLn,

iii) HQPn−1 +HQPn+1 = HQPLn,

iv) HQPLn+1 −HQPLn = 4HQPn.

Proof.

i) We know that 2(QPn +QPn+1) = QPLn+1 from Remark 2.6.

2(HQPn +HQPn+1) = 2(QPn +QPn+1i +QPn+2ε +QPn+3h) + 2(QPn+1 +QPn+2i +QPn+3ε +QPn+4h)
= QPLn+1 +QPLn+2i +QPLn+3ε +QPLn+4h
= HQPLn+1.

ii) We know that 2(QPn+1 −QPn) = QPLn from Remark 2.6.

2(HQPn+1 −HQPn) = 2(QPn+1 +QPn+2i +QPn+3ε +QPn+4h) − 2(QPn −QPn+1i −QPn+2ε −QPn+3h)
= QPLn +QPLn+1i +QPLn+2ε +QPLn+3h
= HQPLn.

iii) We know that QPn−1 +QPn+1 = QPLn from [12]. Then,

HQPn−1 +HQPn+1 = QPn−1 +QPni +QPn+1ε +QPn+2h +QPn+1 +QPn+2i +QPn+3ε +QPn+4h
= QPLn +QPLn+1i +QPLn+2ε +QPLn+3h
= HQPLn.

iv) We know that QPLn+1 −QPLn = 4QPn from Remark 2.6. Then,

HQPLn+1 −HQPLn = QPLn+1 +QPn+2i +QPn+3ε +QPn+4h −QPLn −QPLn+1i −QPLn+2ε −QPLn+3h
= 4QPn + 4QPn+1i + 4QPn+2ε + 4QPn+3h
= 4HQPn.

Lemma 2.12. For n ≥ 1, the following identities satisfy:

i) QPn+1QPn −QPnQPn+1 = (−1)n(2i + 4 j − 2k),

ii) QPn+2QPn −QPnQPn+2 = (−1)n(4i + 11 j − 4k),

iii) QPn+3QPn −QPnQPn+3 = (−1)n(10i + 20 j − 10k).

Proof. We will prove first identity, the others can be proven via similar calculations.
We can obtain QPn+1QPn −QPnQPn+1 = 2(P2

n+3i − Pn+2Pn+4i + Pn+1Pn+4 j − Pn+2Pn+3 j + P2
n+2k − Pn+1Pn+3k)

by way of some basic calculations. We can acquire QPn+1QPn − QPnQPn+1 = 2(−1)ni + 4(−1)n j + 2(−1)n+1k
by using (−1)nPaPb = Pn+aPn+b − PnPn+a+b and Pn−1Pn+1 − P2

n = (−1)n identities [13].
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Theorem 2.13. Let HQPC
n be the Hybrid conjugate of the nth Pell hybrid quaternion HQPn. Then,

HQPn.HQPC
n = QP2

n +QP2
n+1 −QP2

n+3 −QPn+1QPn+2 −QPn+2QPn+1

+ (−1)n[(−2i − 7 j + 2k)i + (−2i − 4 j + 2k)ε + (12i + 24 j − 12k)h].

Proof.

HQPn.HQPC
n = (QPn +QPn+1i +QPn+2ε +QPn+3h) .(QPn −QPn+1i −QPn+2ε −QPn+3h)

= QP2
n +QP2

n+1 −QP2
n+3 −QPn+1QPn+2 −QPn+2QPn+1

+ i(QPn+1QPn −QPnQPn+1 +QPn+3QPn+1 −QPn+1QPn+3)

+ ε
(
QPn+2QPn −QPnQPn+2 +QPn+3QPn+1 −QPn+1QPn+3 +QPn+2QPn+3 −QPn+3QPn+2

)
+ h(QPn+3QPn −QPnQPn+3 +QPn+1QPn+2 −QPn+2QPn+1)

= QP2
n +QP2

n+1 −QP2
n+3 −QPn+1QPn+2 −QPn+2QPn+1

+ i[(−1)n(2i + 4 j − 2k) + (−1)n+1(4i + 11 j − 4k)]

+ ε[(−1)n(4i + 11 j − 4k) + (−1)n+1(4i + 11 j − 4k) + (−1)n+2(−2i − 4 j + 2k)]
+ h[(−1)n(10i + 20 j − 10k) + (−1)n(2i + 4 j − 2k)]

= QP2
n +QP2

n+1 −QP2
n+3 −QPn+1QPn+2 −QPn+2QPn+1

+ (−1)n[(−2i − 7 j + 2k)i + (−2i − 4 j + 2k)ε + (12i + 24 j − 12k)h].

It is known that the Binet’s formula of the nth Pell quaternion is

QPn =
φnA − ωnB
φ − ω

[4]. In the following proposition the Pell-Lucas quaternions’ Binet formula is presented.

Proposition 2.14. The Binet’s formula for the nth Pell-Lucas quaternion is

QPLn = φ
nA + ωnB.

Proof. Using Theorem 5 in [4], we have φnA + ωnB = (φ + ω)QPn + 2QPn−1. The following equation can be
obtained easily

QPLn = φ
nA + ωnB

because φ + ω = 2 and QPLn+1 = 2(QPn +QPn+1).

The Binet’s formulas for the Pell and Pell-Lucas hybrid quaternions are given with the following theorem.

Theorem 2.15. The Binet’s formulas of the Pell and Pell-Lucas hybrid quaternion are

HQPn =
φnφ∗A − ωnω∗B

φ − ω
, HQPLn = φ

nφ∗A + ωnω∗B

respectively. Here φ∗ = 1 + iφ + εφ2 + hφ3 and ω∗ = 1 + iω + εω2 + hω3.

Proof.

HQPn = QPn + iQPn+1 + εQPn+2 + hQPn+3

=
φnA − ωnB
φ − ω

+ i
φn+1A − ωn+1B
φ − ω

+ ε
φn+2A − ωn+2B
φ − ω

+ h
φn+3A − ωn+3B
φ − ω

=
φnA(1 + iφ + εφ2 + hφ3) − ωnB(1 + iω + εω2 + hω3)

φ − ω

=
φnφ∗A − ωnω∗B

φ − ω
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HQPLn = QPLn + iQPLn+1 + εQPLn+2 + hQPLn+3

= (φnA + ωnB) + i(φn+1A + ωn+1B) + ε(φn+2A + ωn+2B) + h(φn+3A + ωn+3B)

= φnA(1 + iφ + εφ2 + hφ3) + ωnB(1 + iω + εω2 + hω3)
= φnφ∗A + ωnω∗B.

We can obtain new identities using the Binet’s formula of the Pell and Pell-Lucas hybrid quaternions. The
next theorem is about a relation between the Pell and Pell-Lucas hybrid quaternions.

Theorem 2.16. HQPL2
n − 8HQP2

n = (−1)n2(φ∗ω∗AB + ω∗φ∗BA).

Proof. Let denote HQPL2
n − 2HQP2

n by S. If we use the Binet’s formulas for Pell and Pell-Lucas hybrid
quaternions, then

S = (φnφ∗A + ωnω∗B)2
− 2
(φnφ∗A − ωnω∗B

φ − ω

)2
= (φ2n(φ∗)2A2 + φnωnφ∗ω∗AB + φnωnω∗φ∗BA + ω2n(ω∗)2B2)

− 8
(φ2n(φ∗)2A2

− φnωnφ∗ω∗AB − φnωnω∗φ∗BA + ω2n(ω∗)2B2

8

)
= 2(φnωnφ∗ω∗AB + φnωnω∗φ∗BA) = (−1)n2(φ∗ω∗AB + ω∗φ∗BA).

In the following theorem we give a generalization of the Theorem 6 in [4].

Theorem 2.17. Let a and b are integers such that 1 ≤ a ≤ b. Then,
b∑

k=a

QPk =
QPLb+1 −QPLa

2
,

b∑
k=a

QP2k =
QPL2b+1 −QPL2a−1

2
,

b∑
k=a+1

QP2k−1 =
QPL2b −QPL2a

2
.

Proof. From identity
∑b

k=1 QPk =
QPLb+1−QPL1

2 in [4],

b∑
k=a

QPk =

b∑
k=1

QPk −

a∑
k=1

QPk =
QPLb+1 −QPL1

2
−

QPLa −QPL1

2
=

QPLb+1 −QPLa

2
.

The other identities can be proven similarly.

A generalization of the previous theorem to Pell and Pell-Lucas hybrid quaternions can be given as following
theorem.

Theorem 2.18.
∑n

k=1 HQPk =
HQPLn+1−HQPL1

2 .

Proof.
n∑

k=1

HQPk = QP1 +QP2i +QP3ε +QP4h +QP2 +QP3i +QP4ε +QP5h

+ . . . +QPn +QPn+1i +QPn+2ε +QPn+3h
= QP1 +QP2 + . . . +QPn + (QP2 +QP3 + . . . +QPn+1)i
+ (QP3 +QP4 + . . . +QPn+2)ε + (QP4 +QP5 + . . . +QPn+3)h

= (
QPLn+1 −QPL1

2
) + (

QPLn+2 −QPL2

2
)i + (

QPLn+3 −QPL3

2
)ε + (

QPLn+4 −QPL4

2
)h

=
HQPLn+1 −HQPL1

2
.
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The result we get when we make the starting point a random point in this series is as follows.

Corollary 2.19. For the non-negative integers a and b, such that 1 ≤ a ≤ b the following identity holds:

b∑
k=a

HQPk =
HQPLb+1 −HQPLa

2
.

Proof. It can be easily proven by the previous two theorems.

If the indices in the previous theorems are even or odd, we can see what kind of changes will happen in the
following theorems.

Theorem 2.20.
∑n

k=1 HQP2k =
HQP2n+1−HQP1

2 .

Proof.

n∑
k=1

HQP2k = QP2 +QP3i +QP4ε +QP5h +QP4 +QP5i +QP6ε +QP7h

+ . . . +QP2n +QP2n+1i +QP2n+2ε +QP2n+3h
= QP2+QP4 + . . . +QP2n + (QP3 +QP5 + . . . +QP2n+1)i
+(QP4 +QP6 + . . . +QP2n+2)ε + (QP5 +QP7 + . . . +QP2n+3)h

=
1
2

[(QP2n+1 −QP1) + (QP2n+2 −QP2)i + (QP2n+3 −QP3)ε + (QP2n+4 −QP4)h] =
1
2

(HQP2n+1 −HQP1).

Corollary 2.21.
∑n

k=s HQP2k =
HQP2n+1−HQP2s−1

2 .

Proof. It can be easily proven by the Theorem 2.17 and Theorem 2.20.

Theorem 2.22.
∑n

k=1 HQP2k−1 =
HQP2n−HQP0

2 .

Proof.

n∑
k=1

HQP2k−1 = QP1 +QP2i +QP3ε +QP4h +QP3 +QP4i +QP5ε +QP6h

+ . . . +QP2n−1 +QP2ni +QP2n+1ε +QP2n+2h
= QP1 +QP3 + . . . +QP2n−1 + (QP2 +QP4 + . . . +QP2n)i + (QP3 +QP5 + . . . +QP2n+1)ε
+ (QP4 +QP6 + . . . +QP2n+2)h

=
QP2n −QP0

2
+

QP2n+1 −QP1

2
i +

QP2n+2 −QP2

2
ε +

QP2n+3 −QP3

2
h =

HQP2n −HQP0

2
.

Corollary 2.23.
∑n

k=s HQP2k−1 =
HQP2n−HQP2k−2

2 .

Proof. It can be easily proven by the Theorem 2.17 and Theorem 2.22.

Theorem 2.24 (Cassini identities). The following equations are hold:

HQPn+1HQPn−1 −HQP2
n =
φn−1ωnω∗φ∗BA − φnωn−1φ∗ω∗AB

φ − ω
,

HQPLn+1HQPLn−1 −HQPL2
n = φ

n−1ωn−1(φ − ω)(φφ∗ω∗AB − ωω∗φ∗BA).
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Proof. Let denote HQPn+1HQPn−1 −HQP2
n by C.

C =
(φn+1φ∗A − ωn+1ω∗B

φ − ω

)(φn−1φ∗A − ωn−1ω∗B
φ − ω

)
−

(φnφ∗A − ωnω∗B
φ − ω

)2
=
φ2n(φ∗)2A2

− φn+1ωn−1φ∗ω∗AB − ωn+1φn−1ω∗φ∗BA + ω2n(ω∗)2ω2

(φ − ω)2

−
φ2n(φ∗)2A2

− φnωnφ∗ω∗AB − ωnφnω∗φ∗BA + ω2n(ω∗)2ω2

(φ − ω)2

=
φn−1ωnω∗φ∗(φ − ω)BA − φnωn−1φ∗ω∗(φ − ω)AB

(φ − ω)2 =
φn−1ωn−1(ωω∗φ∗BA − φφ∗ω∗AB)

φ − ω
.

Let denote HQPLn+1HQPLn−1 −HQPL2
n by D.

D = (φn+1φ∗A + ωn+1ω∗B)(φn−1φ∗A + ωn−1ω∗B) − (φnφ∗A + ωnω∗B)2

= φ2n(φ∗)2A2 + φn+1ωn−1φ∗ω∗AB + ωn+1φn−1ω∗φ∗BA + ω2n(ω∗)2ω2

− φ2n(φ∗)2A2 + φnωnφ∗ω∗AB + ωnφnω∗φ∗BA + ω2n(ω∗)2ω2

= φn−1ωnω∗φ∗(ω − φ)BA + φnωn−1φ∗ω∗(φ − ω)AB = φn−1ωn−1(φ − ω)(φφ∗ω∗AB − ωω∗φ∗BA).

3. Conclusion

In this paper, we have given some identities about Pell and Pell-Lucas numbers, and Pell and Pell-Lucas
quaternions as a contribution to number sequences and quaternions. We have also introduced the notion
of the Pell and Pell-Lucas hybrid quaternions. Then some significant identities and properties of the Pell
and Pell-Lucas hybrid quaternions, including the Cassini identity and Binet’s formula, have been given and
proven. Also, the other number sequences, such as Padovan numbers and Jacobsthal numbers on hybrid
quaternions are a future topic of interest.
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