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Abstract. The Berezin transform Ã of an operator A, acting on the reproducing kernel Hilbert space
H = H(Θ) over some (non-empty) set Θ, is defined by Ã(λ) = ⟨Ak̂λ, k̂λ⟩ (λ ∈ Θ), where k̂λ =

kλ
∥kλ∥

is
the normalized reproducing kernel of H. The Berezin number of an operator A is defined by ber(A) =
sup
λ∈Θ

∣Ã(λ)∣ = sup
λ∈Θ

∣⟨Ak̂λ, k̂λ⟩∣. In this paper, by using the definition of 1-generalized Euclidean Berezin number,

we obtain some possible relations and inequalities. It is shown, among other inequalities, that if Ai ∈

L(H(Θ)) (i = 1, . . . ,n), then

ber1(A1, ...,An) ≤ 1
−1
(

n

∑
i=1
1 ( ber(Ai))) ≤

n

∑
i=1

ber(Ai),

in which 1 ∶ [0,∞) → [0,∞) is a continuous increasing convex function such that 1(0) = 0.

1. Introduction

Let L(H) denote the C∗-algebra of all bounded linear operators on a complex Hilbert spaceH with an
inner product ⟨ . , . ⟩ and the corresponding norm ∥ . ∥. An operator A ∈ L(H) is called positive if ⟨Ax,x⟩ ≥ 0
for all x ∈H, and then we write A ≥ 0. For A ∈ L(H), let A = R(A) + iI(A) be the Cartesian decomposition
of A, where the Hermitian matrices R(A) = A+A∗

2 and I(A) = A−A∗
2i are called the real and the imaginary

parts of A, respectively.
A functional Hilbert space H = H(Θ) is a Hilbert space of complex valued functions on a(nonempty) set
Θ, which has the property that point evaluations are continuous i.e. for each λ ∈ Θ the map f ↦ f (λ) is
a continuous linear functional on H. The Riesz representation theorem ensure that for each λ ∈ Θ there
is a unique element kλ ∈ H such that f (λ) = ⟨ f , kλ⟩ for all f ∈ H. The collection {kλ ∶ λ ∈ Θ} is called
the reproducing kernel of H. If {en} is an orthonormal basis for a functional Hilbert space H, then the
reproducing kernel ofH is given by kλ(z) = ∑n en(λ)en(z); (see [12, Problem 37]). For λ ∈ Θ, let k̂λ = kλ

∥kλ∥
be

the normalized reproducing kernel ofH. For a bounded linear operator A onH, the function Ã defined on
Θ by Ã(λ) = ⟨Ak̂λ, k̂λ⟩ is the Berezin symbol of A, which firstly have been introduced by Berezin [4, 5]. The
Berezin set and the Berezin number of the operator A are defined by

Ber(A) ∶= {Ã(λ) ∶ λ ∈ Θ} and ber(A) ∶= sup{∣Ã(λ)∣ ∶ λ ∈ Θ},
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respectively, (see [14]). In [3], the authors show that

ber(A) = sup
θ∈R

ber (R(eiθA)) = sup
α2+β2=1

ber (αRA + βIA) .

The Berezin symbol and the Berezin number has large application in the study of various questions of
operator theory in the functional Hilbert space, quantum physics and non-commutative geometry. These
are the important tools to study operators on Hardy and Bergman spaces, especially for Toeplitz and Hankel
operators. Recall that the Hardy space H2(D) of the unit disk D = {z ∈ C ∶ ∣z∣ < 1} is a RKHS of analytic
functions onDwith reproducing kernel kτ(z) = 1

1−τ̄z (see, Paulsen and Raghupati [19]). Since, the collection
of normalized reproducing kernel ofH is a subset of the unit sphere ofH, so the numerical radius and the
Berezin number of an operator onHmay not be equal. The Berezin number inequalities have been studied
by many mathematicians over the years, interested readers can see [11, 15, 18, 20]. Namely, the Berezin
symbol have been investigated in detail for the Toeplitz and Hankel operators on the Hardy and Bergman
spaces; it is widely applied in the various questions of analysis and uniquely determines the operator(i.e.,
for all λ ∈ Θ, Ã(λ) = B̃(λ) implies A = B). For further information about Berezin symbol we refer the reader
to [2, 9–11, 15, 18, 20–22] and references therein.

Moreover, The Berezin number of operators A,B satisfy the following properties:
(i) ber(αA) = ∣α∣ber(A) for all α ∈ C;
(ii) ber(A + B) ≤ ber(A) + ber(B).

The numerical radius of A ∈ L(H(Θ)) is defined by

w(A) ∶= sup{∣⟨Ax,x⟩∣ ∶ x ∈H, ∥x∥ = 1}.

It is clear that

ber(A) ≤ w(A) ≤ ∥A∥ for all A ∈ L(H(Θ)).

Let Ai ∈ L(H(Θ)) (1 ≤ i ≤ n). The generalized Euclidean Berezin number of A1, . . . ,An is defined in [2]
as follows:

berp(A1,⋯,An) ∶= sup
λ∈Θ
(

n

∑
i=1
∣Ãi(λ)∣p)

1
p

for all p ≥ 1.

In the case p = 2, we have the Euclidean Berezin number and denote by

bere(A1, . . . ,An) ∶= sup
λ∈Θ
(

n

∑
i=1
∣Ãi(λ)∣2)

1
2

.

For p = 1 if A1 = ⋯ = An = A, then ber1(A,⋯,A) = nber(A).
The generalized Euclidean Berezin number berp(⋅) (p ≥ 1) has the following properties:
(i) berp(A1,⋯,An) = 0 if and if Ai = 0 (i = 1, . . . ,n);
(ii) berp(αA1,⋯, αAn) = ∣α∣berp(A1,⋯,An) for all α ∈ C;
(iii) berp(A1 + B1,⋯,An + Bn) ≤ berp(A1,⋯,An) + berp(B1,⋯,Bn);
(iv) berp(A1,A2,⋯,An) = berp(A∗1 ,A∗2 ,⋯,A∗n),
where Ai,Bi ∈ L(H(Θ)) (i = 1, . . . ,n).
The proof of the properties (i) − (iv) immediately comes from definition of generalized Berezin number.
In [7], the author obtained the following inequality

berp
p(A1∣A1∣s+t−1, . . . ,An∣An∣s+t−1) ≤ ber

⎛
⎝

n

∑
i=1
( ∣Ai∣2s + ∣A∗i ∣2t

2
)

p⎞
⎠
, (1)

in which A1, . . . ,An ∈ L(H(Θ)), p > 1 and s, t ∈ [0,1] such that s + t ≥ 1.
The following we define an extension of the generalized Euclidean Berezin number as follows:
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Definition 1.1. Assume that Ai ∈ L(H(Θ)) (1 ≤ i ≤ n) and 1 ∶ [0,∞) → [0,∞) be a continuous increasing convex
function such that 1(0) = 0. We define the 1-generalized Euclidean Berezin number of A1,⋯,An by

ber1(A1, ...,An) ∶= sup
λ∈Θ
1
−1 (

n

∑
i=1
1 (∣Ãi(λ)∣)) .

For 1(t) = tp (p ≥ 1)we have ber1(⋅) = berp(⋅) and for 1(t) = t2 we have ber1(⋅) = bere(⋅).
A function 1 ∶ [0,∞) → [0,∞) is convex if 1((1 − λ)a + λb) ≤ (1 − λ)1(a) + λ1(b) for all λ ∈ [0,1] and

a, b ∈ [0,∞). If 1 ∶ [0,∞) → [0,∞) is convex such that 1(0) = 0, then

1(x) + 1(y) ≤ 1(x + y) (superadditive)

for all x, y ∈ [0,∞). The recent inequality is reversed if 1 is concave.
Dragomir [8] provided a generalization of Furuta’s inequality

∣ ̃(DCBA)(λ)∣
2
≤ ̃(A∗∣B∣2A)(λ) ̃(D∣C∗∣2D∗)(λ), (2)

where A,B,C,D ∈ L(H(Θ)) and λ ∈ Θ.
In this paper, by using the definition of 1-generalized Euclidean Berezin number, we show some possible

relations and inequalities. For these goals, we will apply some methods from [1].

2. Main results

In this section, we would like to check some properties about the 1-generalized Euclidean Berezin
number and then we state some inequalities related to this concept.

First we need the following lemmas:

Lemma 2.1. [6] Let 1 be a convex function on a real interval J and let A ∈ L(H(Θ)) be a self-adjoint operator with
spectrum in J. Then

1 (Ã(λ)) ≤ 1̃(A)(λ) for all λ ∈ Θ.

The inequality is reversed if 1 is concave.

The following lemma is a simple consequence of the classical Jensen and Young inequalities(see [13]).

Lemma 2.2. Let a, b ≥ 0 and p, q > 1 such that 1
p +

1
q = 1. Then

a
1
p b

1
q ≤ a

p
+ b

q
≤ (ar

p
+ br

q
)

1
r

for all r ≥ 1. (3)

Lemma 2.3. [16] Let A ∈ L(H(Θ)) and λ ∈ Θ. If 0 ≤ s ≤ 1, then

∣Ã(λ)∣2 ≤ ∣Ã∣2s(λ) ̃∣A∗∣2(1−s)(λ),

where ∣A∣ = (A∗A) 1
2 is the absolute value of A.

Proposition 2.4. Assume that Ai,Bi ∈ L(H(Θ)) (i = 1, . . . ,n) and 1 ∶ [0,∞) → [0,∞) be a continuous increasing
function such that 1(0) = 0. Then

(i) ber1(A1, ...,An) = 0 if and only if Ai = 0 (i = 1, . . . ,n);
(ii) ber1(αA1, ..., αAn) = ∣α∣ber1(A1, ...,An) for all α ∈ C if 1 is multiplicative;
(iii) ber1(A1,A2, ...,An) = ber1(A∗1 ,A∗2 , ...,A∗n);
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(iv) ber1(A1 +B1, ...,An +Bn) ≤ ber1(A1, ...,An)+ber1(B1, ...,Bn), if 1 is geometrically convex i.e. 1(√xy) ≤√
1(x)1(y).

Proof. The parts (i), (ii) and (iii) immediately come from the definition of the 1-generalized Euclidean
Berezin number. For the part (iv) if 1 is increasing, then we have

n

∑
i=1
1 (∣(Ãi + B̃i)(λ)∣) =

n

∑
i=1
1 (∣Ãi(λ) + B̃i(λ)∣) ≤

n

∑
i=1
1 (∣Ãi(λ)∣ + ∣B̃i(λ)∣) ,

whence by the monotonicity of 1−1 and the geometrically convexity condition of 1we get

1
−1 (

n

∑
i=1
1 (∣Ãi(λ) + B̃i(λ)∣)) ≤ 1−1 (

n

∑
i=1
1 (∣Ãi(λ)∣ + ∣B̃i(λ)∣))

≤ 1−1 (
n

∑
i=1
1 (∣Ãi(λ)∣)) + 1−1 (

n

∑
i=1
1 (∣B̃i(λ)∣)) ,

where the last inequality follows from [17, Corollary 1.1]. Hence by taking the supremum on λ ∈ Θwe get

ber1(A1 + B1,⋯,An + Bn) ≤ ber1(A1,⋯,An) + ber1(B1, ...,Bn).

Now, we obtain a result for the 1-generalized Euclidean Berezin number.

Theorem 2.5. Assume that Ai ∈ L(H(Θ)) (i = 1, . . . ,n) and 1 ∶ [0,∞) → [0,∞) be a continuous increasing convex
function such that 1(0) = 0. Then

ber1(A1, ...,An) ≤ 1−1 (
n

∑
i=1
1 (ber(Ai))) ≤

n

∑
i=1

ber(Ai). (4)

Proof. It follows from 1 is increasing convex that 1−1 is increasing concave, and so 1 is superadditive and
1−1 is subadditive. By the definition of ber(⋅)we have

∣Ãi(λ)∣ ≤ ber(Ai) for all i = 1, . . . ,n.

Hence by the monotonicity of 1 and 1−1 we have

n

∑
i=1
1 (∣Ãi(λ)∣) ≤

n

∑
i=1
1 (ber(Ai)) ⇒ 1

−1 (
n

∑
i=1
1 (∣Ãi(λ)∣)) ≤ 1−1 (

n

∑
i=1
1 (ber(Ai))) .

Taking the supremum on λ ∈ Θwe get

ber1(A1, ...,An) = sup
λ∈Θ
1
−1 (

n

∑
i=1
1 (∣Ãi(λ)∣))

≤ 1−1 (
n

∑
i=1
1 (ber(Ai)))

≤
n

∑
i=1
1
−1 (1 (ber(Ai))) (by the subadditivity of 1−1)

=
n

∑
i=1

ber(Ai).



N. Eslami Mahdiabadi, M. Bakherad / Filomat 37:24 (2023), 8377–8388 8381

In the next result, we show an inequality for concave functions.

Theorem 2.6. Assume that Ai ∈ L(H(Θ)) (i = 1, . . . ,n) and 1 ∶ [0,∞) → [0,∞) be a continuous increasing
concave function such that 1(0) = 0. Then

ber1(A1, ...,An) ≥ ber(
n

∑
i=1

Ai) .

Proof. It follows from 1 is increasing concave that 1−1 is increasing convex, and so 1−1 is superadditive.
Hence

RRRRRRRRRRR

̃
(

n

∑
i=1

Ai)(λ)
RRRRRRRRRRR
= ∣

n

∑
i=1

Ãi(λ)∣

≤
n

∑
i=1
∣Ãi(λ)∣

=
n

∑
i=1
1
−1 (1 (∣Ãi(λ)∣))

≤ 1−1 (
n

∑
i=1
1 (∣Ãi(λ)∣)) (by the superadditivity of 1−1)

≤ ber1(A1, . . . ,An).

Take the supremum on λ ∈ Θwe get the desired result.

In the next theorem, we present another lower bound for ber1(⋅)

Theorem 2.7. Assume that Ai ∈ L(H(Θ)) (i = 1, . . . ,n) and 1 ∶ [0,∞) → [0,∞) be a continuous increasing convex
function. Then

ber1(A1, ...,An) ≥ sup
∣µi∣≤1

ber(
n

∑
i=1

µi

n
Ai) .

In particular,

ber1(A1, ...,An) ≥
1
n

max{ber(
n

∑
i=1
±Ai)} .

Proof. The convexity of 1 implies that

RRRRRRRRRRR

⎛
⎝

ñ

∑
i=1

µi

n
Ai
⎞
⎠
(λ)
RRRRRRRRRRR
= ∣

n

∑
i=1

̃
(µi

n
Ai)(λ)∣

≤
n

∑
i=1

1
n
∣Ãi(λ)∣

= 1−1 (1(
n

∑
i=1

1
n
∣Ãi(λ)∣))

≤ 1−1 (
n

∑
i=1

1
n
1 (∣Ãi(λ)∣))

≤ 1−1 (
n

∑
i=1
1 (∣Ãi(λ)∣)) (by the monotonicity of 1−1),
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in which λ ∈ Θ and µi ∈ C such that ∣µi∣ ≤ 1. Taking the supremum on λ ∈ Θ yields

ber(
n

∑
i=1

µi

n
Ai) ≤ ber1(A1, ...,An).

Therefore,

sup
∣µi∣≤1

ber(
n

∑
i=1

µi

n
Ai) ≤ ber1(A1, ...,An),

which we reach the first inequality. If we put µi = ±1, then we get the second inequality.

As a consequence, we have the next result.

Corollary 2.8. Assume that Ai ∈ L(H(Θ)) (i = 1, . . . ,n) and 1 ∶ [0,∞) → [0,∞) be continuous increasing convex.
Then

ber1(A1, ...,An) ≥
1
n

max{ber(A1), . . . ,ber(An)}.

Proof. If for any j ( j = 1, . . . ,n)we assume that µ j = 1 and µi = 0 when i ≠ j in Theorem 2.7, then

ber1(A1, ...,An) ≥
1
n

ber(A j) for all j = 1, . . . ,n.,

whence

ber1(A1, ...,An) ≥
1
n

max{ber(A1), . . . ,ber(An)}.

Remark 2.9. Assume that A1 = A2 = ⋯ = An = A. Using Theorem 2.5 we have

ber1(A, . . . ,A) ≤ nber(A).

Moreover, applying Corollary 2.8 we get

ber1(A, . . . ,A) ≥ ber(A).

Therefore,

ber(A) ≤ ber1(A, . . . ,A) ≤ nber(A).

Theorem 2.10. Assume that Ai ∈ L(H(Θ)) (i = 1, . . . ,n), 1 ∶ [0,∞) → [0,∞) be a continuous increasing convex
function. Then

ber1(A1, . . . ,An) ≤ 1−1 (ber(
n

∑
i=1
(1(∣Ai∣2s) + 1(∣A∗i ∣2(1−s))

2
))) ,

where s ∈ [0,1].

Proof. It follows from Lemma 2.3 and the arithmetic geometric mean inequality that

∣Ãi(λ)∣2 ≤ ̃∣Ai∣2s(λ) ̃∣A∗i ∣2(1−s)(λ) ≤
⎛
⎝

̃∣Ai∣2s(λ) + ̃∣A∗i ∣2(1−s)(λ)
2

⎞
⎠

2

. (5)
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Hence for the increasing function 1we have

n

∑
i=1
1 (∣Ãi(λ)∣) ≤

n

∑
i=1
1
⎛
⎝
⎛
⎝

̃∣Ai∣2s(λ) + ̃∣A∗i ∣2(1−s)(λ)
2

⎞
⎠
⎞
⎠

(by inequality (5))

≤
n

∑
i=1

1 (∣̃Ai∣2s(λ)) + 1 ( ̃∣A∗i ∣2(1−s)(λ))
2

(by the convexity of 1)

≤
n

∑
i=1

̃1 (∣Ai∣2s)(λ) + ̃
1 (∣A∗i ∣2(1−s))(λ)
2

(by Lemma 2.1)

=
n

∑
i=1

⎛
⎜
⎝

̃
1 (∣Ai∣2s) + 1 (∣A∗i ∣2(1−s))

2

⎞
⎟
⎠
(λ),

whence

1
−1 (

n

∑
i=1
1 (∣Ãi(λ)∣)) ≤ 1−1

⎛
⎜
⎝

̃n

∑
i=1

1 (∣Ai∣2s) + 1 (∣A∗i ∣2(1−s))
2

(λ)
⎞
⎟
⎠
.

If we take the supremum on λ ∈ Θ, then we get the desired result.

Proposition 2.11. Assume that Ai ∈ L(H(Θ)) (i = 1, . . . ,n), 1 ∶ [0,∞) → [0,∞) be a continuous increasing
geometrically convex function. Then

ber1(A1, . . . ,An) ≤ 1−1 ⎛
⎝
[

n

∑
i=1

berp
1 ((∣Ai∣2s))]

1
2p

[
n

∑
i=1

berq (1(∣A∗i ∣2(1−s)))]
1
2q⎞
⎠
,

in which s ∈ [0,1] and p, q > 1 such that p−1 + q−1 = 1.

Proof. It follows from Lemma 2.3 and the monotonicity and the geometrically convexity of 1, respectively,
that

1 (∣Ãi(λ)∣) ≤ 1( ̃∣Ai∣2s(λ)
1
2 ̃∣A∗i ∣2(1−s)(λ)

1
2 ) ≤

√
1 ( ̃∣Ai∣2s(λ))1 ( ̃∣A∗i ∣2(1−s)(λ)).

The last inequality follows from the geometrically convexity of 1. Hence

n

∑
i=1
1 (∣Ãi(λ)∣) ≤

n

∑
i=1

√
1 ( ̃∣Ai∣2s(λ))1 ( ̃∣A∗i ∣2(1−s)(λ))

≤ [
n

∑
i=1
1 ( ̃∣Ai∣2s(λ))

p
]

1
2p

[
n

∑
i=1
1 ( ̃∣A∗i ∣2(1−s)(λ))

q
]

1
2q

(by the Cauchy Schwarz inequality)

≤ [
n

∑
i=1
( ̃1(∣Ai∣2s)(λ))

p
]

1
2p

[
n

∑
i=1
( ̃1(∣A∗i ∣2(1−s))(λ))

q
]

1
2q

(by Lemma 2.1).
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Hence

1
−1 (

n

∑
i=1
1 (∣Ãi(λ)∣)) ≤ 1−1 ⎛

⎝
[

n

∑
i=1
( ̃1(∣Ai∣2s)(λ))

p
]

1
2p

[
n

∑
i=1
( ̃1(∣A∗i ∣2(1−s))(λ))

q
]

1
2q⎞
⎠

≤ 1−1 ⎛
⎝
[

n

∑
i=1

berp (1(∣Ai∣2s))]
1
2p

[
n

∑
i=1

berq (1(∣A∗i ∣2(1−s)))]
1
2q⎞
⎠
.

The last inequality follows from the monotonicity of 1−1 and the definition of ber(⋅). By taking the supremum
on λ ∈ Θwe get the desired result.

The following, we present some results for the 1-generalized Euclidean Berezin number.

Theorem 2.12. Assume that Ai ∈ L(H(Θ)) (i = 1, . . . ,n), 1 ∶ [0,∞) → [0,∞) be a continuous increasing convex
and super-multiplicative function. Then

ber1(A1, . . . ,An) ≤ 1−1 ⎛
⎝

ber
⎛
⎝

¿
ÁÁÀn

n

∑
i=1
1(

A∗i Ai +AiA∗i
2

)
⎞
⎠
⎞
⎠
.

Proof. By the convexity of h(t) = t2 we have

∣Ãi(λ)∣2 = (R̃(Ai)(λ))
2
+ (Ĩ(Ai)(λ))

2

≤ ̃(R(Ai))2(λ) + ̃(I(Ai))2(λ)

= ( ̃(R(Ai))2 + (I(Ai))2) (λ),

which implies that

1
2 (∣Ãi(λ)∣) ≤ 1 (∣Ãi(λ)∣2)

≤ 1 (( ̃(R(Ai))2 + (I(Ai))2) (λ))

≤ (1 ( ̃(R(Ai))2 + (I(Ai))2)) (λ),

whence

n

∑
i=1
1

2 (∣Ãi(λ)∣) ≤
n

∑
i=1
(1 ( ̃(R(Ai))2 + (I(Ai))2) (λ)) .

Moreover, the Jensen inequality for the function h(t) = t2 implies that

(1
n

n

∑
i=1
1 (∣Ãi(λ)∣))

2

≤ 1
n

n

∑
i=1
1

2 (∣Ãi(λ)∣)

≤ 1
n

n

∑
i=1
(1 ( ̃(R(Ai))2 + (I(Ai))2) (λ)) ,

which equivalent to

n

∑
i=1
1 (∣Ãi(λ)∣) ≤ (n

n

∑
i=1
(1 ( ̃(R(Ai))2 + (I(Ai))2) (λ)))

1
2

.
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It follows from 1−1 is increasing that

1
−1 (

n

∑
i=1
1 (∣Ãi(λ)∣)) ≤ 1−1 ⎛

⎝
(n

n

∑
i=1
(1 ( ̃(R(Ai))2 + (I(Ai))2) (λ)))

1
2⎞
⎠

= 1−1
⎛
⎜
⎝
√

n
⎛
⎝

n

∑
i=1

⎛
⎝
1
⎛
⎝

̃A∗i Ai +AiA∗i
2

⎞
⎠
(λ)
⎞
⎠
⎞
⎠

1
2⎞
⎟
⎠
.

If we take the supremum on λ ∈ Θ, then we get the desired result.

Corollary 2.13. Assume that Ai ∈ L(H(Θ)) (i = 1, . . . ,n) and p ≥ 1. Then

berp
p(A1, . . . ,An) ≤

√
n

2
p
2

ber
⎛
⎝

¿
ÁÁÀ

n

∑
i=1
(A∗i Ai +AiA∗i )

p⎞
⎠
.

In particular,

ber2
e(A1, . . . ,An) ≤

√
n

2
ber
⎛
⎝

¿
ÁÁÀ

n

∑
i=1
(A∗i Ai +AiA∗i )

2⎞
⎠
.

Proof. Employing Theorem 2.12 for the convex function 1(t) = tp (p ≥ 1) we have the first inequality. For
the second inequality put p = 2 in the first inequality.

Theorem 2.14. Assume that Ai ∈ L(H(Θ)) (i = 1, . . . ,n) and 1 ∶ [0,∞) → [0,∞) be a continuous increasing
convex function such that 1(0) = 0. Then

ber1(A1, . . . ,An) ≤ 1−1 (
n

∑
i=1

ber(1 (∣R(Ai)∣ + ∣I(Ai)∣))) .

Proof. Let λ ∈ Θ. We have

n

∑
i=1
1 (∣Ãi(λ)∣) =

n

∑
i=1
1(
√
∣R̃(Ai)(λ)∣

2
+ ∣Ĩ(Ai)(λ)∣

2
)

≤
n

∑
i=1
1 (∣R̃(Ai)(λ)∣ + ∣Ĩ(Ai)(λ)∣)

≤
n

∑
i=1
1 (̃∣R(Ai)∣(λ) + ̃∣I(Ai)∣(λ)) (by Lemma 2.1)

=
n

∑
i=1
1 (( ̃∣R(Ai)∣ + ∣I(Ai)∣) (λ))

≤
n

∑
i=1
1 ( ̃∣R(Ai)∣ + ∣I(Ai)∣) (λ) (by Lemma 2.1),

whence it follows from 1−1 is increasing that

1
−1 (

n

∑
i=1
1 (∣Ãi(λ)∣)) ≤ 1−1 (

n

∑
i=1
1 ( ̃∣R(Ai)∣ + ∣I(Ai)∣) (λ))

≤ 1−1 (
n

∑
i=1

ber(1 (∣R(Ai)∣ + ∣I(Ai)∣))) .

Taking the supremum on λ ∈ Θ on the last term we get the desired result.
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Remark 2.15. If Ai ∈ L(H(Θ)) (i = 1, . . . ,n) and p ≥ 1, then Theorem 2.14 concludes that

berp
p(A1, . . . ,An) ≤

n

∑
i=1

ber((∣R(Ai)∣ + ∣I(Ai)∣)
p).

In the next theorem, we present the 1-generalized Euclidean Berezin number for product of operators.

Theorem 2.16. Assume that Ai,Bi,Ci,Di ∈ L(H(Θ)) (i = 1, . . . ,n) and 1 ∶ [0,∞) → [0,∞) be a continuous
increasing geometrically convex function such that 1(0) = 0. Then

ber1(D1C1B1A1, . . . ,DnCnBnAn) ≤ 1−1 (ber(
n

∑
i=1
(1

p
1

p
2 (A∗i ∣Bi∣2Ai) +

1
q
1

q
2 (Di∣C∗i ∣2D∗i )))) ,

in which p, q > 1 such that p−1 + q−1 = 1.

Proof. If λ ∈ Θ, then by applying (2) we have

n

∑
i=1
1 (∣ ̃(DiCiBiAi)(λ)∣)

≤
n

∑
i=1
1(
√

̃(A∗i ∣Bi∣2Ai)(λ) ̃(Di∣C∗i ∣2D∗i )(λ))

(by inequality (2))

≤
n

∑
i=1
1

1
2 ( ̃(A∗i ∣Bi∣2Ai)(λ))1

1
2 ( ̃(Di∣C∗i ∣2D∗i )(λ))

(by the geometrically convexity)

≤ (
n

∑
i=1
1

p
2 ( ̃(A∗i ∣Bi∣2Ai)(λ)))

1
p

(
n

∑
i=1
1

q
2 ( ̃(Di∣C∗i ∣2D∗i )(λ)))

1
q

(by the Cauchy Schwarz inequality)

≤ 1
p
(

n

∑
i=1
1

p
2 ( ̃(A∗i ∣Bi∣2Ai)(λ))) +

1
q
(

n

∑
i=1
1

q
2 ( ̃(Di∣C∗i ∣2D∗i )(λ)))

(by the Young inequality (3))

≤ 1
p
(

n

∑
i=1
( ̃
1

p
2 (A∗i ∣Bi∣2Ai)(λ))) +

1
q
(

n

∑
i=1
( ̃
1

q
2 (Di∣C∗i ∣2D∗i )(λ)))

(by Lemma 2.1)

=
n

∑
i=1
(1

p
̃

1
p
2 (A∗i ∣Bi∣2Ai) +

1
q

̃
1

q
2 (Di∣C∗i ∣2D∗i )) (λ),

whence it follows from 1−1 is increasing that

1
−1 (

n

∑
i=1
1 (∣ ̃(DiCiBiAi)(λ)∣)) ≤ 1−1 (

n

∑
i=1
(1

p
̃

1
p
2 (A∗i ∣Bi∣2Ai) +

1
q

̃
1

q
2 (Di∣C∗i ∣2D∗i )) (λ)) .

By taking the supremum on λ ∈ Θwe get

ber1(D1C1B1A1, . . . ,DnCnBnAn) ≤ 1−1 (ber(
n

∑
i=1
(1

p
1

p
2 (A∗i ∣Bi∣2Ai) +

1
q
1

q
2 (Di∣C∗i ∣2D∗i )))) .
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Corollary 2.17. Assume that Ti ∈ L(H(Θ)) (i = 1, . . . ,n), 1 ∶ [0,∞) → [0,∞) be a continuous increasing convex
function such that 1(0) = 0 and s, t ∈ [0,1], where s + t ≥ 1. Then

ber1(T1∣T1∣s+t−1, . . . ,Tn∣Tn∣s+t−1) ≤ 1−1(ber(
n

∑
i=1
(1

p
1

p
2 (∣Ti∣2s) + 1

q
1

q
2 (∣T∗i ∣2t)))) ,

in which p, q > 1 such that p−1 + q−1 = 1. In particular,

berr
r(T1∣T1∣s+t−1, . . . ,Tn∣Tn∣s+t−1) ≤ ber(

n

∑
i=1
(1

p
(∣Ti∣rsp + 1

q
∣T∗i ∣rtp)) ,

where r ≥ 1.

Proof. Let Di = Ui, Bi = 1H, Ci = ∣Ti∣t and Ai = ∣Ti∣s such that s + t ≥ 1 in Theorem 4, where Ti and Ui are in the
polar decomposition of Ti = Ui ∣Ti∣ (i = 1, . . . ,n). Then we have

DiCiBiAi = Ui ∣Ti∣t ∣Ti∣s = Ui ∣Ti∣ ∣Ti∣s+t−1 = Ti ∣Ti∣s+t−1 ,

also, we have A∗i ∣Bi∣2 Ai = ∣Ti∣2s and Di ∣C∗i ∣
2 D∗i = Ui ∣Ti∣2t U∗i = ∣T∗i ∣

2t. If we take 1(t) = tr (r ≥ 1) in the first
inequality, then we have

berr(T1∣T1∣s+t−1, . . . ,Tn∣Tn∣s+t−1) ≤ ber
1
r (

n

∑
i=1
(1

p
∣Ti∣rsp + 1

q
∣T∗i ∣rtp)) .
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