

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# Two families of circulant nut graphs

## Ivan Damnjanovića

<sup>a</sup>University of Niš, Faculty of Electronic Engineering & Diffine LLC

**Abstract.** A circulant nut graph is a non-trivial simple graph whose adjacency matrix is a circulant matrix of nullity one such that its non-zero null space vectors have no zero elements. The study of circulant nut graphs was originally initiated by Bašić et al. [Art Discrete Appl. Math. 5(2) (2021) #P2.01], where a conjecture was made regarding the existence of all the possible pairs (n,d) for which there exists a d-regular circulant nut graph of order n. Later on, it was proved by Damnjanović and Stevanović [Linear Algebra Appl. 633 (2022) 127–151] that for each odd  $t \geq 3$  such that  $t \not\equiv_{10} 1$  and  $t \not\equiv_{18} 15$ , the 4t-regular circulant graph of order n with the generator set  $\{1,2,3,\ldots,2t+1\}\setminus\{t\}$  must necessarily be a nut graph for each even  $n \geq 4t+4$ . In this paper, we extend these results by constructing two families of circulant nut graphs. The first family comprises the 4t-regular circulant graphs of order n which correspond to the generator sets  $\{1,2,\ldots,t-1\}\cup \left\{\frac{n}{4},\frac{n}{4}+1\right\}\cup \left\{\frac{n}{2}-(t-1),\ldots,\frac{n}{2}-2,\frac{n}{2}-1\right\}$ , for each odd  $t \in \mathbb{N}$  and  $n \geq 4t+4$  divisible by four. The second family consists of the 4t-regular circulant graphs of order n which correspond to the generator sets  $\{1,2,\ldots,t-1\}\cup \left\{\frac{n+2}{4},\frac{n+6}{4}\right\}\cup \left\{\frac{n}{2}-(t-1),\ldots,\frac{n}{2}-2,\frac{n}{2}-1\right\}$ , for each  $t \in \mathbb{N}$  and  $t \geq 4t+6$  such that  $t \equiv 4$ 

# 1. Introduction

In this paper we will consider all graphs to be undirected, finite, simple and non-null. Thus, every graph will have at least one vertex and there shall be no loops or multiple edges. Also, for convenience, we will take that each graph of order n has the vertex set  $\{0, 1, 2, ..., n-1\}$ .

A graph *G* is considered to be a circulant graph if its adjacency matrix *A* has the form

$$A = \begin{bmatrix} a_0 & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_0 & a_1 & \cdots & a_{n-2} \\ a_{n-2} & a_{n-1} & a_0 & \cdots & a_{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_0 \end{bmatrix}.$$

Here, we clearly have  $a_0 = 0$ , as well as  $a_j = a_{n-j}$  for all  $j = \overline{1, n-1}$ . A concise way of describing a circulant graph is by taking into consideration the set of all the values  $1 \le j \le \frac{n}{2}$  such that  $a_j = a_{n-j} = 1$ . We shall refer

2020 Mathematics Subject Classification. Primary 05C50; Secondary 11C08, 12D05, 13P05

Keywords. circulant graph, nut graph, graph spectrum, graph eigenvalue, cyclotomic polynomial

Received: 11 October 2022; Accepted: 16 April 2023

Communicated by Paola Bonacini

Research supported by Diffine LLC.

Email address: ivan.damnjanovic@elfak.ni.ac.rs (Ivan Damnjanović)

to this set as the generator set of a circulant graph and we will use Circ(n, S) to denote the circulant graph of order n whose generator set is S.

A nut graph is a non-trivial graph whose adjacency matrix has nullity one and is such that its non-zero null space vectors have no zero elements, as first described by Sciriha in [6]. Bearing this in mind, a circulant nut graph is simply a nut graph whose adjacency matrix additionally represents a circulant matrix. Bašić et al. [1] initiated the study of these graphs by providing several results, alongside the following two conjectures.

**Conjecture 1 (Bašić et al. [1]).** For every even n,  $n \ge 16$ , there exists a circulant nut graph  $Circ(n, \{s_1, s_2, s_3, s_4, s_5, s_6\})$  of degree 12.

**Conjecture 2 (Bašić et al. [1]).** For every d, where  $d \equiv_4 0$ , and for every even n,  $n \ge d + 4$ , there exists a circulant nut graph  $Circ(n, \{s_1, s_2, s_3, \dots, s_{\frac{d}{2}}\})$  of degree d.

Later on, Damnjanović and Stevanović [2, Proposition 8] proved Conjecture 1 by showing that  $Circ(n, \{1, 2, 4, 5, 6, 7\})$  is a 12-regular nut graph for each even  $n \ge 16$ . In fact, it was shown that for infinitely many odd values of t it is possible to construct similar families of 4t-regular circulant nut graphs, as demonstrated in the next theorem.

**Theorem 1 (Damnjanović and Stevanović [2]).** For each odd  $t \ge 3$  such that  $t \not\equiv_{10} 1$  and  $t \not\equiv_{18} 15$ , the circulant graph Circ(n,  $\{1, 2, 3, ..., 2t + 1\} \setminus \{t\}$ ) is a nut graph for each even  $n \ge 4t + 4$ .

The primary motivation behind this paper is to improve the currently existing results regarding the circulant nut graph order–degree existence problem. In other words, the goal is to answer the question whether there exists a d-regular circulant nut graph of order n, for any such pair  $(n,d) \in \mathbb{N}^2$  of integers. As shown by Damnjanović and Stevanović [2, Lemma 6], the order of each circulant nut graph must be even, while its degree must be divisible by four. It is clear that a 4t-regular circulant nut graph cannot have an order of 4t + 2, since the adjacency matrix of such a graph would obviously have a nullity greater than one, due to the fact that its first  $\frac{n}{2}$  rows would match its following  $\frac{n}{2}$  rows, respectively.

Furthermore, if t is even, then the order of a 4t-regular circulant nut graph cannot be below 4t + 6, as demonstrated by Damnjanović and Stevanović [2, Lemma 18]. Bearing this in mind, we deduce that for a given  $t \in \mathbb{N}$ , all the 4t-regular circulant nut graphs must have an even order n such that

- $n \ge 4t + 4 \text{ if } 2 \nmid t$ ;
- $n \ge 4t + 6 \text{ if } 2 \mid t$ .

In this paper, we present the following two families of circulant graphs:

$$\mathcal{D}'_{t,n} = \operatorname{Circ}(n, \mathcal{S}'_{t,n}), \quad \text{for each } 2 \nmid t \text{ and } 4 \mid n \text{ such that } n \geq 4t + 4,$$
  
 $\mathcal{D}''_{t,n} = \operatorname{Circ}(n, \mathcal{S}''_{t,n}), \quad \text{for each } t \in \mathbb{N} \text{ and } n \equiv_4 2 \text{ such that } n \geq 4t + 6,$ 

where

$$S'_{t,n} = \{1, 2, \dots, t-1\} \cup \left\{\frac{n}{4}, \frac{n}{4} + 1\right\} \cup \left\{\frac{n}{2} - (t-1), \dots, \frac{n}{2} - 2, \frac{n}{2} - 1\right\},$$

$$S''_{t,n} = \{1, 2, \dots, t-1\} \cup \left\{\frac{n+2}{4}, \frac{n+6}{4}\right\} \cup \left\{\frac{n}{2} - (t-1), \dots, \frac{n}{2} - 2, \frac{n}{2} - 1\right\}.$$

Subsequently, we prove that all of the graphs which belong to these families are nut graphs, thereby showing that for each odd t, there does exist a 4t-regular circulant nut graph of order n, for any even  $n \ge 4t + 4$ . This observation fully resolves the circulant nut graph order–degree existence problem for 4t-regular graphs whenever t is odd.

When it comes to the even values of t, we get a partial resolution of the existence problem, given the fact that the said constructions do cover the case when  $n \equiv_4 2$ . However, the case when n is divisible by four is not yet resolved, hence these graphs remain to be further inspected in the future.

The remainder of this paper is structured as follows. In Section 2 we preview certain theoretical facts regarding the circulant matrices, circulant nut graphs and cyclotomic polynomials which are required in order to successfully prove the two main theorems. Subsequently, Section 3 displays a full mathematical proof of the fact that each  $\mathcal{D}'_{t,n}$  circulant graph is indeed a nut graph. Afterwards, Section 4 uses a similar strategy in order to prove that every  $\mathcal{D}''_{t,n}$  graph must be a circulant nut graph as well. Finally, Section 5 provides a brief conclusion to all the obtained results and discloses a new conjecture to be solved later on.

#### 2. Preliminaries

First of all, it is worth pointing out that the generator sets  $S'_{t,n}$  and  $S''_{t,n}$  are always well defined. It is straightforward to check that

$$1 < 2 < \dots < t - 1 < \frac{n}{4} < \frac{n}{4} + 1 < \frac{n}{2} - (t - 1) < \dots < \frac{n}{2} - 2 < \frac{n}{2} - 1$$

for each odd  $t \ge 3$  and  $n (\ge 4t + 4)$  that is divisible by four. Similarly, we have

$$1 < 2 < \dots < t - 1 < \frac{n+2}{4} < \frac{n+6}{4} < \frac{n}{2} - (t-1) < \dots < \frac{n}{2} - 2 < \frac{n}{2} - 1$$

for every  $t \ge 2$  and  $n \ge 4t + 6$  such that  $n \equiv_4 2$ . Finally, for t = 1 we have that

$$1 < \frac{n}{4} < \frac{n}{4} + 1 \le \frac{n}{2} - 1$$

for every  $n \ge 4t + 4$  divisible by four, as well as

$$1 < \frac{n+2}{4} < \frac{n+6}{4} \le \frac{n}{2} - 1$$

for each  $n \ge 4t + 6$  such that  $n \equiv_4 2$ .

It is known from elementary linear algebra theory (see, for example, [4, Section 3.1]) that the circulant matrix

$$A = \begin{bmatrix} a_0 & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_0 & a_1 & \cdots & a_{n-2} \\ a_{n-2} & a_{n-1} & a_0 & \cdots & a_{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \dots & a_0 \end{bmatrix}$$

must have the eigenvalues

$$P(1), P(\omega), P(\omega^2), \dots, P(\omega^{n-1}),$$

where  $\omega = e^{i\frac{2\pi}{n}}$  is an *n*-th root of unity, and

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$
.

Starting from the aforementioned result, Damnjanović and Stevanović [2] have managed to give the necessary and sufficient conditions for a circulant graph to be a nut graph in the form of the following lemma.

**Lemma 1 (Damnjanović and Stevanović [2]).** *Let* G = Circ(n, S) *where*  $n \ge 2$ . *The graph* G *is a nut graph if and only if all of the following conditions hold:* 

• 2 | n;

- S consists of t odd and t even integers from  $\{1, 2, 3, ..., \frac{n}{2} 1\}$ , for some  $t \ge 1$ ;
- $P(\omega^j) \neq 0$  for each  $j \in \{1, 2, 3, \dots, \frac{n}{2} 1\}$ .

All of the graphs  $\mathcal{D}'_{t,n}$  and  $\mathcal{D}''_{t,n}$  clearly satisfy the first condition from Lemma 1. Besides that, it is easy to show that they necessarily satisfy the second condition as well. For  $\mathcal{D}'_{t,n}$ , it is enough to point out that both  $\{1,2,\ldots,t-1\}$  and  $\left\{\frac{n}{2}-(t-1),\ldots,\frac{n}{2}-2,\frac{n}{2}-1\right\}$  contain an even number of consecutive integers, due to the fact that t-1 is even. Since  $\frac{n}{4}$  and  $\frac{n}{4}+1$  are surely of different parities, it follows that  $\mathcal{S}'_{t,n}$  does contain equally many odd and even integers. For  $\mathcal{D}''_{t,n}$ , it is essential to notice that j and  $\frac{n}{2}-j$  must be of different parities, for each  $j=\overline{1,t-1}$ , due to the fact that  $\frac{n}{2}$  is odd. Furthermore,  $\frac{n+2}{4}$  and  $\frac{n+6}{4}$  are certainly of different parities, hence we obtain that  $\mathcal{S}''_{t,n}$  contains equally many odd and even integers, too.

Taking into consideration Lemma 1, it becomes apparent that in order to show that each graph  $\mathcal{D}'_{t,n}$  and  $\mathcal{D}''_{t,n}$  is a nut graph, it is sufficient to prove that it satisfies the third condition given in the lemma. In other words, it is enough to demonstrate that, for these graphs, the polynomial  $P(x) \in \mathbb{Z}[x]$  has no n-th roots of unity among its roots, except potentially -1 or 1.

It is clear that  $\omega^{n-j} = \frac{1}{\omega^j}$  for each  $j = \overline{1, n-1}$ . Bearing this in mind, we quickly obtain that

$$P(\omega^{j}) = \left(\omega^{js_0} + \frac{1}{\omega^{js_0}}\right) + \left(\omega^{js_1} + \frac{1}{\omega^{js_1}}\right) + \dots + \left(\omega^{js_{k-1}} + \frac{1}{\omega^{js_{k-1}}}\right)$$
(1)

for an arbitrary circulant graph G = Circ(n, S), where  $S = \{s_0, s_1, s_2, \dots, s_{k-1}\}$ , provided all the generator set elements are lower than  $\frac{n}{2}$ . Formula (1) will be heavily used throughout Sections 3 and 4 while proving the two main theorems of the paper.

Last but not least, it is crucial to point out that the cyclotomic polynomials shall play a key role in demonstrating whether certain polynomials of interest contain the given roots of unity among their roots. The cyclotomic polynomial  $\Phi_b(x)$  can be defined for each  $b \in \mathbb{N}$  via

$$\Phi_b(x) = \prod_{\zeta} (x - \zeta),$$

where  $\zeta$  ranges over the primitive b-th roots of unity. It is known that these polynomials have integer coefficients and that they are all irreducible in  $\mathbb{Q}[x]$  (see, for example, [7]). Hence, an arbitrary polynomial in  $\mathbb{Q}[x]$  has a primitive b-th root of unity among its roots if and only if it is divisible by  $\Phi_b(x)$ .

While inspecting whether certain integer polynomials are divisible by cyclotomic polynomials, we will strongly rely on the following theorem on the divisibility of lacunary polynomials by cyclotomic polynomials.

**Theorem 2 (Filaseta and Schinzel [3]).** *Let*  $P(x) \in \mathbb{Z}[x]$  *have* N *nonzero terms and let*  $\Phi_b(x) \mid P(x)$ . *Suppose that*  $p_1, p_2, \ldots, p_k$  *are distinct primes such that* 

$$\sum_{j=1}^{k} (p_j - 2) > N - 2.$$

Let  $e_j$  be the largest exponent such that  $p_j^{e_j} \mid b$ . Then for at least one  $j, 1 \leq j \leq k$ , we have that  $\Phi_{b'}(x) \mid P(x)$ , where  $b' = \frac{b}{p_j^{e_j}}$ .

### 3. D'(t, n) family of circulant graphs

In this section, we will formulate and provide a full mathematical proof of the first of the two central theorems given in the paper.

**Theorem 3.** For each odd  $t \in \mathbb{N}$  and  $n \ge 4t + 4$  such that  $4 \mid n$ , the circulant graph  $\mathcal{D}'_{t,n}$  must be a 4t-regular nut graph of order n.

In order to make the proof more concise, we will need a number of auxiliary lemmas. To start with, let  $Q_t(x)$ ,  $R_t(x) \in \mathbb{Z}[x]$  be the following two integer polynomials

$$Q_t(x) = 2x^{2t-1} + x^{t+1} - x^t + x^{t-1} - x^{t-2} - 2,$$
  

$$R_t(x) = 2x^{2t-1} - x^{t+1} - 3x^t + 3x^{t-1} + x^{t-2} - 2.$$

for each odd  $t \ge 3$ . It is clear that all of these polynomials must have exactly six non-zero terms, due to the fact that

$$0 < t - 2 < t - 1 < t < t + 1 < 2t - 1$$

for each odd  $t \ge 3$ . Now, if we let

$$L_t = \{0, t-2, t-1, t, t+1, 2t-1\}$$

be the set consisting of the powers of these six terms, then it can be shown that this set has one valuable property, as described in the following lemma.

**Lemma 2.** For each odd  $t \ge 3$  and each prime number  $p \ge 5$ , the set  $L_t$  contains an element whose remainder modulo p is unique within the set.

*Proof.* The four integers t-2, t-1, t, t+1 are consecutive, hence it is clear that they all have mutually distinct remainders modulo p. Regardless of what their remainders modulo p are, at least two of these integers must have a remainder that is different from the remainders of both 0 and 2t-1.  $\square$ 

Lemma 2 proves to be useful while demonstrating one key property of the  $Q_t(x)$  and  $R_t(x)$  polynomials regarding their divisibility by cyclotomic polynomials. This is shown in the next lemma.

**Lemma 3.** For any odd  $t \ge 3$ , neither  $Q_t(x)$  nor  $R_t(x)$  can be divisible by a cyclotomic polynomial  $\Phi_b(x)$  such that  $p^2 \mid b$  for some prime number p.

*Proof.* Let  $b \in \mathbb{N}$  be such that  $p^2 \mid b$  for some prime number p. In this case,  $\frac{b}{p}$  is a positive integer divisible by p, hence we get that  $\Phi_b(x) = \Phi_{\underline{b}}(x^p)$  (see, for example, [5, p. 160]).

Now, suppose that  $\Phi_b(x) \mid Q_t(x)$  for some odd integer  $t \geq 3$ . It follows that  $Q_t(x) = V(x)\Phi_b(x)$  for some polynomial  $V(x) \in \mathbb{Q}[x]$ . Let  $Q_t^{(j)}(x)$  be the polynomial composed of all the terms of  $Q_t(x)$  whose powers are congruent to j modulo p, for each j = 0, p-1. Similarly, let  $V^{(j)}(x)$  be the polynomial composed of all the terms of V(x) whose powers are congruent to j modulo p, for each j = 0, p-1. Given the fact that the powers of all the terms of  $\Phi_b(x)$  are divisible by p, it swiftly follows that

$$Q_t^{(j)}(x) = V^{(j)}(x) \, \Phi_b(x)$$

must hold for all the  $j = \overline{0, p-1}$ . In other words, we necessarily have

$$\Phi_b(x) \mid Q_t^{(j)}(x)$$

for all the  $j = \overline{0, p-1}$ . The same reasoning and notation can be applied in the case that we suppose that  $\Phi_b(x) \mid R_t(x)$  is true for some odd  $t \ge 3$ . We will finalize the proof of the lemma by taking into consideration three separate cases depending on the value of the prime number p.

*Case p* ≥ 5. In this case, Lemma 2 dictates that the set  $L_t$  must contain an element whose remainder modulo p is unique within that set. In other words, there exists a j,  $0 \le j \le p - 1$  such that both  $Q_t^{(j)}(x)$  and  $R_t^{(j)}(x)$ 

consist of exactly one non-zero term, i.e. have the form  $c \, x^a$  for some  $c \in \mathbb{Z} \setminus \{0\}$  and  $a \in \mathbb{N}_0$ . If we suppose that either  $\Phi_b(x) \mid Q_t(x)$  or  $\Phi_b(x) \mid R_t(x)$ , this implies that  $\Phi_b(x)$  must necessarily divide a polynomial with the aforementioned form  $c \, x^a$ , which is clearly impossible.

Case p = 3. This case can be quickly resolved by taking into consideration the modular values given in Table 1. We divide the case into three subcases depending on the value of t mod 3.

| $t \equiv_3 0$ | $t\equiv_3 1$ | $t \equiv_3 2$ |
|----------------|---------------|----------------|
| 0              | 0             | 0              |
| 1              | 2             | 0              |
| 2              | 0             | 1              |
| 0              | 1             | 2              |
| 1              | 2             | 0              |
| 2              | 1             | 0              |
|                | 0             | 0 0<br>1 2     |

Table 1: The elements of the set  $L_t$  modulo 3.

Subcase  $t \equiv_3 0$ . If we suppose that  $\Phi_b(x) \mid Q_t(x)$ , we get  $\Phi_b(x) \mid x^{t+1} - x^{t-2}$ . Similarly,  $\Phi_b(x) \mid R_t(x)$  would imply  $\Phi_b(x) \mid -x^{t+1} + x^{t-2}$ . Either way, we obtain

$$\Phi_b(x) \mid x^{t+1} - x^{t-2}$$

$$\Longrightarrow \Phi_b(x) \mid x^{t-2} (x^3 - 1)$$

$$\Longrightarrow \Phi_b(x) \mid x^3 - 1,$$

which is not possible.

Subcase  $t \equiv_3 1$ . Regardless of whether we suppose that  $\Phi_b(x) \mid Q_t(x)$  holds or  $\Phi_b(x) \mid R_t(x)$ , we obtain that  $\Phi_b(x) \mid x^{t+1} - x^{t-2}$  must be true, which is impossible as we have already demonstrated in the previous subcase.

Subcase  $t \equiv_3 2$ . Bearing in mind the modular values given in Table 1, we conclude that  $\Phi_b(x) \mid Q_t(x)$  or  $\Phi_b(x) \mid R_t(x)$  would surely imply that  $\Phi_b(x) \mid y^t$ , which is not possible.

Case p = 2. In this case, we have that the integers t - 2, t, 2t - 1 are odd, while 0, t - 1, t + 1 are even. We will resolve this case separately for  $Q_t(x)$  and  $R_t(x)$ , thus yielding two subcases.

Subcase  $\Phi_b(x) \mid Q_t(x)$ . Suppose that  $\Phi_b(x) \mid Q_t(x)$ . We now get

$$\Phi_b(x) \mid 2x^{2t-1} - x^t - x^{t-2},$$
 (2)

$$\Phi_b(x) \mid x^{t+1} + x^{t-1} - 2.$$
 (3)

If we take into consideration that  $2x^{2t-1} - x^t - x^{t-2} = x^{t-2}(2x^{t+1} - x^2 - 1)$ , Eq. (2) helps us obtain

$$\Phi_b(x) \mid 2x^{t+1} - x^2 - 1. \tag{4}$$

By subtracting the right-hand sides of Eqs. (3) and (4), we further conclude that

$$\Phi_{b}(x) \mid (2x^{t+1} - x^{2} - 1) - (x^{t+1} + x^{t-1} - 2) 
\Rightarrow \Phi_{b}(x) \mid x^{t+1} - x^{t-1} - x^{2} + 1 
\Rightarrow \Phi_{b}(x) \mid (x^{t-1} - 1)(x^{2} - 1) 
\Rightarrow \Phi_{b}(x) \mid x^{t-1} - 1.$$
(5)

Now, if we subtract the right-hand sides of Eqs. (3) and (5), we get  $\Phi_b(x) \mid x^{t+1} - 1$ , which directly implies

$$\Phi_{b}(x) \mid (x^{t+1} - 1) - (x^{t-1} - 1)$$

$$\implies \Phi_{b}(x) \mid x^{t+1} - x^{t-1}$$

$$\implies \Phi_{b}(x) \mid x^{t-1} (x^{2} - 1)$$

$$\implies \Phi_{b}(x) \mid x^{2} - 1$$

which is not possible. Hence,  $\Phi_h(x) \mid Q_t(x)$  cannot hold, as desired.

Subcase  $\Phi_b(x) \mid R_t(x)$ . If we suppose that  $\Phi_b(x) \mid R_t(x)$ , it follows that

$$\Phi_b(x) \mid 2x^{2t-1} - 3x^t + x^{t-2},$$
 (6)

$$\Phi_b(x) \mid -x^{t+1} + 3x^{t-1} - 2. \tag{7}$$

Given the fact that  $2x^{2t-1} - 3x^t + x^{t-2} = x^{t-2}(2x^{t+1} - 3x^2 + 1)$ , Eq. (6) yields

$$\Phi_b(x) \mid 2x^{t+1} - 3x^2 + 1. \tag{8}$$

Now, by subtracting the right-hand sides of Eqs. (7) and (8), we further obtain

$$\Phi_{b}(x) \mid (2x^{t+1} - 3x^{2} + 1) - (-x^{t+1} + 3x^{t-1} - 2) 
\Rightarrow \Phi_{b}(x) \mid 3x^{t+1} - 3x^{t-1} - 3x^{2} + 3 
\Rightarrow \Phi_{b}(x) \mid 3(x^{t-1} - 1)(x^{2} - 1) 
\Rightarrow \Phi_{b}(x) \mid x^{t-1} - 1.$$
(9)

If we take the right-hand side of Eq. (9), multiply it by two, then subtract it from the right-hand side of Eq. (7), we will get another polynomial that is divisible by  $\Phi_b(x)$ . In other words, we have

$$\Phi_{b}(x) \mid (-x^{t+1} + 3x^{t-1} - 2) - 2(x^{t-1} - 1)$$

$$\Longrightarrow \Phi_{b}(x) \mid -x^{t+1} + x^{t-1}$$

$$\Longrightarrow \Phi_{b}(x) \mid x^{t-1} (1 - x^{2})$$

$$\Longrightarrow \Phi_{b}(x) \mid 1 - x^{2},$$

which is not possible. Thus,  $\Phi_b(x) \mid R_t(x)$  cannot be true.  $\square$ 

Lemma 3 tells us that the only cyclotomic polynomials  $\Phi_b(x)$  that could divide either  $Q_t(x)$  or  $R_t(x)$  are those where  $b \in \mathbb{N}$  is a square-free integer. In fact, for any odd  $t \geq 3$ , the only cyclotomic polynomials that do divide these polynomials are  $\Phi_1(b)$  and  $\Phi_2(b)$ . This observation will prove to be of the utmost importance while formulating the complete proof of Theorem 3 later on. However, in order to prove this statement, we shall need two more additional lemmas. We begin with the next one.

**Lemma 4.** For each odd  $t \ge 3$  and each prime number  $p \ge 7$ , neither  $Q_t(x)$  nor  $R_t(x)$  can be divisible by the cyclotomic polynomial  $\Phi_v(x)$  or the cyclotomic polynomial  $\Phi_{2v}(x)$ .

*Proof.* First of all, it is important to notice that for all prime numbers  $p \ge 7$  we have

$$\Phi_p(x) = \sum_{j=0}^{p-1} x^j, \qquad \Phi_{2p}(x) = \sum_{j=0}^{p-1} (-1)^j x^j.$$

Here, it is clear that  $\deg \Phi_p = \deg \Phi_{2p} = p-1$ . We will finish the proof of the lemma by splitting the problem into two separate cases depending on whether we are dealing with  $\Phi_p(x)$  or  $\Phi_{2p}(x)$ .

Case  $\Phi_p(x)$ . Let  $Q_t^{\mod p}(x)$  and  $R_t^{\mod p}(x)$  be the following two polynomials:

$$\begin{split} Q_t^{\bmod p}(x) &= 2x^{(2t-1) \bmod p} + x^{(t+1) \bmod p} - x^{t \bmod p} + x^{(t-1) \bmod p} - x^{(t-2) \bmod p} - 2, \\ R_t^{\bmod p}(x) &= 2x^{(2t-1) \bmod p} - x^{(t+1) \bmod p} - 3x^{t \bmod p} + 3x^{(t-1) \bmod p} + x^{(t-2) \bmod p} - 2. \end{split}$$

Suppose that  $\Phi_p(x) \mid Q_t(x)$ . In this case, it is clear that  $\Phi_p(x) \mid Q_t^{\text{mod } p}(x)$  must hold, too. Given the fact that  $\deg Q_t^{\text{mod } p} \leq p-1 = \deg \Phi_p$ , we further get two possibilities:

- $\bullet \ Q_t^{\bmod p}(x) \equiv 0;$
- $Q_t^{\text{mod } p}(x) = c \, \Phi_p(x) \text{ for some } c \in \mathbb{Q} \setminus \{0\}.$

By virtue of Lemma 2, there must exist a non-zero term in  $Q_t(x)$  whose power has a unique remainder modulo p. This directly implies that  $Q_t^{\text{mod }p}(x) \equiv 0$  cannot hold. On the other hand,  $Q_t^{\text{mod }p}(x) = c \Phi_p(x)$  implies that  $Q_t^{\text{mod }p}(x)$  and  $\Phi_p(x)$  must have the same number of non-zero terms, i.e.  $Q_t^{\text{mod }p}(x)$  needs to have exactly p non-zero terms. This is clearly impossible due to the fact that  $Q_t^{\text{mod }p}(x)$  has at most six non-zero terms. We conclude that  $\Phi_p(x) \mid Q_t(x)$  cannot be true.

The proof of  $\Phi_p(x) \nmid R_t(x)$  is completely analogous to the previously described proof of  $\Phi_p(x) \nmid Q_t(x)$ . Thus, it will be left out.

Case  $\Phi_{2p}(x)$ . Let  $\overline{Q}_t^{\mod p}(x)$  and  $\overline{R}_t^{\mod p}(x)$  be the following two polynomials:

$$\begin{split} \overline{Q}_t^{\bmod p}(x) &= 2(-1)^{\lfloor \frac{2t-1}{p} \rfloor} x^{(2t-1) \bmod p} + (-1)^{\lfloor \frac{t+1}{p} \rfloor} x^{(t+1) \bmod p} - (-1)^{\lfloor \frac{t}{p} \rfloor} x^{t \bmod p} \\ &\quad + (-1)^{\lfloor \frac{t-1}{p} \rfloor} x^{(t-1) \bmod p} - (-1)^{\lfloor \frac{t-2}{p} \rfloor} x^{(t-2) \bmod p} - 2, \\ \overline{R}_t^{\bmod p}(x) &= 2(-1)^{\lfloor \frac{2t-1}{p} \rfloor} x^{(2t-1) \bmod p} - (-1)^{\lfloor \frac{t+1}{p} \rfloor} x^{(t+1) \bmod p} - 3(-1)^{\lfloor \frac{t}{p} \rfloor} x^{t \bmod p} \\ &\quad + 3(-1)^{\lfloor \frac{t-1}{p} \rfloor} x^{(t-1) \bmod p} + (-1)^{\lfloor \frac{t-2}{p} \rfloor} x^{(t-2) \bmod p} - 2. \end{split}$$

Since each primitive 2p-th root of unity gives -1 when raised to the power of p, it becomes evident that  $\Phi_{2p}(x) \mid Q_t(x)$  is equivalent to  $\Phi_{2p}(x) \mid \overline{Q}_t^{\mod p}(x)$ . Likewise,  $\Phi_{2p}(x) \mid R_t(x)$  will hold if and only if  $\Phi_{2p}(x) \mid \overline{R}_t^{\mod p}(x)$  does, too.

Now, suppose that  $\Phi_{2p}(x) \mid Q_t(x)$ . In this case we obtain  $\Phi_{2p} \mid \overline{Q}_t^{\mod p}(x)$ , where  $\deg \overline{Q}_t^{\mod p} \leq p-1 = \deg \Phi_{2p}$ . Like in the previous case, we get two possible options:

- $\overline{Q}_t^{\bmod p}(x) \equiv 0$ ;
- $\overline{Q}_t^{\mod p}(x) = c \, \Phi_{2p}(x)$  for some  $c \in \mathbb{Q} \setminus \{0\}$ .

Lemma 2 dictates that there must exist a non-zero term in  $Q_t(x)$  whose power has a unique remainder modulo p, which means that it is impossible for  $\overline{Q}_t^{\bmod p}(x) \equiv 0$  to be true. On the other hand, from  $\overline{Q}_t^{\bmod p}(x) = c \, \Phi_{2p}(x)$  we get that  $\overline{Q}_t^{\bmod p}(x)$  must have exactly p non-zero terms. However, this is not possible since it is clear that this polynomial cannot have more than six non-zero terms. It swiftly follows that  $\Phi_{2p}(x) \nmid Q_t(x)$ .

The proof of  $\Phi_{2p}(x) \nmid R_t(x)$  is entirely analogous to the elaborated proof of  $\Phi_{2p}(x) \nmid Q_t(x)$ . For this reason, we choose to leave it out.  $\square$ 

As the final piece of the puzzle, we will need to show that some concrete cyclotomic polynomials cannot divide  $Q_t(x)$  or  $R_t(x)$ , for each odd integer  $t \ge 3$ . More precisely, we will turn our interest to the cyclotomic polynomials  $\Phi_b(x)$  where b is a square-free integer all of whose prime factors belong to the set  $\{2,3,5\}$ .

**Lemma 5.** For each odd  $t \ge 3$  and each positive integer  $b \in \{3, 5, 6, 10, 15, 30\}$ , the cyclotomic polynomial  $\Phi_b(x)$  divides neither  $Q_t(x)$  nor  $R_t(x)$ .

*Proof.* Similarly as in the proof of Lemma 4, let  $Q_t^{\text{mod } b}(x)$  and  $R_t^{\text{mod } b}(x)$  be the next two polynomials:

$$Q_t^{\bmod b}(x) = 2x^{(2t-1) \bmod b} + x^{(t+1) \bmod b} - x^{t \bmod b} + x^{(t-1) \bmod b} - x^{(t-2) \bmod b} - 2,$$

$$R_t^{\bmod b}(x) = 2x^{(2t-1) \bmod b} - x^{(t+1) \bmod b} - 3x^{t \bmod b} + 3x^{(t-1) \bmod b} + x^{(t-2) \bmod b} - 2.$$

Here, it is imperative for us to notice that  $\Phi_b(x) \mid Q_t(x) \iff \Phi_b(x) \mid Q_t^{\text{mod } b}(x)$  and also that  $\Phi_b(x) \mid R_t(x) \iff \Phi_b(x) \mid R_t^{\text{mod } b}(x)$ . However, for a fixed value of  $b \in \mathbb{N}$ , there exist only finitely many polynomials  $Q_t^{\text{mod } b}(x)$  and  $R_t^{\text{mod } b}(x)$ , as t ranges over the odd integers greater than or equal to three. This is a direct consequence of the fact that t can only have finitely many remainders modulo b. Hence, if we are able to show that  $\Phi_b(x)$  divides none of these concrete polynomials, this is sufficient to prove that  $\Phi_b(x)$  divides neither  $Q_t(x)$  nor  $R_t(x)$ .

In order to prove the lemma, it is enough to demonstrate that  $\Phi_b(x) \nmid Q_t^{\mod b}(x)$  and  $\Phi_b(x) \nmid R_t^{\mod b}(x)$  for all the  $b \in \{3,5,6,10,15,30\}$  and for all the possible remainders t mod b. Doing this is trivial via computer with the help of some symbolic computation software. We disclose the required computational results in the form of two tables which are given in Appendix A and Appendix B. These results clearly indicate that for each  $b \in \{3,5,6,10,15,30\}$  the remainders  $Q_t^{\mod b}(x) \mod \Phi_b(x)$  and  $R_t^{\mod b}(x) \mod \Phi_b(x)$  can never be equal to the zero polynomial, regardless of what the value of t mod b is, which completes the proof of the lemma.  $\square$ 

It is important to notice that Theorem 2 can very conveniently be used on the polynomials  $Q_t(x)$  and  $R_t(x)$ , given the fact that they only have six non-zero terms. This means that if  $\Phi_b(x) \mid Q_t(x)$  and  $p \mid b$  for some square-free integer b and some prime number  $p \geq 7$ , we can immediately deduce that  $\Phi_{\frac{b}{p}}(x) \mid Q_t(x)$  is true as well. The same can be said regarding  $R_t(x)$ . This practically means that if the aforementioned divisibility holds, we can cancel out as many prime factors of b that are not below seven as we want, and the divisibility will still have to hold. Bearing this in mind, we are now able to formulate and prove the following lemma regarding the divisibility of  $Q_t(x)$  and  $R_t(x)$  by cyclotomic polynomials.

**Lemma 6.** For each odd  $t \ge 3$ , neither  $Q_t(x)$  nor  $R_t(x)$  can be divisible by a cyclotomic polynomial  $\Phi_b(x)$  where  $b \ge 3$ .

*Proof.* The proof will only be given for  $Q_t(x)$ , given the fact that the proof regarding  $R_t(x)$  is completely analogous. Suppose that  $\Phi_b(x) \mid Q_t(x)$  for some  $b \ge 3$ . By virtue of Lemma 3, we know that b needs to be a square-free integer. We now divide the problem into two separate cases, depending on whether b is divisible by either 3 or 5, or not.

Case  $3 \nmid b$  and  $5 \nmid b$ . In this case, it is clear that b has at least one prime factor greater than 5, since  $b \notin \{1,2\}$ . If we repeatedly use Theorem 2 in order to cancel out all the prime factors of b that are greater than 5, until exactly one is left, we obtain that

$$\Phi_{b'}(x)\mid Q_t(x)$$

must hold, where b' is square-free, not divisible by 3 or 5, and has exactly one prime factor greater than 5. In other words, we get that either  $\Phi_p(x) \mid Q_t(x)$  or  $\Phi_{2p} \mid Q_t(x)$  holds, for some prime number  $p \ge 7$ . However, this is not possible according to Lemma 4.

Case  $3 \mid b \text{ or } 5 \mid b$ . Here, we can simply use Theorem 2 in order to cancel out all the prime factors of b that are greater than 5, until there are none left. This leads us to

$$\Phi_{b'}(x) \mid Q_t(x),$$

where b' is square-free, divisible by 3 or 5, and has no prime factors outside of the set  $\{2,3,5\}$ . These conditions imply that  $b' \in \{3,5,6,10,15,30\}$ . However, in this case  $\Phi_{b'}(x) \mid Q_t(x)$  cannot possibly hold, as a direct consequence of Lemma 5.

Both of the cases have led to a contradiction, which means that  $\Phi_b(x) \mid Q_t(x)$  cannot hold for any  $b \ge 3$ .  $\square$ 

Lemma 6 allows us to finish the proof of Theorem 3. We present the rest of the proof in the remainder of this section.

*Proof of Theorem 3.* The proof for the case t=1 is fairly straightforward. Due to the fact that  $S'_{1,n} = \left\{\frac{n}{4}, \frac{n}{4} + 1\right\}$ , Eq. (1) immediately gives us

$$P(\zeta) = \zeta^{\frac{n}{4}} + \frac{1}{\zeta^{\frac{n}{4}}} + \zeta^{\frac{n}{4}+1} + \frac{1}{\zeta^{\frac{n}{4}+1}},\tag{10}$$

where  $\zeta$  is an arbitrary n-th root of unity different from 1 and -1. Now, the condition  $P(\zeta) = 0$  becomes equivalent to

$$P(\zeta) = 0$$

$$\iff \zeta^{\frac{n}{4}+1} \left( \zeta^{\frac{n}{4}} + \frac{1}{\zeta^{\frac{n}{4}}} + \zeta^{\frac{n}{4}+1} + \frac{1}{\zeta^{\frac{n}{4}+1}} \right) = 0$$

$$\iff \zeta^{\frac{n}{2}+2} + \zeta^{\frac{n}{2}+1} + \zeta + 1 = 0$$

$$\iff (\zeta + 1) \left( \zeta^{\frac{n}{2}+1} + 1 \right) = 0$$

$$\iff \zeta^{\frac{n}{2}+1} + 1 = 0.$$

Since we know that  $\zeta^{\frac{n}{2}} \in \{1, -1\}$ , we obtain that  $\zeta^{\frac{n}{2}+1} + 1$  is equal to  $\zeta + 1$  or  $-\zeta + 1$ . Either way, this value cannot be equal to 0, hence we conclude that  $P(\zeta) \neq 0$ . Since the value  $\zeta$  was arbitrarily chosen, we obtain that no n-th root of unity different from 1 and -1 can be a root of P(x). According to Lemma 1, this means that  $\mathcal{D}'_{1,n}$  is indeed a circulant nut graph for any  $n \geq 8$  divisble by four, as desired.

Now, we turn our attention to the case when  $t \ge 3$ . In this scenario, Eq. (1) gives us

$$P(\zeta) = \left(\zeta^{\frac{n}{4}} + \frac{1}{\zeta^{\frac{n}{4}}}\right) + \left(\zeta^{\frac{n}{4}+1} + \frac{1}{\zeta^{\frac{n}{4}+1}}\right) + \sum_{j=1}^{t-1} \left(\zeta^{j} + \frac{1}{\zeta^{j}}\right) + \sum_{j=\frac{n}{3}-t+1}^{\frac{n}{2}-1} \left(\zeta^{j} + \frac{1}{\zeta^{j}}\right),$$

where  $\zeta$  is an arbitrarily chosen n-th root of unity different from 1 and -1. It is easy to further conclude that

$$P(\zeta) = \left(\zeta^{\frac{n}{4}+1} + \zeta^{\frac{n}{4}} + \frac{1}{\zeta^{\frac{n}{4}}} + \frac{1}{\zeta^{\frac{n}{4}+1}}\right) + \sum_{j=1}^{t-1} \left(\zeta^{j} + \frac{1}{\zeta^{j}} + \zeta^{\frac{n}{2}-j} + \frac{1}{\zeta^{\frac{n}{2}-j}}\right). \tag{11}$$

We will finish the proof by showing that  $P(\zeta) \neq 0$  must necessarily hold. In order to make the proof more concise, we will divide it into two cases depending on whether  $\zeta^{\frac{n}{2}}$  is equal to 1 or -1.

Case  $\zeta^{\frac{n}{2}} = -1$ . In this case, we have that  $\zeta^{\frac{n}{2}-j} = -\frac{1}{\zeta^{j}}$  and  $\frac{1}{\zeta^{\frac{n}{2}-j}} = -\zeta^{j}$ , which quickly implies

$$\zeta^{j} + \frac{1}{\zeta^{j}} + \zeta^{\frac{n}{2} - j} + \frac{1}{\zeta^{\frac{n}{2} - j}} = 0$$

for any  $j = \overline{1, t - 1}$ . Thus, Eq. (11) simplifies to the following formula:

$$P(\zeta) = \zeta^{\frac{n}{4}+1} + \zeta^{\frac{n}{4}} + \frac{1}{\zeta^{\frac{n}{4}}} + \frac{1}{\zeta^{\frac{n}{4}+1}}.$$

However, the obtained formula is exactly the same as Eq. (10), which we got while dealing with the case t = 1. Hence, an almost absolutely identical proof can be used in order to show that  $P(\zeta) \neq 0$ .

Case  $\zeta^{\frac{n}{2}} = 1$ . Here, we obtain that  $\zeta^{\frac{n}{2}-j} = \frac{1}{\zeta^j}$  and  $\frac{1}{\zeta^{\frac{n}{2}-j}} = \zeta^j$ . This means that

$$\zeta^{j} + \frac{1}{\zeta^{j}} + \zeta^{\frac{n}{2} - j} + \frac{1}{\zeta^{\frac{n}{2} - j}} = 2\left(\zeta^{j} + \frac{1}{\zeta^{j}}\right)$$

for any  $j = \overline{1, t - 1}$ . According to Eq. (11), the condition  $P(\zeta) = 0$  becomes equivalent to

$$P(\zeta) = 0$$

$$\Leftrightarrow \qquad \left(\zeta^{\frac{n}{4}+1} + \zeta^{\frac{n}{4}} + \frac{1}{\zeta^{\frac{n}{4}}} + \frac{1}{\zeta^{\frac{n}{4}+1}}\right) + 2\sum_{j=1}^{t-1} \left(\zeta^{j} + \frac{1}{\zeta^{j}}\right) = 0$$

$$\Leftrightarrow \qquad \left(\zeta^{\frac{n}{4}+1} + \zeta^{\frac{n}{4}} + \frac{1}{\zeta^{\frac{n}{4}}} + \frac{1}{\zeta^{\frac{n}{4}+1}}\right) - 2 + 2\sum_{j=1-t}^{t-1} \zeta^{j} = 0$$

$$\Leftrightarrow \qquad \zeta^{t-1} \left(\left(\zeta^{\frac{n}{4}+1} + \zeta^{\frac{n}{4}} + \frac{1}{\zeta^{\frac{n}{4}}} + \frac{1}{\zeta^{\frac{n}{4}+1}}\right) - 2 + 2\sum_{j=1-t}^{t-1} \zeta^{j}\right) = 0$$

$$\Leftrightarrow \qquad \left(\zeta^{t+\frac{n}{4}} + \zeta^{t+\frac{n}{4}-1} + \zeta^{t-\frac{n}{4}-1} + \zeta^{t-\frac{n}{4}-2}\right) - 2\zeta^{t-1} + 2\sum_{j=0}^{2t-2} \zeta^{j} = 0$$

$$\Leftrightarrow \qquad (\zeta - 1) \left(\zeta^{t+\frac{n}{4}} + \zeta^{t+\frac{n}{4}-1} + \zeta^{t-\frac{n}{4}-1} + \zeta^{t-\frac{n}{4}-2} - 2\zeta^{t-1} + 2\sum_{j=0}^{2t-2} \zeta^{j}\right) = 0$$

$$\Leftrightarrow \qquad \zeta^{t+\frac{n}{4}+1} - \zeta^{t+\frac{n}{4}-1} + \zeta^{t-\frac{n}{4}-2} - 2\zeta^{t} + 2\zeta^{t-1} + 2\zeta^{2t-1} - 2 = 0. \tag{12}$$

Now, we will divide the problem into two subcases depending on whether  $\zeta^{\frac{n}{4}}$  is equal to 1 or -1.

Subcase  $\zeta^{\frac{n}{4}} = 1$ . In this subcase, it is easy to see that Eq. (12) further becomes equivalent to

$$\zeta^{t+\frac{n}{4}+1} - \zeta^{t+\frac{n}{4}-1} + \zeta^{t-\frac{n}{4}} - \zeta^{t-\frac{n}{4}-2} - 2\zeta^{t} + 2\zeta^{t-1} + 2\zeta^{2t-1} - 2 = 0$$

$$\iff \zeta^{t+1} - \zeta^{t-1} + \zeta^{t} - \zeta^{t-2} - 2\zeta^{t} + 2\zeta^{t-1} + 2\zeta^{2t-1} - 2 = 0$$

$$\iff 2\zeta^{2t-1} + \zeta^{t+1} - \zeta^{t} + \zeta^{t-1} - \zeta^{t-2} - 2 = 0.$$

Thus, if we suppose that  $P(\zeta) = 0$ , we then get that  $\zeta$  is a root of the polynomial  $Q_t(x)$ . However, since  $\zeta \neq 1, -1$  and  $\zeta^n = 1$ , this means that  $\zeta$  is a primitive b-th root of unity for some  $b \geq 3$ . This implies that  $\Phi_b(x)$  necessarily divides  $Q_t(x)$ , which is impossible according to Lemma 6, hence  $P(\zeta) = 0$  cannot be true.

Subcase  $\zeta^{\frac{n}{4}} = -1$ . Here, Eq. (12) quickly becomes equivalent to

$$\zeta^{t+\frac{n}{4}+1} - \zeta^{t+\frac{n}{4}-1} + \zeta^{t-\frac{n}{4}} - \zeta^{t-\frac{n}{4}-2} - 2\zeta^{t} + 2\zeta^{t-1} + 2\zeta^{2t-1} - 2 = 0$$

$$\iff -\zeta^{t+1} + \zeta^{t-1} - \zeta^{t} + \zeta^{t-2} - 2\zeta^{t} + 2\zeta^{t-1} + 2\zeta^{2t-1} - 2 = 0$$

$$\iff 2\zeta^{2t-1} - \zeta^{t+1} - 3\zeta^{t} + 3\zeta^{t-1} + \zeta^{t-2} - 2 = 0.$$

In a similar fashion, if we suppose that  $P(\zeta) = 0$ , we conclude that  $\zeta$  must be a root of the polynomial  $R_t(x)$ . Due to the fact that  $\zeta \neq 1$ , -1 and  $\zeta^n = 1$ , we see that  $\zeta$  is a primitive b-th root of unity for some  $b \geq 3$ . Hence,  $\Phi_b(x) \mid R_t(x)$  for some  $b \geq 3$ , which is again impossible by virtue of Lemma 6. Thus,  $P(\zeta) \neq 0$ .

## 4. D"(t, n) family of circulant graphs

Here, we give the second of the two central theorems disclosed in the paper.

**Theorem 4.** For each  $t \in \mathbb{N}$  and  $n \ge 4t + 6$  such that  $n \equiv_4 2$ , the circulant graph  $\mathcal{D}''_{t,n}$  must be a 4t-regular nut graph of order n.

The complete proof of Theorem 4 will have a very similar structure as the previously described proof of Theorem 3, albeit with more complexity. Instead of the polynomials  $Q_t(x)$  and  $R_t(x)$ , here we will rely on the integer polynomials  $U_t, W_t \in \mathbb{Z}[x]$  that are defined as

$$U_t(x) = 2x^{4t-1} + x^{2t+4} - 2x^{2t+1} + 2x^{2t-1} - x^{2t-4} - 2x,$$
  

$$W_t(x) = 2x^{4t-1} - x^{2t+4} - 2x^{2t+1} + 2x^{2t-1} + x^{2t-4} - 2x.$$

for all the  $t \in \mathbb{N}$ ,  $t \ge 2$ . These polynomials are clearly well defined for all the  $t \ge 2$  and must have exactly six non-zero terms, due to the fact that

$$1 < 2t - 4 < 2t - 1 < 2t + 1 < 2t + 4 < 4t - 1$$

for each  $t \ge 3$ , while

$$4t-1=7$$
,  $2t+4=8$ ,  $2t+1=5$ ,  $2t-1=3$ ,  $2t-4=0$ ,  $1=1$ ,

for t = 2. By setting

$$M_t = \{1, 2t - 4, 2t - 1, 2t + 1, 2t + 4, 4t - 1\}$$

for each  $t \ge 2$ , we can show that the  $M_t$  sets have a property that is very similar to the one regarding the  $L_t$  sets which was demonstrated earlier in Lemma 2 from Section 3.

**Lemma 7.** For each  $t \ge 2$  and each prime number  $p \ge 7$ , the set  $M_t$  contains an element whose remainder modulo p is unique within the set.

*Proof.* It is easy to notice that the four integers 2t - 4, 2t - 1, 2t + 1, 2t + 4 necessarily have mutually distinct remainders modulo p. This quickly implies that at least two of them must have a remainder modulo p that is different from the remainders of both 1 and 4t - 1.  $\square$ 

We will now implement Lemma 7 in order to prove a valuable property of the  $U_t(x)$  and  $W_t(x)$  polynomials regarding their division by cyclotomic polynomials, as demonstrated in the following lemma.

**Lemma 8.** For any  $t \ge 2$ , neither  $U_t(x)$  nor  $W_t(x)$  can be divisible by a cyclotomic polynomial  $\Phi_b(x)$  such that  $p^2 \mid b$  for some prime number  $p \ge 3$ .

*Proof.* This proof will be done in a completely analogous manner as that of Lemma 3. In case  $b \in \mathbb{N}$  and  $p^2 \mid b$  for some prime number p, we will again use the fact that  $\Phi_b(x) = \Phi_{\underline{b}}(x^p)$ .

Suppose that  $\Phi_b(x) \mid U_t(x)$  for some  $t \ge 2$  and  $b \in \mathbb{N}$  such that  $p^2 \mid b$  for some prime number  $p \ge 3$ . Let  $U_t^{(j)}(x)$  denote the polynomial composed of all the terms of  $U_t(x)$  whose powers are congruent to j modulo p, for each  $j = \overline{0, p-1}$ . The same logic used in the proof of Lemma 3 allows us to conclude that

$$\Phi_b(x) \mid U_t^{(j)}(x)$$

must hold for all the  $j = \overline{0, p-1}$ . It is clear that the same notation and implication can be used regarding the  $W_t(x)$  polynomial in case  $\Phi_b(x) \mid W_t(x)$  is true. We will now finalize the proof of the lemma by taking into consideration three separate cases depending on the value of the prime number p.

Case  $p \ge 7$ . In this scenario, Lemma 7 tells us that the set  $M_t$  must contain an element whose remainder modulo p is unique within that set. Hence, this case can be proved completely analogously to the case  $p \ge 5$  from the proof of Lemma 3.

Case p = 5. If  $t \equiv_5 2$  or  $t \equiv_5 4$ , then there exists an element of the set  $M_t$  whose remainder modulo 5 is unique with that set, as shown in Table 2. In this subcase, a contradiction can easily be obtained if we suppose that either  $\Phi_b(x) \mid U_t(x)$  or  $\Phi_b(x) \mid W_t(x)$ , by using the same logic as in the  $p \ge 7$  case. We resolve the remaining three subcases separately.

|                   | $t \equiv_5 0$ | $t \equiv_5 1$ | <i>t</i> ≡ <sub>5</sub> 2 | $t \equiv_5 3$ | <i>t</i> ≡ <sub>5</sub> 4 |
|-------------------|----------------|----------------|---------------------------|----------------|---------------------------|
| 1 mod 5           | 1              | 1              | 1                         | 1              | 1                         |
| $(2t - 4) \mod 5$ | 1              | 3              | 0                         | 2              | 4                         |
| $(2t - 1) \mod 5$ | 4              | 1              | 3                         | 0              | 2                         |
| $(2t + 1) \mod 5$ | 1              | 3              | 0                         | 2              | 4                         |
| $(2t + 4) \mod 5$ | 4              | 1              | 3                         | 0              | 2                         |
| $(4t - 1) \mod 5$ | 4              | 3              | 2                         | 1              | 0                         |

Table 2: The elements of the set  $M_t$  modulo 5.

Subcase  $t \equiv_5 0$ . If we suppose that  $\Phi_b \mid U_t(x)$ , then we get

$$\Phi_b(x) \mid -2x^{2t+1} - x^{2t-4} - 2x,$$
  

$$\Phi_b(x) \mid 2x^{4t-1} + x^{2t+4} + 2x^{2t-1}.$$

Since  $t \ge 5$ , we quickly obtain

$$\Phi_{b}(x) \mid -2x^{2t+1} - x^{2t-4} - 2x 
\Rightarrow \Phi_{b}(x) \mid -x (2x^{2t} + x^{2t-5} + 2) 
\Rightarrow \Phi_{b}(x) \mid 2x^{2t} + x^{2t-5} + 2, \tag{13}$$

as well as

$$\Phi_{b}(x) \mid 2x^{4t-1} + x^{2t+4} + 2x^{2t-1} 
\Longrightarrow \Phi_{b}(x) \mid x^{2t-1} (2x^{2t} + x^{5} + 2) 
\Longrightarrow \Phi_{b}(x) \mid 2x^{2t} + x^{5} + 2.$$
(14)

Furthermore, if we subtract the right-hand sides of Eqs. (13) and (14), this leads us to

$$\Phi_{b}(x) \mid (2x^{2t} + x^{2t-5} + 2) - (2x^{2t} + x^{5} + 2)$$

$$\Longrightarrow \quad \Phi_{b}(x) \mid x^{2t-5} - x^{5}$$

$$\Longrightarrow \quad \Phi_{b}(x) \mid x^{5} (x^{2t-10} - 1)$$

$$\Longrightarrow \quad \Phi_{b}(x) \mid x^{2t-10} - 1.$$

Now, Eq. (14) helps us obtain

$$\Phi_b(x) \mid 2x^{2t} + x^5 + 2$$

$$\Longrightarrow \quad \Phi_b(x) \mid 2x^{2t} + x^5 + 2 - 2x^{10} (x^{2t-10} - 1)$$

$$\Longrightarrow \quad \Phi_b(x) \mid 2x^{10} + x^5 + 2.$$

However, none of the roots of the polynomial  $2x^{10} + x^5 + 2$  are actually roots of unity, as demonstrated in Appendix E, hence we obtain a contradiction.

Similarly, if we suppose that  $\Phi_b(x) \mid W_t(x)$ , then we get

$$\Phi_b(x) \mid -2x^{2t+1} + x^{2t-4} - 2x,$$
  

$$\Phi_b(x) \mid 2x^{4t-1} - x^{2t+4} + 2x^{2t-1}.$$

Due to  $t \ge 5$ , we have

$$\Phi_{b}(x) \mid -2x^{2t+1} + x^{2t-4} - 2x 
\Longrightarrow \Phi_{b}(x) \mid -x (2x^{2t} - x^{2t-5} + 2) 
\Longrightarrow \Phi_{b}(x) \mid 2x^{2t} - x^{2t-5} + 2$$
(15)

and

$$\Phi_{b}(x) \mid 2x^{4t-1} - x^{2t+4} + 2x^{2t-1} 
\Longrightarrow \Phi_{b}(x) \mid x^{2t-1}(2x^{2t} - x^{5} + 2) 
\Longrightarrow \Phi_{b}(x) \mid 2x^{2t} - x^{5} + 2.$$
(16)

By subtracting the right-hand sides of Eqs. (15) and (16), it follows that

$$\Phi_{b}(x) \mid (2x^{2t} - x^{2t-5} + 2) - (2x^{2t} - x^{5} + 2)$$

$$\implies \Phi_{b}(x) \mid -x^{2t-5} + x^{5}$$

$$\implies \Phi_{b}(x) \mid -x^{5} (x^{2t-10} - 1)$$

$$\implies \Phi_{b}(x) \mid x^{2t-10} - 1.$$

Hence, Eq. (16) is now able to give us

$$\Phi_b(x) \mid 2x^{2t} - x^5 + 2$$

$$\Longrightarrow \Phi_b(x) \mid 2x^{2t} - x^5 + 2 - 2x^{10} (x^{2t-10} - 1)$$

$$\Longrightarrow \Phi_b(x) \mid 2x^{10} - x^5 + 2.$$

However, similarly as with  $U_t(x)$ , none of the roots of  $2x^{10} - x^5 + 2$  are roots of unity, as shown in Appendix E, which leads to a contradiction.

Subcase  $t \equiv_5 1$ . If we suppose that  $\Phi_b \mid U_t(x)$ , we immediately get

$$\Phi_b(x) \mid x^{2t+4} + 2x^{2t-1} - 2x,$$
  

$$\Phi_b(x) \mid 2x^{4t-1} - 2x^{2t+1} - x^{2t-4}.$$

It is easy to see that

$$\Phi_{b}(x) \mid x^{2t+4} + 2x^{2t-1} - 2x 
\Longrightarrow \Phi_{b}(x) \mid x (x^{2t+3} + 2x^{2t-2} - 2) 
\Longrightarrow \Phi_{b}(x) \mid x^{2t+3} + 2x^{2t-2} - 2,$$
(17)

as well as

$$\Phi_{b}(x) \mid 2x^{4t-1} - 2x^{2t+1} - x^{2t-4} 
\Longrightarrow \Phi_{b}(x) \mid x^{2t-4} (2x^{2t+3} - 2x^{5} - 1) 
\Longrightarrow \Phi_{b}(x) \mid 2x^{2t+3} - 2x^{5} - 1.$$
(18)

By using Eqs. (17) and (18) together, we further obtain

$$\Phi_b(x) \mid 2(x^{2t+3} + 2x^{2t-2} - 2) - (2x^{2t+3} - 2x^5 - 1)$$

$$\Longrightarrow \Phi_b(x) \mid 4x^{2t-2} + 2x^5 - 3. \tag{19}$$

Now, by using Eqs. (18) and (19) together, we see that

$$\Phi_b(x) \mid 2(2x^{2t+3} - 2x^5 - 1) - x^5 (4x^{2t-2} + 2x^5 - 3)$$

$$\implies \Phi_b(x) \mid -2x^{10} - x^5 - 2,$$

which is not possible since the polynomial  $2x^{10} + x^5 + 2$  has no roots of unity among its roots, as discussed earlier.

In a similar fashion, if we suppose that  $\Phi_b \mid W_t(x)$ , this gives us

$$\Phi_b(x) \mid -x^{2t+4} + 2x^{2t-1} - 2x,$$
  

$$\Phi_b(x) \mid 2x^{4t-1} - 2x^{2t+1} + x^{2t-4},$$

from which we swiftly obtain

$$\Phi_{b}(x) \mid -x^{2t+4} + 2x^{2t-1} - 2x 
\Longrightarrow \Phi_{b}(x) \mid -x(x^{2t+3} - 2x^{2t-2} + 2) 
\Longrightarrow \Phi_{b}(x) \mid x^{2t+3} - 2x^{2t-2} + 2$$
(20)

and

$$\Phi_{b}(x) \mid 2x^{4t-1} - 2x^{2t+1} + x^{2t-4} 
\Longrightarrow \Phi_{b}(x) \mid x^{2t-4} (2x^{2t+3} - 2x^{5} + 1) 
\Longrightarrow \Phi_{b}(x) \mid 2x^{2t+3} - 2x^{5} + 1.$$
(21)

If we use Eqs. (20) and (21) together, we conclude that

$$\Phi_b(x) \mid (2x^{2t+3} - 2x^5 + 1) - 2(x^{2t+3} - 2x^{2t-2} + 2)$$

$$\Longrightarrow \Phi_b(x) \mid 4x^{2t-2} - 2x^5 - 3. \tag{22}$$

Furthermore, by using Eqs. (21) and (22) together, we get

$$\Phi_b(x) \mid x^5 (4x^{2t-2} - 2x^5 - 3) - 2(2x^{2t+3} - 2x^5 + 1)$$

$$\implies \Phi_b(x) \mid -2x^{10} + x^5 - 2,$$

which is impossible given the fact that the polynomial  $2x^{10} - x^5 + 2$  has no roots of unity among its roots, as we have already discussed.

Subcase  $t \equiv_5 3$ . If we suppose that  $\Phi_b(x) \mid U_t(x)$ , we obtain

$$\Phi_b(x) \mid x^{2t+4} + 2x^{2t-1},$$
  
$$\Phi_b(x) \mid -2x^{2t+1} - x^{2t-4},$$

which directly gives us

$$\Phi_{b}(x) \mid x^{2t+4} + 2x^{2t-1} 
\Longrightarrow \Phi_{b}(x) \mid x^{2t-1} (x^{5} + 2) 
\Longrightarrow \Phi_{b}(x) \mid x^{5} + 2 \tag{23}$$

and

$$\Phi_{b}(x) \mid -2x^{2t+1} - x^{2t-4} 
\Longrightarrow \Phi_{b}(x) \mid -x^{2t-4} (2x^{5} + 1) 
\Longrightarrow \Phi_{b}(x) \mid 2x^{5} + 1.$$
(24)

By combining Eqs. (23) and (24), we reach

$$\Phi_b(x) \mid 2(x^5 + 2) - (2x^5 + 1)$$
  
 $\Longrightarrow \Phi_b(x) \mid 3,$ 

thus yielding a contradiction.

On the other hand, if we suppose that  $\Phi_b(x) \mid W_t(x)$ , this gives us

$$\Phi_b(x) \mid -x^{2t+4} + 2x^{2t-1},$$
  

$$\Phi_b(x) \mid -2x^{2t+1} + x^{2t-4},$$

which further implies

$$\Phi_{b}(x) \mid -x^{2t+4} + 2x^{2t-1} 
\Longrightarrow \Phi_{b}(x) \mid -x^{2t-1} (x^{5} - 2) 
\Longrightarrow \Phi_{b}(x) \mid x^{5} - 2, \tag{25}$$

as well as

$$\Phi_{b}(x) \mid -2x^{2t+1} + x^{2t-4} 
\Longrightarrow \Phi_{b}(x) \mid -x^{2t-4} (2x^{5} - 1) 
\Longrightarrow \Phi_{b}(x) \mid 2x^{5} - 1.$$
(26)

By combining Eqs. (25) and (26), we conclude that

$$\Phi_b(x) \mid 2(x^5 - 2) - (2x^5 - 1)$$

$$\implies \Phi_b(x) \mid -3,$$

which is not possible.

Case p = 3. This case can be resolved by taking into consideration the modular values given in Table 3. Thus, we divide the case into three subcases depending on the value of  $t \mod 3$ .

|                   | $t \equiv_3 0$ | $t \equiv_3 1$ | <i>t</i> ≡ <sub>3</sub> 2 |
|-------------------|----------------|----------------|---------------------------|
| 1 mod 3           | 1              | 1              | 1                         |
| $(2t - 4) \mod 3$ | 2              | 1              | 0                         |
| $(2t-1) \mod 3$   | 2              | 1              | 0                         |
| $(2t + 1) \mod 3$ | 1              | 0              | 2                         |
| $(2t + 4) \mod 3$ | 1              | 0              | 2                         |
| $(4t-1) \mod 3$   | 2              | 0              | 1                         |

Table 3: The elements of the set  $M_t$  modulo 3.

Subcase  $t \equiv_3 0$ . In this subcase, if we suppose that  $\Phi_b(x) \mid U_t(x)$ , we then have

$$\Phi_b(x) \mid x^{2t+4} - 2x^{2t+1} - 2x,$$
  
 $\Phi_b(x) \mid 2x^{4t-1} + 2x^{2t-1} - x^{2t-4},$ 

which immediately gives

$$\Phi_{b}(x) \mid x^{2t+4} - 2x^{2t+1} - 2x 
\Longrightarrow \Phi_{b}(x) \mid x (x^{2t+3} - 2x^{2t} - 2) 
\Longrightarrow \Phi_{b}(x) \mid x^{2t+3} - 2x^{2t} - 2$$
(27)

and

$$\Phi_{b}(x) \mid 2x^{4t-1} + 2x^{2t-1} - x^{2t-4} 
\Rightarrow \Phi_{b}(x) \mid x^{2t-4} (2x^{2t+3} + 2x^{3} - 1) 
\Rightarrow \Phi_{b}(x) \mid 2x^{2t+3} + 2x^{3} - 1.$$
(28)

By using Eqs. (27) and (28) together, we obtain

$$\Phi_b(x) \mid (2x^{2t+3} + 2x^3 - 1) - 2(x^{2t+3} - 2x^{2t} - 2)$$

$$\Longrightarrow \Phi_b(x) \mid 4x^{2t} + 2x^3 + 3. \tag{29}$$

Now, by using Eqs. (28) and (29), we get

$$\Phi_b(x) \mid 2(2x^{2t+3} + 2x^3 - 1) - x^3 (4x^{2t} + 2x^3 + 3)$$

$$\implies \Phi_b(x) \mid -2x^6 + x^3 - 2.$$

However, none of the roots of the polynomial  $2x^6 - x^3 + 2$  are actually roots of unity, as shown in Appendix E, which leads us to a contradiction.

Similarly, if we suppose that  $\Phi_b(x) \mid W_t(x)$ , we obtain

$$\Phi_b(x) \mid -x^{2t+4} - 2x^{2t+1} - 2x,$$
  
 $\Phi_b(x) \mid 2x^{4t-1} + 2x^{2t-1} + x^{2t-4},$ 

which quickly leads us to

$$\Phi_{b}(x) \mid -x^{2t+4} - 2x^{2t+1} - 2x$$

$$\Longrightarrow \Phi_{b}(x) \mid -x(x^{2t+3} + 2x^{2t} + 2)$$

$$\Longrightarrow \Phi_{b}(x) \mid x^{2t+3} + 2x^{2t} + 2$$
(30)

and

$$\Phi_{b}(x) \mid 2x^{4t-1} + 2x^{2t-1} + x^{2t-4} 
\Rightarrow \Phi_{b}(x) \mid x^{2t-4} (2x^{2t+3} + 2x^{3} + 1) 
\Rightarrow \Phi_{b}(x) \mid 2x^{2t+3} + 2x^{3} + 1.$$
(31)

If we use Eqs. (30) and (31) together, we conclude that

$$\Phi_b(x) \mid 2(x^{2t+3} + 2x^{2t} + 2) - (2x^{2t+3} + 2x^3 + 1)$$

$$\Longrightarrow \Phi_b(x) \mid 4x^{2t} - 2x^3 + 3. \tag{32}$$

Furthermore, by combining Eqs. (31) and (32), we reach

$$\Phi_b(x) \mid 2(2x^{2t+3} + 2x^3 + 1) - x^3 (4x^{2t} - 2x^3 + 3)$$

$$\implies \Phi_b(x) \mid 2x^6 + x^3 + 2,$$

which leads to a contradiction, given the fact that the polynomial  $2x^6 + x^3 + 2$  has no root which represents a root of unity, as demonstrated in Appendix E.

*Subcase t*  $\equiv_3 1$ . In this scenario, supposing that  $\Phi_b(x) \mid U_t(x)$  is true leads to

$$\Phi_b(x) \mid 2x^{2t-1} - x^{2t-4} - 2x,$$
  
 $\Phi_b(x) \mid 2x^{4t-1} + x^{2t+4} - 2x^{2t+1}.$ 

Given the fact that  $t \ge 4$ , we swiftly get

$$\Phi_{b}(x) \mid 2x^{2t-1} - x^{2t-4} - 2x$$

$$\Longrightarrow \quad \Phi_{b}(x) \mid x (2x^{2t-2} - x^{2t-5} - 2)$$

$$\Longrightarrow \quad \Phi_{b}(x) \mid 2x^{2t-2} - x^{2t-5} - 2,$$
(33)

as well as

$$\Phi_{b}(x) \mid 2x^{4t-1} + x^{2t+4} - 2x^{2t+1} 
\Longrightarrow \Phi_{b}(x) \mid x^{2t+1} (2x^{2t-2} + x^{3} - 2) 
\Longrightarrow \Phi_{b}(x) \mid 2x^{2t-2} + x^{3} - 2.$$
(34)

Furthermore, subtracting the right-hand sides of Eqs. (33) and (34) helps us obtain

$$\Phi_{b}(x) \mid (2x^{2t-2} + x^{3} - 2) - (2x^{2t-2} - x^{2t-5} - 2) 
\Longrightarrow \Phi_{b}(x) \mid x^{2t-5} + x^{3} 
\Longrightarrow \Phi_{b}(x) \mid x^{3} (x^{2t-8} + 1) 
\Longrightarrow \Phi_{b}(x) \mid x^{2t-8} + 1.$$
(35)

Now, by combining Eqs. (34) and (35), we conclude that

$$\Phi_b(x) \mid (2x^{2t-2} + x^3 - 2) - 2x^6 (x^{2t-8} + 1)$$

$$\implies \Phi_b(x) \mid -2x^6 + x^3 - 2,$$

thus yielding a contradiction due to the fact that the polynomial  $2x^6 - x^3 + 2$  has no roots of unity among its roots, as discussed earlier.

In a similar fashion, supposing that  $\Phi_b(x) \mid W_t(x)$  gives us

$$\Phi_b(x) \mid 2x^{2t-1} + x^{2t-4} - 2x,$$
  
 $\Phi_b(x) \mid 2x^{4t-1} - x^{2t+4} - 2x^{2t+1}.$ 

Since  $t \ge 4$ , this immediately leads us to

$$\Phi_{b}(x) \mid 2x^{2t-1} + x^{2t-4} - 2x 
\Longrightarrow \Phi_{b}(x) \mid x (2x^{2t-2} + x^{2t-5} - 2) 
\Longrightarrow \Phi_{b}(x) \mid 2x^{2t-2} + x^{2t-5} - 2,$$
(36)

as well as

$$\Phi_{b}(x) \mid 2x^{4t-1} - x^{2t+4} - 2x^{2t+1} 
\Rightarrow \Phi_{b}(x) \mid x^{2t+1} (2x^{2t-2} - x^{3} - 2) 
\Rightarrow \Phi_{b}(x) \mid 2x^{2t-2} - x^{3} - 2.$$
(37)

We can now subtract the right-hand sides of Eqs. (36) and (37) in order to obtain

$$\Phi_{b}(x) \mid (2x^{2t-2} + x^{2t-5} - 2) - (2x^{2t-2} - x^{3} - 2) 
\Rightarrow \Phi_{b}(x) \mid x^{2t-5} + x^{3} 
\Rightarrow \Phi_{b}(x) \mid x^{3} (x^{2t-8} + 1) 
\Rightarrow \Phi_{b}(x) \mid x^{2t-8} + 1.$$
(38)

Furthermore, combining Eqs. (37) and (38) gives us

$$\Phi_b(x) \mid (2x^{2t-2} - x^3 - 2) - 2x^6 (x^{2t-8} + 1)$$

$$\implies \Phi_b(x) \mid -2x^6 - x^3 - 2,$$

which is impossible since the polynomial  $2x^6 + x^3 + 2$  has no roots of unity among its roots, as we have already discussed.

Subcase  $t \equiv_3 2$ . In this subcase, if we suppose that  $\Phi_b(x) \mid U_t(x)$ , then we directly obtain

$$\Phi_b(x) \mid x^{2t+4} - 2x^{2t+1},$$
  
 $\Phi_b(x) \mid 2x^{2t-1} - x^{2t-4},$ 

which leads us to

$$\Phi_{b}(x) \mid x^{2t+4} - 2x^{2t+1} 
\Rightarrow \Phi_{b}(x) \mid x^{2t+1} (x^{3} - 2) 
\Rightarrow \Phi_{b}(x) \mid x^{3} - 2 \tag{39}$$

and

$$\Phi_{b}(x) \mid 2x^{2t-1} - x^{2t-4} 
\Longrightarrow \Phi_{b}(x) \mid x^{2t-4} (2x^{3} - 1) 
\Longrightarrow \Phi_{b}(x) \mid 2x^{3} - 1. \tag{40}$$

By using Eqs. (39) and (40) together, we reach

$$\Phi_b(x) \mid (2x^3 - 1) - 2(x^3 - 2)$$

$$\implies \Phi_b(x) \mid 3,$$

thus yielding a contradiction.

Similarly, if we suppose that  $\Phi_b(x) \mid W_t(x)$ , we obtain

$$\Phi_b(x) \mid -x^{2t+4} - 2x^{2t+1},$$
  
 $\Phi_b(x) \mid 2x^{2t-1} + x^{2t-4},$ 

which further gives

$$\Phi_{b}(x) \mid -x^{2t+4} - 2x^{2t+1} 
\Longrightarrow \Phi_{b}(x) \mid -x^{2t+1} (x^{3} + 2) 
\Longrightarrow \Phi_{b}(x) \mid x^{3} + 2, \tag{41}$$

as well as

$$\Phi_{b}(x) \mid 2x^{2t-1} + x^{2t-4} 
\Longrightarrow \Phi_{b}(x) \mid x^{2t-4} (2x^{3} + 1) 
\Longrightarrow \Phi_{b}(x) \mid 2x^{3} + 1. \tag{42}$$

By combining Eqs. (41) and (42), we get

$$\Phi_b(x) \mid (2x^3 + 1) - 2(x^3 + 2)$$

$$\implies \Phi_b(x) \mid -3,$$

which is clearly not possible.  $\Box$ 

It is clear that the formulation of Lemma 8 is very similar to that of the previously proven Lemma 3 from Section 3. The key difference is that Lemma 8 does not cover the case for p = 2. In fact, it can be shown that this property does not hold for the  $U_t(x)$  and  $W_t(x)$  polynomials, i.e. it is possible that they are divisible by a cyclotomic polynomial  $\Phi_b(x)$  such that  $4 \mid b$ . However, although the condition  $4 \mid b$  can hold, it can be shown that the only way for this to happen is if  $b \in \{4, 8\}$ , as demonstrated in the following lemma.

**Lemma 9.** For any  $t \ge 2$ , if  $U_t(x)$  or  $W_t(x)$  are divisible by some cyclotomic polynomial  $\Phi_b(x)$  such that  $4 \mid b$ , then b = 4 or b = 8.

*Proof.* Suppose that  $4 \mid b$ . Given the fact that  $2 \mid \frac{b}{2}$ , it is clear that  $\Phi_b(x) = \Phi_{\frac{b}{2}}(x^2)$  (see, for example, [5, p. 160]). By using the same logic as in the proofs of Lemmas 3 and 8, we obtain that  $\Phi_b(x) \mid U_t(x)$  would imply

$$\Phi_b(x)\mid U_t^{(j)}(x)$$

for each  $j = \overline{0,1}$ , where  $U_t^{(j)}(x)$  represents the polynomial composed of the terms of  $U_t(x)$  whose powers are congruent to j modulo 2. The same conclusion and notation can be applied to  $W_t(x)$  as well.

Since all the values 1, 2t - 1, 2t + 1, 4t - 1 are odd, while 2t + 4 and 2t - 4 are even, we conclude that  $\Phi_b \mid U_t(x)$  would immediately imply

$$\Phi_b(x) \mid x^{2t+4} - x^{2t-4}$$

while  $\Phi_b \mid W_t(x)$  would give

$$\Phi_h(x) \mid -x^{2t+4} + x^{2t-4}$$
.

Either way, we would reach

$$\Phi_b(x) \mid x^{2t+4} - x^{2t-4}$$

$$\Longrightarrow \Phi_b(x) \mid x^{2t-4} (x^8 - 1)$$

$$\Longrightarrow \Phi_b(x) \mid x^8 - 1.$$

This practically means that each primitive b-th root of unity must be an eighth root of unity, i.e.  $b \mid 8$ . This is only possible if b = 4 or b = 8.  $\square$ 

A direct consequence of Lemmas 8 and 9 is that if the cyclotomic polynomial  $\Phi_b(x)$  divides  $U_t(x)$  or  $W_t(x)$ , then the integer  $b \in \mathbb{N}$  needs to either be square-free, or be equal to 4 or 8. In fact, for any  $t \geq 2$ , the only cyclotomic polynomials that could divide  $U_t(x)$  or  $W_t(x)$  are actually  $\Phi_1(x)$ ,  $\Phi_2(x)$ ,  $\Phi_4(x)$ ,  $\Phi_8(x)$ . This observation forms the central part of the proof of Theorem 4. However, in order to prove this claim, we will be in need of two more auxiliary lemmas that hold a great resemblance to the previously proven Lemmas 4 and 5 from Section 3.

**Lemma 10.** For each  $t \ge 2$  and each prime number  $p \ge 7$ , neither  $U_t(x)$  nor  $W_t(x)$  can be divisible by the cyclotomic polynomial  $\Phi_p(x)$  or the cyclotomic polynomial  $\Phi_{2p}(x)$ .

*Proof.* The proof can be done in an entirely analogous manner as the proof of Lemma 4 from Section 3, the only difference being that Lemma 7 is used to conclude that there exists an element of the set  $M_t$  that has a unique remainder within that set, instead of Lemma 2. Thus, we choose to leave the proof out.  $\Box$ 

**Lemma 11.** For each  $t \ge 2$  and each positive integer  $b \in \{3, 5, 6, 10, 15, 30\}$ , the cyclotomic polynomial  $\Phi_b(x)$  divides neither  $U_t(x)$  nor  $W_t(x)$ .

*Proof.* The proof can be done by using an absolutely identical mechanism as the proof of Lemma 5 from Section 3. We disclose the necessary computational results in Appendix C and Appendix D. □

We shall now formulate and prove the central lemma regarding the divisibility of the  $U_t(x)$  and  $W_t(x)$  polynomials by cyclotomic polynomials. Given the fact that these polynomials also have six non-zero terms, like the  $Q_t(x)$  and  $R_t(x)$  polynomials from Section 3, using Theorem 2 becomes very convenient once again. The same prime number cancellation mechanism can be implemented for each prime number  $p \ge 7$  that divides b whenever  $\Phi_b(x)$  divides either  $U_t(x)$  or  $W_t(x)$ , as it was elaborated in Section 3. Bearing this in mind, we give the following lemma.

**Lemma 12.** For each  $t \ge 2$ , neither  $U_t(x)$  nor  $W_t(x)$  can be divisible by a cyclotomic polynomial  $\Phi_b(x)$  such that  $b \notin \{1, 2, 4, 8\}$ .

*Proof.* The proof will only be given for  $U_t(x)$ , given the fact that the proof regarding  $W_t(x)$  is completely analogous. Suppose that  $\Phi_b(x) \mid U_t(x)$ , for some  $b \in \mathbb{N}$  such that  $b \notin \{1, 2, 4, 8\}$ . Since b is not equal to 4 or 8, Lemmas 8 and 9 tell us that b must be a square-free integer. We now divide the problem into two separate cases, depending on whether b is divisible by either 3 or 5, or not.

Case  $3 \nmid b$  and  $5 \nmid b$ . This case is proved completely analogously to the corresponding case from the proof of Lemma 6 from Section 3. The only small difference is that Lemma 10 is used instead of Lemma 4.

Case  $3 \mid b \text{ or } 5 \mid b$ . This case is also proved entirely analogously to the corresponding case from the proof of Lemma 6. As expected, the only minor difference is that Lemma 11 is used instead of Lemma 5.  $\Box$ 

Taking into consideration all the results obtained in the previously disclosed lemmas, we are finally able to complete the proof of Theorem 4. Thus, we present the rest of the proof.

*Proof of Theorem 4.* The case t=1 is trivial to prove. Here, we simply have  $S_{1,n}^{"}=\left\{\frac{n+2}{4},\frac{n+6}{4}\right\}$ , hence Eq. (1) directly gives us

$$P(\zeta) = \zeta^{\frac{n+2}{4}} + \frac{1}{\zeta^{\frac{n+6}{4}}} + \zeta^{\frac{n+6}{4}} + \frac{1}{\zeta^{\frac{n+6}{4}}},\tag{43}$$

where  $\zeta$  is an arbitrary n-th root of unity different from 1 and -1. The condition  $P(\zeta) = 0$  is clearly equivalent to

$$P(\zeta) = 0$$

$$\iff \zeta^{\frac{n+6}{4}} \left( \zeta^{\frac{n+2}{4}} + \frac{1}{\zeta^{\frac{n+2}{4}}} + \zeta^{\frac{n+6}{4}} + \frac{1}{\zeta^{\frac{n+6}{4}}} \right) = 0$$

$$\iff \zeta^{\frac{n}{2}+3} + \zeta^{\frac{n}{2}+2} + \zeta + 1 = 0$$

$$\iff (\zeta + 1) \left( \zeta^{\frac{n}{2}+2} + 1 \right) = 0$$

$$\iff \zeta^{\frac{n}{2}+2} + 1 = 0.$$

Due to the fact that  $\zeta^{\frac{n}{2}} \in \{1, -1\}$ , it is obvious that  $\zeta^{\frac{n}{2}+2}$  is equal to either  $\zeta^2 + 1$  or  $-\zeta^2 + 1$ . However, both of these expressions cannot be equal to zero. If  $\zeta^2 + 1$  were to equal zero, then we would have that  $\zeta \in \{i, -i\}$ , which is impossible due to the fact that  $n \equiv_4 2$ , hence both i and -i are not n-th roots of unity. On the other hand,  $-\zeta^2 + 1 \neq 0$  purely because  $\zeta$  was chosen in such a way that it is distinct from both 1 and -1. Thus, we get that  $P(\zeta) \neq 0$  for any n-th root of unity different from 1 and -1. By virtue of Lemma 1, we conclude that  $\mathcal{D}''_{1,n}$  truly is a circulant nut graph for any  $n \geq 10$  such that  $n \equiv_4 2$ .

In the remainder of the proof, we will suppose that  $t \ge 2$ . Eq. (1) now gives us

$$P(\zeta) = \left(\zeta^{\frac{n+2}{4}} + \frac{1}{\zeta^{\frac{n+2}{4}}}\right) + \left(\zeta^{\frac{n+6}{4}} + \frac{1}{\zeta^{\frac{n+6}{4}}}\right) + \sum_{j=1}^{t-1} \left(\zeta^{j} + \frac{1}{\zeta^{j}}\right) + \sum_{j=\frac{n}{2}-t+1}^{\frac{n}{2}-1} \left(\zeta^{j} + \frac{1}{\zeta^{j}}\right),$$

where  $\zeta$  is an arbitrarily chosen n-th root of unity different from 1 and -1. It is not difficult to further obtain

$$P(\zeta) = \left(\zeta^{\frac{n+6}{4}} + \zeta^{\frac{n+2}{4}} + \frac{1}{\zeta^{\frac{n+2}{4}}} + \frac{1}{\zeta^{\frac{n+6}{4}}}\right) + \sum_{j=1}^{t-1} \left(\zeta^{j} + \frac{1}{\zeta^{j}} + \zeta^{\frac{n}{2}-j} + \frac{1}{\zeta^{\frac{n}{2}-j}}\right). \tag{44}$$

We will finalize the proof by demonstrating that  $P(\zeta) \neq 0$  must be true. We will divide this proof into two cases in the same way as it was done while proving Theorem 3.

Case  $\zeta^{\frac{n}{2}} = -1$ . In this case, it is straightforward to notice that  $\zeta^{\frac{n}{2}-j} = -\frac{1}{\zeta^{j}}$  and  $\frac{1}{\zeta^{\frac{n}{2}-j}} = -\zeta^{j}$ , which directly leads us to

$$\zeta^{j} + \frac{1}{\zeta^{j}} + \zeta^{\frac{n}{2} - j} + \frac{1}{\zeta^{\frac{n}{2} - j}} = 0$$

for any  $j = \overline{1, t - 1}$ . Hence, it is convenient to simplify Eq. (44) in order to get

$$P(\zeta) = \zeta^{\frac{n+6}{4}} + \zeta^{\frac{n+2}{4}} + \frac{1}{\zeta^{\frac{n+2}{4}}} + \frac{1}{\zeta^{\frac{n+6}{4}}}.$$

However, this formula is identical to Eq. (43) which we had to deal with while solving the case t = 1. An almost absolutely identical proof can be used in order to show that  $P(\zeta) \neq 0$  must hold, as desired, hence we choose to leave it out.

Case  $\zeta^{\frac{n}{2}} = 1$ . It is easy to see that  $\zeta^{\frac{n}{2}-j} = \frac{1}{\zeta^j}$  and  $\frac{1}{\zeta^{\frac{n}{2}-j}} = \zeta^j$ . This implies

$$\zeta^j + \frac{1}{\zeta^j} + \zeta^{\frac{n}{2}-j} + \frac{1}{\zeta^{\frac{n}{2}-j}} = 2\left(\zeta^j + \frac{1}{\zeta^j}\right)$$

for any  $j = \overline{1, t - 1}$ . According to Eq. (44), the equality  $P(\zeta) = 0$  becomes equivalent to

$$P(\zeta) = 0$$

$$\iff \left(\zeta^{\frac{n+6}{4}} + \zeta^{\frac{n+2}{4}} + \frac{1}{\zeta^{\frac{n+2}{4}}} + \frac{1}{\zeta^{\frac{n+6}{4}}}\right) + 2\sum_{j=1}^{t-1} \left(\zeta^{j} + \frac{1}{\zeta^{j}}\right) = 0$$

$$\iff \left(\zeta^{\frac{n+6}{4}} + \zeta^{\frac{n+2}{4}} + \frac{1}{\zeta^{\frac{n+2}{4}}} + \frac{1}{\zeta^{\frac{n+6}{4}}}\right) - 2 + 2\sum_{j=1-t}^{t-1} \zeta^{j} = 0$$

Now, if we define  $\psi$  to be one of the two possible square roots of  $\zeta$ , i.e. a complex number such that  $\psi^2 = \zeta$ , then it is easy to see that the condition  $P(\zeta) = 0$  becomes equivalent to

$$2\psi^{4t-2} + \psi^{2t+3+\frac{n}{2}} - \psi^{2t-1+\frac{n}{2}} - 2\psi^{2t} + 2\psi^{2t-2} + \psi^{2t-1-\frac{n}{2}} - \psi^{2t-5-\frac{n}{2}} - 2 = 0.$$
 (45)

Taking into consideration that the condition  $\zeta^{\frac{n}{2}} = 1$  translates to  $\psi^n = 1$ , it becomes clear that in order to prove that  $P(\zeta) \neq 0$  for any n-th root of unity  $\zeta$  such that  $\zeta \neq 1$ , -1 and  $\zeta^{\frac{n}{2}} = 1$ , it is enough to show that Eq. (45) does not hold for any n-th root of unity  $\psi$  such that  $\psi \notin \{1, -1, i, -i\}$ . Since i and -i are not n-th root of unity to begin with, due to  $n \equiv_4 2$ , it suffices to prove that Eq. (45) is not safisfied for any n-th root of unity, besides potentially 1 and -1.

We now divide the case into two subcases, depending on whether  $\psi^{\frac{n}{2}}$  is equal to 1 or -1.

Subcase  $\psi^{\frac{n}{2}} = 1$ . Here, it is straightforward to deduce that Eq. (45) is equivalent to

$$\begin{split} 2\psi^{4t-2} + \psi^{2t+3} - \psi^{2t-1} - 2\psi^{2t} + 2\psi^{2t-2} + \psi^{2t-1} - \psi^{2t-5} - 2 &= 0 \\ \iff 2\psi^{4t-2} + \psi^{2t+3} - 2\psi^{2t} + 2\psi^{2t-2} - \psi^{2t-5} - 2 &= 0 \\ \iff 2\psi^{4t-1} + \psi^{2t+4} - 2\psi^{2t+1} + 2\psi^{2t-1} - \psi^{2t-4} - 2\psi &= 0. \end{split}$$

Now, suppose that Eq. (45) does hold for some n-th root of unity  $\psi$  different from 1 and -1. It is clear that  $\psi$  must be a primitive b-th root of unity for some  $b \neq 1, 2$ , since  $\psi \neq 1, -1$ . Also, due to the fact that  $b \mid n$  and  $n \equiv_4 2$ , we conclude that  $b \neq 4, 8$ . However, Eq. (45) directly implies that  $\psi$  is a root of the polynomial  $U_t(x)$ . Hence, we get that  $U_t(x)$  is divisible by a cyclotomic polynomial  $\Phi_b(x)$  such that  $b \neq 1, 2, 4, 8$ , which is not possible according to Lemma 12, thus yielding a contradiction.

Subcase  $\psi^{\frac{n}{2}} = -1$ . In this subcase, Eq. (45) quickly becomes equivalent to

$$2\psi^{4t-2} - \psi^{2t+3} + \psi^{2t-1} - 2\psi^{2t} + 2\psi^{2t-2} - \psi^{2t-1} + \psi^{2t-5} - 2 = 0$$

$$\iff 2\psi^{4t-2} - \psi^{2t+3} - 2\psi^{2t} + 2\psi^{2t-2} + \psi^{2t-5} - 2 = 0$$

$$\iff 2\psi^{4t-1} - \psi^{2t+4} - 2\psi^{2t+1} + 2\psi^{2t-1} + \psi^{2t-4} - 2\psi = 0.$$

If we suppose that Eq. (45) is true for some n-th root of unity  $\psi$  different from 1 and -1, we can use the same logic implemented in the previous subcase in order to immediately obtain that  $\psi$  has to be a primitive b-th root of unity for some  $b \notin \{1, 2, 4, 8\}$ . However, Eq. (45) implies that  $\psi$  is a root of the polynomial  $W_t(x)$ , which further means that this polynomial has to be divisible by a cyclotomic polynomial  $\Phi_b(x)$  such that  $b \notin \{1, 2, 4, 8\}$ . By virtue of Lemma 12, this is impossible, which completes the proof.  $\square$ 

### 5. Conclusion

In conclusion, Theorems 3 and 4 provide a construction for any 4t-regular circulant nut graph of order n, whenever

- t is odd and  $n \ge 4t + 4$ ;
- t is even and  $n \ge 4t + 6$  and  $n \equiv_4 2$ .

For the odd values of t, these two theorems provide a way to construct a 4t-regular circulant nut graph of every possible order, thereby fully resolving the circulant nut graph order–degree existence problem. On the other hand, for the even values of t, Theorem 12 shows that there exists a 4t-regular circulant nut graph of each order  $n \ge 4t + 6$  such that  $n \equiv_4 2$ , without covering the case when  $4 \mid n$ .

Damnjanović and Stevanović [2, Proposition 19] have shown that an interesting irregularity exists for the case t = 2. Moreover, there does not exist an 8-regular circulant nut graph of order 16. In fact, the set of all the values n such that there exists an 8-regular circulant nut graph of order n is given by the expression  $\{14\} \cup \{18, 20, 22, 24, 26, \ldots\}$ .

Despite the irregularity that occurs for t = 2, the experimental results obtained in [2] dictate that for each even integer t such that  $4 \le t \le 1300$  there does exist a 4t-regular circulant nut graph of order n for each even  $n \ge 4t + 6$ . Bearing this in mind, we end the paper with the following conjecture.

**Conjecture 3.** For each even  $t \ge 4$  and each  $n \ge 4t + 8$  divisible by four, there exists a 4t-regular circulant nut graph of order n.

#### References

- [1] N. Bašić, M. Knor, R. Škrekovski, On 12-regular nut graphs, The Art of Discrete and Applied Mathematics 5(2) (2021) #P2.01.
- [2] I. Damnjanović, D. Stevanović, On circulant nut graphs, Linear Algebra and its Applications 633 (2022) 127–151.
- [3] M. Filaseta, A. Schinzel, On testing the divisibility of lacunary polynomials by cyclotomic polynomials, Mathematics of Computation 73(246) (2003) 957–965.
- [4] R. M. Gray, Toeplitz and circulant matrices: A review, Foundations and Trends in Communications and Information Theory 2(3) (2006) 155–239.
- [5] T. Nagell, Introduction to Number Theory, Wiley, New York, 1951.
- [6] I. Sciriha, On the construction of graphs of nullity one, Discrete Mathematics 181(1–3) (1998) 193–211.
- [7] Cyclotomic polynomials, Encyclopedia of Mathematics, encyclopediaofmath.org/index.php?title=Cyclotomic\_polynomials.

# Appendix A. $Q_t^{\text{mod } b}(x) \text{ mod } \Phi_b(x)$ table

| t mod 3                    | $Q_t^{\bmod 3}(x)$                                                                                                                                | $Q_t^{\bmod 3}(x) \bmod \Phi_3(x)$                                                                                   |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2                | $ \begin{array}{l} -3 + 3x^2 \\ -1 + x \\ x - x^2 \end{array} $                                                                                   | -6 - 3x<br>-1 + x<br>1 + 2x                                                                                          |
| t mod 5                    | $Q_t^{\bmod 5}(x)$                                                                                                                                | $Q_t^{\bmod 5}(x) \bmod \Phi_5(x)$                                                                                   |
| 0<br>1<br>2<br>3<br>4      | $-3 + x - x^{3} + 3x^{4}$ $-1 + x + x^{2} - x^{4}$ $-3 + x - x^{2} + 3x^{3}$ $-x + x^{2} - x^{3} + x^{4}$ $-1 + x^{2} + x^{3} - x^{4}$            | $-6 - 2x - 3x^{2} - 4x^{3}$ $2x + 2x^{2} + x^{3}$ $-3 + x - x^{2} + 3x^{3}$ $-1 - 2x - 2x^{3}$ $x + 2x^{2} + 2x^{3}$ |
| t mod 6                    | $Q_t^{\bmod 6}(x)$                                                                                                                                | $Q_t^{\bmod 6}(x) \bmod \Phi_6(x)$                                                                                   |
| 0<br>1<br>2<br>3<br>4<br>5 | $\begin{array}{l} -3+x-x^4+3x^5 \\ -1+x+x^2-x^5 \\ -3+x-x^2+3x^3 \\ -2-x+x^2-x^3+x^4+2x^5 \\ -2+2x-x^2+x^3-x^4+x^5 \\ -1+x^3+x^4-x^5 \end{array}$ | -x $-3 + 3x$ $-5$ $-3x$ $-1 + x$ $-3$                                                                                |
| t mod 10                   | $Q_t^{\bmod 10}(x)$                                                                                                                               | $Q_t^{\bmod 10}(x) \bmod \Phi_{10}(x)$                                                                               |
| 0<br>1<br>2<br>3           | $-3 + x - x^{8} + 3x^{9}$ $-1 + x + x^{2} - x^{9}$ $-3 + x - x^{2} + 3x^{3}$ $-2 - x + x^{2} - x^{3} + x^{4} + 2x^{5}$                            | $-2x + 3x^{2} - 2x^{3}$ $-2 + 2x + x^{3}$ $-3 + x - x^{2} + 3x^{3}$ $-5$                                             |

| 4<br>5<br>6<br>7<br>8<br>9                                                                                                                                             | $\begin{array}{c} -2-x^2+x^3-x^4+x^5+2x^7\\ -2-x^3+x^4-x^5+x^6+2x^9\\ -2+2x-x^4+x^5-x^6+x^7\\ -2+2x^3-x^5+x^6-x^7+x^8\\ -2+2x^5-x^6+x^7-x^8+x^9\\ -1+x^7+x^8-x^9 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $-2 - x - 2x^{2}$ $-2x + x^{2} - 2x^{3}$ $-2 + 2x - x^{3}$ $-1 - x + x^{2} + x^{3}$ $-3$ $-2 + x - 2x^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t mod 15                                                                                                                                                               | $Q_t^{\bmod 15}(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $Q_t^{\bmod{15}}(x) \bmod \Phi_{15}(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                                                           | $\begin{array}{c} -3+x-x^{13}+3x^{14}\\ -1+x+x^2-x^{14}\\ -3+x-x^2+3x^3\\ -2-x+x^2-x^3+x^4+2x^5\\ -2-x^2+x^3-x^4+x^5+2x^7\\ -2-x^3+x^4-x^5+x^6+2x^9\\ -2-x^4+x^5-x^6+x^7+2x^{11}\\ -2-x^5+x^6-x^7+x^8+2x^{13}\\ -x^6+x^7-x^8+x^9\\ -2+2x^2-x^7+x^8-x^9+x^{10}\\ -2+2x^4-x^8+x^9-x^{10}+x^{11}\\ -2+2x^6-x^9+x^{10}-x^{11}+x^{12}\\ -2+2x^8-x^{10}+x^{11}-x^{12}+x^{13}\\ -2+2x^{10}-x^{11}+x^{12}-x^{13}+x^{14}\\ -1+x^{12}+x^{13}-x^{14} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} -1 + 2x - 3x^2 + 3x^3 - 2x^4 - x^5 + 3x^6 - 2x^7 \\ -2 + x + 2x^2 - x^3 + x^4 - x^6 + x^7 \\ -3 + x - x^2 + 3x^3 \\ -2 - x + x^2 - x^3 + x^4 + 2x^5 \\ -2 - x^2 + x^3 - x^4 + x^5 + 2x^7 \\ -4 + 2x^2 - 3x^3 + x^4 - x^5 - x^6 + 2x^7 \\ -2 - 2x - x^4 + x^5 - 3x^6 + x^7 \\ -1 - x - x^3 - x^4 + x^6 - 2x^7 \\ -x + x^2 - x^4 + x^5 - 2x^6 + x^7 \\ -3 + x + x^2 + x^4 - 2x^5 + x^6 - x^7 \\ -1 - 2x + x^2 + x^4 + 2x^5 - 2x^6 \\ -2 + x - 2x^2 + x^3 - x^5 + 4x^6 - 2x^7 \\ -2 + x^2 - 2x^3 + x^4 - x^6 + 2x^7 \\ -4 + 2x - 2x^2 + x^3 - 3x^5 + 2x^6 - x^7 \\ -1 - x - x^3 + x^5 - x^6 - x^7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| t mod 30                                                                                                                                                               | $Q_t^{\bmod 30}(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $Q_t^{\bmod 30}(x) \bmod \Phi_{30}(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29 | $\begin{array}{c} -3+x-x^{28}+3x^{29}\\ -1+x+x^2-x^{29}\\ -3+x-x^2+3x^3\\ -2-x+x^2-x^3+x^4+2x^5\\ -2-x^3+x^4-x^5+x^6+2x^9\\ -2-x^4+x^5-x^6+x^7+2x^{11}\\ -2-x^5+x^6-x^7+x^8+2x^{13}\\ -2-x^6+x^7-x^8+x^9+2x^{15}\\ -2-x^7+x^8-x^9+x^{10}+2x^{17}\\ -2-x^9+x^{10}-x^{11}+x^{12}+2x^{21}\\ -2-x^9+x^{10}-x^{11}+x^{12}+2x^{21}\\ -2-x^{10}+x^{11}-x^{12}+x^{13}+2x^{23}\\ -2-x^{11}+x^{12}-x^{13}+x^{14}+2x^{25}\\ -2-x^{13}+x^{14}-x^{15}+x^{16}+2x^{29}\\ -2+2x-x^{14}+x^{15}-x^{16}+x^{17}\\ -2+2x^3-x^{15}+x^{16}-x^{17}+x^{18}\\ -2+2x^3-x^{15}+x^{16}-x^{17}+x^{18}\\ -2+2x^3-x^{15}+x^{16}-x^{17}+x^{18}\\ -2+2x^3-x^{15}+x^{16}-x^{17}+x^{18}\\ -2+2x^3-x^{15}+x^{16}-x^{17}+x^{18}\\ -2+2x^3-x^{15}+x^{16}-x^{17}+x^{18}\\ -2+2x^5-x^{16}+x^{17}-x^{18}+x^{19}\\ -2+2x^9-x^{18}+x^{19}-x^{20}+x^{21}\\ -2+2x^{11}-x^{19}+x^{20}-x^{21}+x^{22}\\ -2+2x^{13}-x^{20}+x^{21}-x^{22}+x^{23}\\ -2+2x^{17}-x^{22}+x^{23}-x^{24}+x^{25}\\ -2+2x^{21}-x^{23}+x^{24}-x^{25}+x^{26}\\ -2+2x^{21}-x^{23}+x^{24}-x^{25}+x^{26}\\ -2+2x^{21}-x^{23}+x^{24}-x^{25}-x^{26}+x^{27}\\ -2+2x^{25}-x^{26}+x^{27}-x^{28}+x^{29}\\ -1+x^{27}+x^{28}-x^{29}\\ -1+x^{27}+x^{28}-x^{29}\\ -1+x^{27}+x^{28}-x^{29}\\ \end{array}$ | $\begin{array}{c} -7 + 3x^2 + 3x^3 + 4x^4 + x^5 - 3x^6 - 4x^7 \\ x - x^3 - x^4 + x^6 + x^7 \\ -3 + x - x^2 + 3x^3 \\ -2 - x + x^2 - x^3 + x^4 + 2x^5 \\ -2 - x^2 + x^3 - x^4 + x^5 + 2x^7 \\ -2x^2 - 3x^3 + x^4 - x^5 + 3x^6 + 2x^7 \\ -5 - 3x + x^3 + 3x^4 + 2x^5 + x^6 - 4x^7 \\ -5 - 3x + x^3 + 3x^4 + 2x^5 + x^6 - 4x^7 \\ -5 - x - x^2 + 2x^3 + x^4 + 2x^5 - x^6 - 3x^7 \\ 1 - x^2 - 2x^3 - 3x^4 - 2x^5 + 2x^6 + 2x^7 \\ -4 + x + x^3 + x^5 - 4x^6 \\ x^2 - 2x^3 - x^4 - 2x^5 + x^6 \\ 2 + 2x - 2x^2 - x^3 - 2x^4 - 3x^5 + 3x^7 \\ -5 - x + 4x^2 + x^3 + 2x^4 + x^5 - x^6 - 5x^7 \\ -1 + x^2 + x^3 - x^5 - x^6 \\ -4 + 3x + x^3 + x^4 - x^6 - x^7 \\ -1 - x + x^2 + x^3 \\ -2 + x - x^2 + x^3 - x^4 + 2x^5 \\ -2 + x^2 - x^3 + x^4 + x^5 + 2x^7 \\ -2x^2 - x^3 - x^4 + x^5 + x^6 + 2x^7 \\ -3 - x - x^3 + x^4 + 2x^5 - x^6 \\ -6 - x + x^2 + 2x^3 + x^4 + x^5 - 3x^7 \\ 1 + x - 3x^2 - 2x^3 - x^4 - 2x^5 + x^6 + 3x^7 \\ -5 + x^2 + 2x^3 - x^4 + 2x^5 - 2x^6 - 2x^7 \\ -x - x^3 - x^5 \\ 4x - x^2 - 2x^3 - 3x^4 - 2x^5 - x^6 + 4x^7 \\ -2 - 2x + 2x^2 + x^3 - 3x^4 - 2x^5 - x^6 + 4x^7 \\ -2 - 2x + 2x^2 + x^3 + 2x^4 - x^5 - 3x^7 \\ 1 + x - 3x^2 - 2x^3 - 3x^4 - 2x^5 - x^6 + 4x^7 \\ -2 - 2x + 2x^2 + x^3 + 2x^4 - x^5 - 3x^7 \\ 1 + x - 3x^2 - 2x^3 - 3x^4 - 2x^5 - x^6 + 4x^7 \\ -2 - 2x + 2x^2 + x^3 + 2x^4 - x^5 - 3x^7 \\ 1 + x - x^3 - 2x^4 - x^5 + x^6 + x^7 \end{array}$ |

# Appendix B. $R_t^{\text{mod } b}(x) \text{ mod } \Phi_b(x)$ table

| t mod 3 | $R_t^{\bmod 3}(x)$      | $R_t^{\text{mod }3}(x) \mod \Phi_3(x)$          |  |
|---------|-------------------------|-------------------------------------------------|--|
| 0       | $-5 + 5x^2$<br>1 - x    | -10 - 5x<br>1 - x                               |  |
| 2       | $3x - 3x^2$             | 3+6x                                            |  |
| t mod 5 | $R_t^{\bmod 5}(x)$      | $R_t^{\text{mod } 5}(x) \text{ mod } \Phi_5(x)$ |  |
| 0       | $-5 - x + x^3 + 5x^4$   | $-10 - 6x - 5x^2 - 4x^3$                        |  |
| 1       | $1 - x - x^2 + x^4$     | $-2x - 2x^2 - x^3$                              |  |
| 2       | $-1 + 3x - 3x^2 + x^3$  | $-1 + 3x - 3x^2 + x^3$                          |  |
| 3       | $x + 3x^2 - 3x^3 - x^4$ | $1 + 2x + 4x^2 - 2x^3$                          |  |

| 4                                                                                                                            | $-3 + 3x^2 + 3x^3 - 3x^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $3x + 6x^2 + 6x^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t mod 6                                                                                                                      | $R_t^{\bmod 6}(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $R_t^{\bmod 6}(x) \bmod \Phi_6(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0                                                                                                                            | $-5 - x + x^4 + 5x^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -7 <i>x</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1                                                                                                                            | $1 - x - x^2 + x^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-3x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2                                                                                                                            | $-1 + 3x - 3x^2 + x^3$<br>-2 + x + 3x^2 - 3x^3 - x^4 + 2x^5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3<br>4                                                                                                                       | $-2 + x + 3x^{2} - 3x^{3} - x^{3} + 2x^{3}$ $-2 + 2x + x^{2} + 3x^{3} - 3x^{4} - x^{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3x $-7 + 7x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5                                                                                                                            | $-3 + 3x^3 + 3x^4 - 3x^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| t mod 10                                                                                                                     | $R_t^{\bmod 10}(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $R_t^{\bmod 10}(x) \bmod \Phi_{10}(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                                                                                                                            | $-5 - x + x^8 + 5x^9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-6x + 5x^2 - 6x^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1<br>2                                                                                                                       | $ 1 - x - x^2 + x^9  -1 + 3x - 3x^2 + x^3 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ 2 - 2x - x^3  -1 + 3x - 3x^2 + x^3 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3                                                                                                                            | $-2 + x + 3x^2 - 3x^3 - x^4 + 2x^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-3 + 4x^2 - 4x^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4                                                                                                                            | $-2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2 - 3x + 2x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5                                                                                                                            | $-2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2x - x^2 + 2x^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6                                                                                                                            | $-2 + 2x + x^4 + 3x^5 - 3x^6 - x^7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-6 + 6x + x^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7                                                                                                                            | $-2 + 2x^3 + x^5 + 3x^6 - 3x^7 - x^8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-3 - 3x + 3x^2 + 3x^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8<br>9                                                                                                                       | $-2 + 2x^5 + x^6 + 3x^7 - 3x^8 - x^9$<br>-3 + $3x^7 + 3x^8 - 3x^9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-5 - 4x^2 + 4x^3$<br>-6 + 3x - 6x^2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| t mod 15                                                                                                                     | $R_t^{\text{mod } 15}(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $R_t^{\text{mod } 15}(x) \text{ mod } \Phi_{15}(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0<br>1                                                                                                                       | $ -5 - x + x^{13} + 5x^{14}  1 - x - x^2 + x^{14} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ 1 - 2x - 5x^{2} + 5x^{3} - 6x^{4} + x^{5} + 5x^{6} - 6x^{7}  2 - x - 2x^{2} + x^{3} - x^{4} + x^{6} - x^{7} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2                                                                                                                            | $-1 + 3x - 3x^2 + x^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-1 + 3x - 3x^2 + x^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3                                                                                                                            | $-2 + x + 3x^2 - 3x^3 - x^4 + 2x^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-2 + x + 3x^2 - 3x^3 - x^4 + 2x^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                                                                                                            | $-2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5                                                                                                                            | $-2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-4 + 2x^2 - x^3 + 3x^4 - 3x^5 - 3x^6 + 2x^7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6                                                                                                                            | $-2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11}$<br>$-2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-2 - 2x + x^4 + 3x^5 - 5x^6 - x^7$<br>1 - 3x + x <sup>3</sup> - 3x <sup>4</sup> + 4x <sup>5</sup> + 3x <sup>6</sup> - 6x <sup>7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7<br>8                                                                                                                       | $-2 + x^{5} + 3x^{5} - 3x^{8} - x^{5} + 2x^{25}$ $x^{6} + 3x^{7} - 3x^{8} - x^{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1 - 3x + x^{2} - 3x^{2} + 4x^{3} + 3x^{3} - 6x^{2}$ $4 - 3x - x^{2} + 4x^{3} - 3x^{4} + 3x^{5} + 2x^{6} - x^{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9                                                                                                                            | $-2 + 2x^2 + x^7 + 3x^8 - 3x^9 - x^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-1 + 3x - x^2 + 3x^4 - 2x^5 + 3x^6 + x^7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10                                                                                                                           | $-2 + 2x^4 + x^8 + 3x^9 - 3x^{10} - x^{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-3 + 2x + 3x^2 - 4x^3 + 3x^4 + 2x^5 - 2x^6 + 4x^7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11                                                                                                                           | $-2 + 2x^6 + x^9 + 3x^{10} - 3x^{11} - x^{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-6 + 3x + 2x^2 - x^3 - 3x^5 + 4x^6 + 2x^7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12                                                                                                                           | $-2 + 2x^8 + x^{10} + 3x^{11} - 3x^{12} - x^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $-6 + 3x^2 - 2x^3 + 3x^4 - 4x^5 - 3x^6 + 6x^7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12<br>13<br>14                                                                                                               | $-2 + 2x^{8} + x^{10} + 3x^{11} - 3x^{12} - x^{13}$ $-2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14}$ $-3 + 3x^{12} + 3x^{13} - 3x^{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-6 + 3x^{2} - 2x^{3} + 3x^{4} - 4x^{5} - 3x^{6} + 6x^{7}$ $-8 + 2x - 2x^{2} - x^{3} + 4x^{4} - 5x^{5} - 2x^{6} + x^{7}$ $-3 - 3x - 3x^{3} + 3x^{5} - 3x^{6} - 3x^{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13                                                                                                                           | $-2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13<br>14<br>t mod 30                                                                                                         | $-2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14}$ $-3 + 3x^{12} + 3x^{13} - 3x^{14}$ $R_t^{\text{mod } 30}(x)$ $-5 - x + x^{28} + 5x^{29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $-8 + 2x - 2x^{2} - x^{3} + 4x^{4} - 5x^{5} - 2x^{6} + x^{7}$ $-3 - 3x - 3x^{3} + 3x^{5} - 3x^{6} - 3x^{7}$ $R_{t}^{\text{mod } 30}(x) \text{ mod } \Phi_{30}(x)$ $-9 + 5x^{2} + 5x^{3} + 4x^{4} - x^{5} - 5x^{6} - 4x^{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13<br>14<br>t mod 30<br>0<br>1                                                                                               | $-2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14}$ $-3 + 3x^{12} + 3x^{13} - 3x^{14}$ $R_t^{\text{mod } 30}(x)$ $-5 - x + x^{28} + 5x^{29}$ $1 - x - x^2 + x^{29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-8 + 2x - 2x^{2} - x^{3} + 4x^{4} - 5x^{5} - 2x^{6} + x^{7}$ $-3 - 3x - 3x^{3} + 3x^{5} - 3x^{6} - 3x^{7}$ $R_{i}^{\text{mod } 30}(x) \text{ mod } \Phi_{30}(x)$ $-9 + 5x^{2} + 5x^{3} + 4x^{4} - x^{5} - 5x^{6} - 4x^{7}$ $-x + x^{3} + x^{4} - x^{6} - x^{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13<br>14<br>t mod 30<br>0<br>1<br>2                                                                                          | $-2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14}$ $-3 + 3x^{12} + 3x^{13} - 3x^{14}$ $R_t^{\text{mod } 30}(x)$ $-5 - x + x^{28} + 5x^{29}$ $1 - x - x^2 + x^{29}$ $-1 + 3x - 3x^2 + x^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-8 + 2x - 2x^{2} - x^{3} + 4x^{4} - 5x^{5} - 2x^{6} + x^{7}$ $-3 - 3x - 3x^{3} + 3x^{5} - 3x^{6} - 3x^{7}$ $R_{t}^{\text{mod } 30}(x) \text{ mod } \Phi_{30}(x)$ $-9 + 5x^{2} + 5x^{3} + 4x^{4} - x^{5} - 5x^{6} - 4x^{7}$ $-x + x^{3} + x^{4} - x^{6} - x^{7}$ $-1 + 3x - 3x^{2} + x^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13<br>14<br>t mod 30<br>0<br>1<br>2<br>3                                                                                     | $-2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14}$ $-3 + 3x^{12} + 3x^{13} - 3x^{14}$ $R_t^{\text{mod } 30}(x)$ $-5 - x + x^{28} + 5x^{29}$ $1 - x - x^2 + x^{29}$ $-1 + 3x - 3x^2 + x^3$ $-2 + x + 3x^2 - 3x^3 - x^4 + 2x^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $-8 + 2x - 2x^{2} - x^{3} + 4x^{4} - 5x^{5} - 2x^{6} + x^{7}$ $-3 - 3x - 3x^{3} + 3x^{5} - 3x^{6} - 3x^{7}$ $R_{t}^{\text{mod } 30}(x) \text{ mod } \Phi_{30}(x)$ $-9 + 5x^{2} + 5x^{3} + 4x^{4} - x^{5} - 5x^{6} - 4x^{7}$ $-x + x^{3} + x^{4} - x^{6} - x^{7}$ $-1 + 3x - 3x^{2} + x^{3}$ $-2 + x + 3x^{2} - 3x^{3} - x^{4} + 2x^{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13<br>14<br>t mod 30<br>0<br>1<br>2                                                                                          | $\begin{array}{c} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \\ \hline R_t^{\text{mod } 30}(x) \\ -5 - x + x^{28} + 5x^{29} \\ 1 - x - x^2 + x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $-8 + 2x - 2x^{2} - x^{3} + 4x^{4} - 5x^{5} - 2x^{6} + x^{7}$ $-3 - 3x - 3x^{3} + 3x^{5} - 3x^{6} - 3x^{7}$ $R_{t}^{\text{mod } 30}(x) \text{ mod } \Phi_{30}(x)$ $-9 + 5x^{2} + 5x^{3} + 4x^{4} - x^{5} - 5x^{6} - 4x^{7}$ $-x + x^{3} + x^{4} - x^{6} - x^{7}$ $-1 + 3x - 3x^{2} + x^{3}$ $-2 + x + 3x^{2} - 3x^{3} - x^{4} + 2x^{5}$ $-2 + x^{2} + 3x^{3} - 3x^{4} - x^{5} + 2x^{7}$ $-2x^{2} - x^{3} + 3x^{4} - 3x^{5} + x^{6} + 2x^{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13<br>14<br>t mod 30<br>0<br>1<br>2<br>3<br>4<br>5<br>6                                                                      | $\begin{aligned} &-2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ &-3 + 3x^{12} + 3x^{13} - 3x^{14} \end{aligned}$ $\begin{matrix} R_t^{\text{mod } 30}(x) \\ &-5 - x + x^{28} + 5x^{29} \\ &1 - x - x^2 + x^{29} \\ &-1 + 3x - 3x^2 + x^3 \\ &-2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ &-2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ &-2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ &-2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \end{matrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $-8 + 2x - 2x^{2} - x^{3} + 4x^{4} - 5x^{5} - 2x^{6} + x^{7}$ $-3 - 3x - 3x^{3} + 3x^{5} - 3x^{6} - 3x^{7}$ $R_{t}^{\text{mod } 30}(x) \text{ mod } \Phi_{30}(x)$ $-9 + 5x^{2} + 5x^{3} + 4x^{4} - x^{5} - 5x^{6} - 4x^{7}$ $-x + x^{3} + x^{4} - x^{6} - x^{7}$ $-1 + 3x - 3x^{2} + x^{3}$ $-2 + x + 3x^{2} - 3x^{3} - x^{4} + 2x^{5}$ $-2 + x^{2} + 3x^{3} - 3x^{4} - x^{5} + 2x^{7}$ $-2x^{2} - x^{3} + 3x^{4} - 3x^{5} + x^{6} + 2x^{7}$ $-2 + 2x + x^{4} + 3x^{5} - x^{6} - x^{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13<br>14<br>t mod 30<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                 | $\begin{array}{l} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \end{array}$ $\begin{array}{l} R_t^{\text{mod } 30}(x) \\ -5 - x + x^{28} + 5x^{29} \\ 1 - x - x^2 + x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-8 + 2x - 2x^{2} - x^{3} + 4x^{4} - 5x^{5} - 2x^{6} + x^{7}$ $-3 - 3x - 3x^{3} + 3x^{5} - 3x^{6} - 3x^{7}$ $R_{t}^{\text{mod }30}(x) \text{ mod } \Phi_{30}(x)$ $-9 + 5x^{2} + 5x^{3} + 4x^{4} - x^{5} - 5x^{6} - 4x^{7}$ $-x + x^{3} + x^{4} - x^{6} - x^{7}$ $-1 + 3x - 3x^{2} + x^{3}$ $-2 + x + 3x^{2} - 3x^{3} - x^{4} + 2x^{5}$ $-2 + x^{2} + 3x^{3} - 3x^{4} - x^{5} + 2x^{7}$ $-2x^{2} - x^{3} + 3x^{4} - 3x^{5} + x^{6} + 2x^{7}$ $-2 - 2x + x^{4} + 3x^{5} - x^{6} - x^{7}$ $-3 - x - x^{3} + x^{4} + 2x^{5} + 3x^{6} - 4x^{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13<br>14<br>t mod 30<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                            | $\begin{array}{c} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \\ \hline R_t^{\ \ mod\ 30}(x) \\ -5 - x + x^{28} + 5x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \\ -2 + x^6 + 3x^7 - 3x^8 - x^7 + 2x^{15} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{l} -8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7 \\ -3 - 3x - 3x^3 + 3x^5 - 3x^6 - 3x^7 \\ \hline R_t^{\bmod 30}(x) \bmod \Phi_{30}(x) \\ -9 + 5x^2 + 5x^3 + 4x^4 - x^5 - 5x^6 - 4x^7 \\ -x + x^3 + x^4 - x^6 - x^7 \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2x^2 - x^3 + 3x^4 - 3x^5 + x^6 + 2x^7 \\ -2 - 2x + x^4 + 3x^5 - x^6 - x^7 \\ -3 - x - x^3 + x^4 + 2x^5 + 3x^6 - 4x^7 \\ -2 + 3x + x^2 - 2x^3 - 3x^4 - 3x^5 + 5x^7 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13<br>14<br>t mod 30<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                       | $\begin{array}{c} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \\ \hline R_t^{\ \ mod\ 30}(x) \\ \hline -5 - x + x^{28} + 5x^{29} \\ 1 - x - x^2 + x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \\ -2 + x^6 + 3x^7 - 3x^8 - x^9 + 2x^{15} \\ -2 + x^7 + 3x^8 - 3x^9 - x^{10} + 2x^{17} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} -8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7 \\ -3 - 3x - 3x^3 + 3x^5 - 3x^6 - 3x^7 \\ \hline R_t^{\bmod{30}}(x) \bmod{\Phi_{30}}(x) \\ -9 + 5x^2 + 5x^3 + 4x^4 - x^5 - 5x^6 - 4x^7 \\ -x + x^3 + x^4 - x^6 - x^7 \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2x^2 - x^3 + 3x^4 - 3x^5 + x^6 + 2x^7 \\ -2 - 2x + x^4 + 3x^5 - x^6 - x^7 \\ -3 - x - x^3 + x^4 + 2x^5 + 3x^6 - 4x^7 \\ -2 + 3x + x^2 - 2x^3 - 3x^4 - 3x^5 + 5x^7 \\ -7 - 3x + x^2 + 6x^3 + 3x^4 + 2x^5 - 3x^6 - 5x^7 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13<br>14<br>t mod 30<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                            | $\begin{array}{l} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \\ \hline R_t^{\text{mod } 30}(x) \\ \hline -5 - x + x^{28} + 5x^{29} \\ 1 - x - x^2 + x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \\ -2 + x^6 + 3x^7 - 3x^8 - x^9 + 2x^{15} \\ -2 + x^7 + 3x^8 - 3x^9 - x^{10} + 2x^{17} \\ -2 + x^8 + 3x^9 - 3x^{10} - x^{11} + 2x^{19} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{l} -8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7 \\ -3 - 3x - 3x^3 + 3x^5 - 3x^6 - 3x^7 \end{array}$ $\begin{array}{l} R_t^{\text{mod } 30}(x) \ \text{mod } \Phi_{30}(x) \\ -9 + 5x^2 + 5x^3 + 4x^4 - x^5 - 5x^6 - 4x^7 \\ -x + x^3 + x^4 - x^6 - x^7 \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2x^2 - x^3 + 3x^4 - 3x^5 + x^6 + 2x^7 \\ -2 - 2x + x^4 + 3x^5 - x^6 - x^7 \\ -3 - x - x^3 + x^4 + 2x^5 + 3x^6 - 4x^7 \\ -2 + 3x + x^2 - 2x^3 - 3x^4 - 3x^5 + 5x^7 \\ -7 - 3x + x^2 + 6x^3 + 3x^4 + 2x^5 - 3x^6 - 5x^7 \\ 3 - 3x^2 - 2x^3 - x^4 - 2x^5 + 2x^6 + 2x^7 \\ -4 + 3x - x^3 + 3x^5 - 4x^6 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13<br>14<br>t mod 30<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                     | $\begin{array}{c} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \end{array}$ $\begin{array}{c} R_t^{\text{mod } 30}(x) \\ -5 - x + x^{28} + 5x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \\ -2 + x^7 + 3x^8 - 3x^9 - x^{10} + 2x^{17} \\ -2 + x^8 + 3x^9 - 3x^{10} - x^{11} + 2x^{19} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ -2 + x^{10} + 3x^{11} - 3x^{12} - x^{13} + 2x^{23} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7$ $-3 - 3x - 3x^3 + 3x^5 - 3x^6 - 3x^7$ $R_t^{\text{mod } 30}(x) \text{ mod } \Phi_{30}(x)$ $-9 + 5x^2 + 5x^3 + 4x^4 - x^5 - 5x^6 - 4x^7$ $-x + x^3 + x^4 - x^6 - x^7$ $-1 + 3x - 3x^2 + x^3$ $-2 + x + 3x^2 - 3x^3 - x^4 + 2x^5$ $-2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7$ $-2x^2 - x^3 + 3x^4 - 3x^5 + x^6 + 2x^7$ $-2 - 2x + x^4 + 3x^5 - x^6 - x^7$ $-3 - x - x^3 + x^4 + 2x^5 + 3x^6 - 4x^7$ $-2 + 3x + x^2 - 2x^3 - 3x^4 - 3x^5 + 5x^7$ $-7 - 3x + x^2 + 6x^3 + 3x^4 + 2x^5 - 3x^6 - 5x^7$ $3 - 3x^2 - 2x^3 - x^4 - 2x^5 + 2x^6 + 2x^7$ $-4 + 3x - x^3 + 3x^5 - 4x^6$ $3x^2 - 2x^3 - 3x^4 - 2x^5 + 3x^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13<br>14<br>t mod 30<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                               | $\begin{array}{l} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \\ \hline R_t^{mod 30}(x) \\ -5 - x + x^{28} + 5x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \\ -2 + x^6 + 3x^7 - 3x^8 - x^9 + 2x^{15} \\ -2 + x^7 + 3x^8 - 3x^{10} - x^{11} + 2x^{19} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ -2 + x^{10} + 3x^{11} - 3x^{12} - x^{13} + 2x^{23} \\ -2 + x^{11} + 3x^{12} - 3x^{13} - x^{14} + 2x^{25} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{l} -8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7 \\ -3 - 3x - 3x^3 + 3x^5 - 3x^6 - 3x^7 \\ \hline R_t^{\bmod 30}(x) \bmod \Phi_{30}(x) \\ -9 + 5x^2 + 5x^3 + 4x^4 - x^5 - 5x^6 - 4x^7 \\ -x + x^3 + x^4 - x^6 - x^7 \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2x^2 - x^3 + 3x^4 - 3x^5 + x^6 + 2x^7 \\ -2 - 2x + x^4 + 3x^5 - x^6 - x^7 \\ -3 - x - x^3 + x^4 + 2x^5 + 3x^6 - 4x^7 \\ -2 + 3x + x^2 - 2x^3 - 3x^4 - 3x^5 + 5x^7 \\ -7 - 3x + x^2 + 6x^3 + 3x^4 + 2x^5 - 3x^6 - 5x^7 \\ 3 - 3x^2 - 2x^3 - x^4 - 2x^5 + 2x^6 + 2x^7 \\ -4 + 3x - x^3 + 3x^5 - 4x^6 \\ 3x^2 - 2x^3 - 3x^4 - 2x^5 + 3x^6 \\ 2 + 2x - 2x^2 + x^3 - 2x^4 - 5x^5 + 5x^7 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13<br>14<br>t mod 30<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                         | $\begin{array}{l} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \\ \hline R_t^{\ mod\ 30}(x) \\ -5 - x + x^{28} + 5x^{29} \\ 1 - x - x^2 + x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^3 + 2x^7 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \\ -2 + x^6 + 3x^7 - 3x^8 - x^9 + 2x^{15} \\ -2 + x^7 + 3x^8 - 3x^9 - x^{10} + 2x^{17} \\ -2 + x^8 + 3x^9 - 3x^{10} - x^{11} + 2x^{19} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ -2 + x^{10} + 3x^{11} - 3x^{12} - x^{13} + 2x^{23} \\ -2 + x^{11} + 3x^{12} - 3x^{13} - x^{14} + 2x^{25} \\ -2 + x^{12} + 3x^{13} - 3x^{14} - x^{15} + 2x^{27} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{l} -8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7 \\ -3 - 3x - 3x^3 + 3x^5 - 3x^6 - 3x^7 \\ \hline R_t^{\ \ mod\ 30}(x)\ \ mod\ \Phi_{30}(x) \\ -9 + 5x^2 + 5x^3 + 4x^4 - x^5 - 5x^6 - 4x^7 \\ -x + x^3 + x^4 - x^6 - x^7 \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2x^2 - x^3 + 3x^4 - 3x^5 + x^6 + 2x^7 \\ -2 - 2x + x^4 + 3x^5 - x^6 - x^7 \\ -3 - x - x^3 + x^4 + 2x^5 + 3x^6 - 4x^7 \\ -2 + 3x + x^2 - 2x^3 - 3x^4 - 3x^5 + 5x^7 \\ -7 - 3x + x^2 + 6x^3 + 3x^4 + 2x^5 - 3x^6 - 5x^7 \\ 3 - 3x^2 - 2x^3 - x^4 - 2x^5 + 2x^6 + 2x^7 \\ -4 + 3x - x^3 + 3x^5 - 4x^6 \\ 3x^2 - 2x^3 - 3x^4 - 2x^5 + 3x^6 \\ 2 + 2x - 2x^2 + x^3 - 2x^4 - 5x^5 + 5x^7 \\ -7 - 3x + 4x^2 + 3x^3 + 6x^4 + 3x^5 - 3x^6 - 7x^7 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13<br>14<br>t mod 30<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                   | $\begin{array}{l} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \\ \hline R_t^{mod 30}(x) \\ -5 - x + x^{28} + 5x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \\ -2 + x^6 + 3x^7 - 3x^8 - x^9 + 2x^{15} \\ -2 + x^7 + 3x^8 - 3x^{10} - x^{11} + 2x^{19} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ -2 + x^{10} + 3x^{11} - 3x^{12} - x^{13} + 2x^{23} \\ -2 + x^{11} + 3x^{12} - 3x^{13} - x^{14} + 2x^{25} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $-8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7$ $-3 - 3x - 3x^3 + 3x^5 - 3x^6 - 3x^7$ $R_t^{\text{mod } 30}(x) \text{ mod } \Phi_{30}(x)$ $-9 + 5x^2 + 5x^3 + 4x^4 - x^5 - 5x^6 - 4x^7$ $-x + x^3 + x^4 - x^6 - x^7$ $-1 + 3x - 3x^2 + x^3$ $-2 + x + 3x^2 - 3x^3 - x^4 + 2x^5$ $-2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7$ $-2x^2 - x^3 + 3x^4 - 3x^5 + x^6 + 2x^7$ $-2 - 2x + x^4 + 3x^5 - x^6 - x^7$ $-3 - x - x^3 + x^4 + 2x^5 + 3x^6 - 4x^7$ $-2 + 3x + x^2 - 2x^3 - 3x^4 - 3x^5 + 5x^7$ $-7 - 3x + x^2 + 6x^3 + 3x^4 + 2x^5 - 3x^6 - 5x^7$ $3 - 3x^2 - 2x^3 - x^4 - 2x^5 + 2x^6 + 2x^7$ $-4 + 3x - x^3 + 3x^5 - 4x^6$ $3x^2 - 2x^3 - 3x^4 - 2x^5 + 3x^6$ $2 + 2x - 2x^2 + x^3 - 2x^4 - 5x^5 + 5x^7$ $-7 - 3x + 4x^2 + 3x^3 + 6x^4 + 3x^5 - 3x^6 - 7x^7$ $1 - x^2 - x^3 + x^5 + x^6$ $-4 + 5x - x^3 - x^4 + x^6 + x^7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13<br>14<br>t mod 30<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                         | $\begin{array}{c} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \\ \hline \\ R_t^{\text{mod }30}(x) \\ \hline \\ -5 - x + x^{28} + 5x^{29} \\ 1 - x - x^2 + x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^7 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \\ -2 + x^6 + 3x^7 - 3x^8 - x^9 + 2x^{15} \\ -2 + x^7 + 3x^8 - 3x^9 - 2x^{10} + 2x^{17} \\ -2 + x^8 + 3x^9 - 3x^{10} - x^{11} + 2x^{19} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ -2 + x^{10} + 3x^{11} - 3x^{12} - x^{13} + 2x^{23} \\ -2 + x^{11} + 3x^{12} - 3x^{13} - x^{14} + 2x^{25} \\ -2 + x^{12} + 3x^{13} - 3x^{14} - x^{15} + 2x^{27} \\ -2 + x^{13} + 3x^{14} - 3x^{15} - x^{16} + 2x^{29} \\ -2 + 2x + x^{14} + 3x^{15} - 3x^{16} - x^{17} \\ -2 + 2x^3 + x^{15} + 3x^{16} - 3x^{17} - x^{18} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{l} -8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7 \\ -3 - 3x - 3x^3 + 3x^5 - 3x^6 - 3x^7 \end{array}$ $\begin{array}{l} R_t^{\text{mod } 30}(x) \ \text{mod } \Phi_{30}(x) \\ -9 + 5x^2 + 5x^3 + 4x^4 - x^5 - 5x^6 - 4x^7 \\ -x + x^3 + x^4 - x^6 - x^7 \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2x^2 - x^3 + 3x^4 - 3x^5 + x^6 + 2x^7 \\ -2 - 2x + x^4 + 3x^5 - x^6 - x^7 \\ -3 - x - x^3 + x^4 + 2x^5 + 3x^6 - 4x^7 \\ -2 + 3x + x^2 - 2x^3 - 3x^4 - 3x^5 + 5x^7 \\ -7 - 3x + x^2 + 6x^3 + 3x^4 + 2x^5 - 3x^6 - 5x^7 \\ 3 - 3x^2 - 2x^3 - x^4 - 2x^5 + 2x^6 + 2x^7 \\ -4 + 3x - x^3 + 3x^5 - 4x^6 \\ 3x^2 - 2x^3 - 3x^4 - 2x^5 + 3x^6 \\ 2 + 2x - 2x^2 + x^3 - 2x^4 - 5x^5 + 5x^7 \\ -7 - 3x + 4x^2 + 3x^3 + 6x^4 + 3x^5 - 3x^6 - 7x^7 \\ 1 - x^2 - x^3 + x^5 + x^6 \\ -4 + 5x - x^3 - x^4 + x^6 + x^7 \\ -3 - 3x + 3x^2 + 3x^3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13<br>14<br>t mod 30<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | $\begin{array}{c} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \\ \hline R_t^{\text{mod }30}(x) \\ \hline 1 - x - x^2 + x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \\ -2 + x^6 + 3x^7 - 3x^8 - x^9 + 2x^{15} \\ -2 + x^7 + 3x^8 - 3x^9 - x^{10} + 2x^{17} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ -2 + x^{10} + 3x^{11} - 3x^{12} - x^{13} + 2x^{23} \\ -2 + x^{11} + 3x^{12} - 3x^{13} - x^{14} + 2x^{25} \\ -2 + x^{12} + 3x^{13} - 3x^{14} - x^{15} + 2x^{27} \\ -2 + x^{13} + 3x^{14} - 3x^{15} - x^{16} + 2x^{29} \\ -2 + 2x + x^{14} + 3x^{15} - x^{16} - x^{17} \\ -2 + 2x^3 + x^{15} + 3x^{16} - 3x^{17} - x^{18} \\ -2 + 2x^5 + x^{16} + 3x^{17} - 3x^{18} - x^{19} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{l} -8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7 \\ -3 - 3x - 3x^3 + 3x^5 - 3x^6 - 3x^7 \\ \hline R_i^{\bmod{30}}(x) \bmod \Phi_{30}(x) \\ -9 + 5x^2 + 5x^3 + 4x^4 - x^5 - 5x^6 - 4x^7 \\ -x + x^3 + x^4 - x^6 - x^7 \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2x^2 - x^3 + 3x^4 - 3x^5 + x^6 + 2x^7 \\ -2 - 2x + x^4 + 3x^5 - x^6 - x^7 \\ -3 - x - x^3 + x^4 + 2x^5 + 3x^6 - 4x^7 \\ -2 + 3x + x^2 - 2x^3 - 3x^4 - 3x^5 + 5x^7 \\ -7 - 3x + x^2 + 6x^3 + 3x^4 + 2x^5 - 3x^6 - 5x^7 \\ 3 - 3x^2 - 2x^3 - x^4 - 2x^5 + 2x^6 + 2x^7 \\ -4 + 3x - x^3 + 3x^5 - 4x^6 \\ 3x^2 - 2x^3 - 3x^4 - 2x^5 + 3x^6 \\ 2 + 2x - 2x^2 + x^3 - 2x^4 - 5x^5 + 5x^7 \\ -7 - 3x + 4x^2 + 3x^3 + 6x^4 + 3x^5 - 3x^6 - 7x^7 \\ 1 - x^2 - x^3 + x^5 + x^6 \\ -4 + 5x - x^3 - x^4 + x^6 + x^7 \\ -3 - 3x + 3x^2 + 3x^3 \\ -2 - x - 3x^2 + 3x^3 + x^4 + 2x^5 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13 14  t mod 30  0  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19                                                          | $\begin{array}{c} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \\ \hline \\ R_t^{mod 30}(x) \\ \hline -5 - x + x^{28} + 5x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \\ -2 + x^6 + 3x^7 - 3x^8 - x^9 + 2x^{15} \\ -2 + x^7 + 3x^8 - 3x^{10} - x^{11} + 2x^{19} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ -2 + x^{10} + 3x^{11} - 3x^{12} - x^{13} + 2x^{23} \\ -2 + x^{11} + 3x^{12} - 3x^{13} - x^{14} + 2x^{25} \\ -2 + x^{11} + 3x^{12} - 3x^{13} - x^{14} + 2x^{25} \\ -2 + x^{13} + 3x^{14} - 3x^{15} - x^{16} + 2x^{29} \\ -2 + 2x^3 + x^{15} + 3x^{16} - 3x^{17} - x^{18} \\ -2 + 2x^5 + x^{16} + 3x^{17} - 3x^{18} - x^{19} \\ -2 + 2x^7 + x^{17} + 3x^{18} - 3x^{19} - x^{20} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{l} -8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7 \\ -3 - 3x - 3x^3 + 3x^5 - 3x^6 - 3x^7 \\ \hline R_t^{\bmod 30}(x) \bmod \Phi_{30}(x) \\ -9 + 5x^2 + 5x^3 + 4x^4 - x^5 - 5x^6 - 4x^7 \\ -x + x^3 + x^4 - x^6 - x^7 \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2x^2 - x^3 + 3x^4 - 3x^5 + x^6 + 2x^7 \\ -2 - 2x + x^4 + 3x^5 - x^6 - x^7 \\ -3 - x - x^3 + x^4 + 2x^5 + 3x^6 - 4x^7 \\ -2 + 3x + x^2 - 2x^3 - 3x^4 - 3x^5 + 5x^7 \\ -7 - 3x + x^2 + 6x^3 + 3x^4 + 2x^5 - 3x^6 - 5x^7 \\ 3 - 3x^2 - 2x^3 - x^4 - 2x^5 + 2x^6 + 2x^7 \\ -4 + 3x - x^3 + 3x^5 - 4x^6 \\ 3x^2 - 2x^3 - 3x^4 - 2x^5 + 3x^6 \\ 2 + 2x - 2x^2 + x^3 - 2x^4 - 5x^5 + 5x^7 \\ -7 - 3x + 4x^2 + 3x^3 + 6x^4 + 3x^5 - 3x^6 - 7x^7 \\ 1 - x^2 - x^3 + x^5 + x^6 \\ -4 + 5x - x^3 - x^4 + x^6 + x^7 \\ -3 - 3x + 3x^2 + 3x^3 \\ -2 - x - 3x^2 + 3x^3 + x^4 + 2x^5 \\ -2 - x^2 - 3x^3 + 3x^4 + x^5 + 2x^7 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13 14  t mod 30  0  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20                                                       | $\begin{array}{c} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \\ \hline \\ R_t^{\ mod\ 30}(x) \\ \hline -5 - x + x^{28} + 5x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^3 + 2x^7 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \\ -2 + x^6 + 3x^7 - 3x^8 - x^9 + 2x^{15} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{17} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ -2 + x^{11} + 3x^{12} - 3x^{13} + 2x^{23} \\ -2 + x^{11} + 3x^{12} - 3x^{13} - x^{14} + 2x^{25} \\ -2 + x^{12} + 3x^{13} - 3x^{14} - x^{15} + 2x^{27} \\ -2 + x^{13} + 3x^{14} - 3x^{15} - x^{16} + 2x^{29} \\ -2 + 2x + x^{14} + 3x^{15} - 3x^{16} - x^{17} \\ -2 + 2x^3 + x^{15} + 3x^{16} - 3x^{17} - x^{18} \\ -2 + 2x^7 + x^{17} + 3x^{18} - 3x^{19} - x^{20} \\ -2 + 2x^9 + x^{18} + 3x^{19} - 3x^{20} - x^{21} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{l} -8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7 \\ -3 - 3x - 3x^3 + 3x^5 - 3x^6 - 3x^7 \\ \hline R_t^{\ mod\ 30}(x)\ \ mod\ \Phi_{30}(x) \\ -9 + 5x^2 + 5x^3 + 4x^4 - x^5 - 5x^6 - 4x^7 \\ -x + x^3 + x^4 - x^6 - x^7 \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2x^2 - x^3 + 3x^4 - 3x^5 + x^6 + 2x^7 \\ -2 - 2x + x^4 + 3x^5 - x^6 - x^7 \\ -3 - x - x^3 + x^4 + 2x^5 + 3x^6 - 4x^7 \\ -2 + 3x + x^2 - 2x^3 - 3x^4 - 3x^5 + 5x^7 \\ -7 - 3x + x^2 + 6x^3 + 3x^4 + 2x^5 - 3x^6 - 5x^7 \\ 3 - 3x^2 - 2x^3 - x^4 - 2x^5 + 2x^6 + 2x^7 \\ -4 + 3x - x^3 + 3x^5 - 4x^6 \\ 3x^2 - 2x^3 - 3x^4 - 2x^5 + 3x^6 \\ 2 + 2x - 2x^2 + x^3 - 2x^4 - 5x^5 + 5x^7 \\ -7 - 3x + 4x^2 + 3x^3 + 6x^4 + 3x^5 - 3x^6 - 7x^7 \\ 1 - x^2 - x^3 + x^5 + x^6 \\ -4 + 5x - x^3 - x^4 + x^6 + x^7 \\ -3 - 3x + 3x^2 + 3x^3 \\ -2 - x - 3x^2 + 3x^3 + x^4 + 2x^5 \\ -2 - x^2 - 3x^3 - 3x^4 + 3x^5 + 3x^6 + 2x^7 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13 14  t mod 30  0  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19                                                          | $\begin{array}{c} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \\ \hline R_t^{mod 30}(x) \\ \hline -5 - x + x^{28} + 5x^{29} \\ 1 - x - x^2 + x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x^3 + 3x^4 - 3x^3 - x^4 + 2x^5 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \\ -2 + x^6 + 3x^7 - 3x^8 - x^9 + 2x^{15} \\ -2 + x^7 + 3x^8 - 3x^9 - x^{10} + 2x^{17} \\ -2 + x^8 + 3x^9 - 3x^{10} - x^{11} + 2x^{19} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ -2 + x^{10} + 3x^{11} - 3x^{12} - x^{13} + 2x^{23} \\ -2 + x^{11} + 3x^{12} - 3x^{13} - x^{14} + 2x^{25} \\ -2 + x^{13} + 3x^{14} - 3x^{15} - x^{16} + 2x^{27} \\ -2 + x^{13} + 3x^{14} - 3x^{15} - x^{16} + 2x^{27} \\ -2 + 2x^3 + x^{16} + 3x^{17} - 3x^{18} - x^{19} \\ -2 + 2x^7 + x^{17} + 3x^{18} - 3x^{19} - x^{20} \\ -2 + 2x^9 + x^{18} + 3x^{19} - 3x^{20} \\ -2 + 2x^9 + x^{18} + 3x^{19} - 3x^{20} \\ -2 + 2x^9 + x^{18} + 3x^{19} - 3x^{20} - x^{21} \\ -2 + 2x^{11} + x^{19} + 3x^{20} - 3x^{21} - x^{22} \\ -2 + 2x^{11} + x^{19} + 3x^{20} - 3x^{21} - x^{22} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{l} -8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7 \\ -3 - 3x - 3x^3 + 3x^5 - 3x^6 - 3x^7 \\ \hline R_1^{\bmod{30}}(x) \bmod \Phi_{30}(x) \\ -9 + 5x^2 + 5x^3 + 4x^4 - x^5 - 5x^6 - 4x^7 \\ -x + x^3 + x^4 - x^6 - x^7 \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2x^2 - x^3 + 3x^4 - 3x^5 + x^6 + 2x^7 \\ -2 + 2x + x^4 + 3x^5 - x^6 - x^7 \\ -3 - x - x^3 + x^4 + 2x^5 + 3x^6 - 4x^7 \\ -2 + 3x + x^2 - 2x^3 - 3x^4 - 3x^5 + 5x^7 \\ -7 - 3x + x^2 + 6x^3 + 3x^4 + 2x^5 - 3x^6 - 5x^7 \\ 3 - 3x^2 - 2x^3 - x^4 - 2x^5 + 2x^6 + 2x^7 \\ -4 + 3x - x^3 + 3x^5 - 4x^6 \\ 3x^2 - 2x^3 - 3x^4 - 2x^5 + 3x^6 \\ 2 + 2x - 2x^2 + x^3 - 2x^4 - 5x^5 + 5x^7 \\ -7 - 3x + 4x^2 + 3x^3 + 6x^4 + 3x^5 - 3x^6 - 7x^7 \\ 1 - x^2 - x^3 + x^5 + x^6 \\ -4 + 5x - x^3 - x^4 + x^6 + x^7 \\ -3 - 3x + 3x^2 + 3x^3 \\ -2 - x - 3x^2 + 3x^3 + x^4 + 2x^5 \\ -2 - x^2 - 3x^3 - 3x^4 + 3x^5 + 2x^7 \\ -2x^2 - 3x^3 - 3x^4 + 3x^5 + 3x^6 + 2x^7 \\ -2 - 2x - x^4 - 3x^5 + 5x^6 + x^7 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13 14  t mod 30  0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21                                | $\begin{array}{c} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \\ \hline R_t^{ \ mod \ 30}(x) \\ \hline -5 - x + x^{28} + 5x^{29} \\ 1 - x - x^2 + x^29 \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \\ -2 + x^6 + 3x^7 - 3x^8 - x^9 + 2x^{15} \\ -2 + x^7 + 3x^8 - 3x^9 - x^{10} + 2x^{17} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ -2 + x^{10} + 3x^{11} - 3x^{12} - x^{13} + 2x^{23} \\ -2 + x^{11} + 3x^{12} - 3x^{13} - x^{14} + 2x^{25} \\ -2 + x^{12} + 3x^{13} - 3x^{14} - x^{15} + 2x^{27} \\ -2 + 2x^{13} + 3x^{14} - 3x^{15} - x^{16} + 2x^{29} \\ -2 + 2x + x^{14} + 3x^{15} - 3x^{16} - x^{17} \\ -2 + 2x^3 + x^{15} + 3x^{16} - 3x^{17} - x^{18} \\ -2 + 2x^5 + x^{16} + 3x^{17} - 3x^{18} - x^{19} \\ -2 + 2x^9 + x^{18} + 3x^{19} - 3x^{20} - x^{21} \\ -2 + 2x^{11} + x^{19} + 3x^{20} - 3x^{21} - x^{22} \\ -2 + 2x^{11} + x^{19} + 3x^{20} - 3x^{21} - x^{22} \\ -2 + 2x^{13} + x^{20} + 3x^{21} - 3x^{22} - x^{23} \\ -2 + 2x^{15} + x^{21} + 3x^{22} - 3x^{23} - x^{24} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{l} -8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7 \\ -3 - 3x - 3x^3 + 3x^5 - 3x^6 - 3x^7 \\ \hline R_t^{mod 30}(x) \bmod \Phi_{30}(x) \\ -9 + 5x^2 + 5x^3 + 4x^4 - x^5 - 5x^6 - 4x^7 \\ -x + x^3 + x^4 - x^6 - x^7 \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2x^2 - x^3 + 3x^4 - 3x^5 + x^6 + 2x^7 \\ -2 - 2x + x^4 + 3x^5 - x^6 - x^7 \\ -3 - x - x^3 + x^4 + 2x^5 + 3x^6 - 4x^7 \\ -2 + 3x + x^2 - 2x^3 - 3x^4 - 3x^5 + 5x^7 \\ -7 - 3x + x^2 + 6x^3 + 3x^4 + 2x^5 - 3x^6 - 5x^7 \\ 3 - 3x^2 - 2x^3 - x^4 - 2x^5 + 2x^6 + 2x^7 \\ -4 + 3x - x^3 + 3x^5 - 4x^6 \\ 3x^2 - 2x^3 - 3x^4 - 2x^5 + 3x^6 \\ 2 + 2x - 2x^2 + x^3 - 2x^4 - 5x^5 + 5x^7 \\ -7 - 3x + 4x^2 + 3x^3 + 6x^4 + 3x^5 - 3x^6 - 7x^7 \\ 1 - x^2 - x^3 + x^5 + x^6 \\ -4 + 5x - x^3 - x^4 + x^6 + x^7 \\ -3 - 3x + 3x^2 + 3x^3 \\ -2 - x - 3x^2 + 3x^3 + x^4 + 2x^5 \\ -2 - x^2 - 3x^3 - 3x^4 + 3x^5 + 3x^6 + 2x^7 \\ -2x^2 - 3x^3 - 3x^4 + 3x^5 + 3x^6 + 2x^7 \\ -2x^2 - 3x^3 - 3x^4 + 3x^5 + 5x^6 + x^7 \\ -5 - 3x + x^3 + 3x^4 + 2x^5 - 3x^6 \\ -6 - 3x - x^2 + 2x^3 + 3x^4 + 3x^5 - 5x^7 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13 14  t mod 30  0  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24                                           | $\begin{array}{l} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \\ \hline \\ R_t^{mod 30}(x) \\ \hline -5 - x + x^{28} + 5x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \\ -2 + x^6 + 3x^7 - 3x^8 - x^9 + 2x^{15} \\ -2 + x^7 + 3x^8 - 3x^9 - x^{10} + 2x^{17} \\ -2 + x^8 + 3x^9 - 3x^{10} - x^{11} + 2x^{19} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ -2 + x^{10} + 3x^{11} - 3x^{12} - x^{13} + 2x^{23} \\ -2 + x^{11} + 3x^{12} - 3x^{13} - x^{14} + 2x^{25} \\ -2 + x^{11} + 3x^{12} - 3x^{13} - x^{14} + 2x^{25} \\ -2 + x^{12} + 3x^{13} - 3x^{14} - x^{15} + 2x^{27} \\ -2 + 2x^3 + x^{15} + 3x^{16} - 3x^{17} - x^{18} \\ -2 + 2x^5 + x^{16} + 3x^{17} - 3x^{18} - x^{19} \\ -2 + 2x^7 + x^{17} + 3x^{18} - 3x^{19} - x^{20} \\ -2 + 2x^1 + x^{18} + 3x^{19} - 3x^{20} - x^{21} \\ -2 + 2x^{11} + x^{19} + 3x^{20} - 3x^{21} - x^{22} \\ -2 + 2x^{11} + x^{19} + 3x^{20} - 3x^{21} - x^{22} \\ -2 + 2x^{11} + x^{19} + 3x^{20} - 3x^{21} - x^{22} \\ -2 + 2x^{11} + x^{19} + 3x^{20} - 3x^{21} - x^{22} \\ -2 + 2x^{15} + x^{21} + 3x^{22} - 3x^{23} - x^{24} \\ -2 + 2x^{17} + x^{22} + 3x^{23} - 3x^{24} - 25 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{l} -8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7 \\ -3 - 3x - 3x^3 + 3x^5 - 3x^6 - 3x^7 \\ \hline R_t^{\ mod\ 30}(x)\ mod\ \Phi_{30}(x) \\ -9 + 5x^2 + 5x^3 + 4x^4 - x^5 - 5x^6 - 4x^7 \\ -x + x^3 + x^4 - x^6 - x^7 \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2x^2 - x^3 + 3x^4 - 3x^5 + x^6 + 2x^7 \\ -2 - 2x + x^4 + 3x^5 - x^6 - x^7 \\ -3 - x - x^3 + x^4 + 2x^5 + 3x^6 - 4x^7 \\ -2 + 3x + x^2 - 2x^3 - 3x^4 - 3x^5 + 5x^7 \\ -7 - 3x + x^2 + 6x^3 + 3x^4 + 2x^5 - 3x^6 - 5x^7 \\ 3 - 3x^2 - 2x^3 - x^4 - 2x^5 + 2x^6 + 2x^7 \\ -4 + 3x - x^3 + 3x^5 - 4x^6 \\ 3x^2 - 2x^3 - 3x^4 - 2x^5 + 3x^6 \\ 2 + 2x - 2x^2 + x^3 - 2x^4 - 5x^5 + 5x^7 \\ -7 - 3x + 4x^2 + 3x^3 + 6x^4 + 3x^5 - 3x^6 - 7x^7 \\ 1 - x^2 - x^3 + x^5 + x^6 \\ -4 + 5x - x^3 - x^4 + x^6 + x^7 \\ -3 - 3x + 3x^2 + 3x^3 \\ -2 - x - 3x^2 + 3x^3 + x^4 + 2x^5 \\ -2 - x^2 - 3x^3 - 3x^4 + x^5 + 2x^7 \\ -2x^2 - 3x^3 - 3x^4 + x^5 + 2x^7 \\ -2x^2 - 3x^3 - 3x^4 + 3x^5 + 3x^6 + 2x^7 \\ -2 - 2x - x^4 - 3x^5 + 5x^6 + x^7 \\ -5 - 3x + x^3 + 3x^4 + 2x^5 - 3x^6 \\ -6 - 3x - x^2 + 2x^3 - 3x^4 + 3x^5 - 5x^7 \\ 3 + 3x - 5x^2 - 6x^3 - 3x^4 - 2x^5 + 3x^6 + 5x^7 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13 14  t mod 30  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25                                         | $\begin{array}{l} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \\ \hline R_t^{\ mod 30}(x) \\ \hline -5 - x + x^{28} + 5x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \\ -2 + x^6 + 3x^7 - 3x^8 - x^9 + 2x^{15} \\ -2 + x^7 + 3x^8 - 3x^{10} - x^{11} + 2x^{19} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ -2 + x^{10} + 3x^{11} - 3x^{12} - x^{13} + 2x^{23} \\ -2 + x^{11} + 3x^{12} - 3x^{13} - x^{14} + 2x^{25} \\ -2 + x^{11} + 3x^{12} - 3x^{13} - x^{14} + 2x^{25} \\ -2 + x^{11} + 3x^{12} - 3x^{13} - x^{16} + 2x^{27} \\ -2 + 2x^3 + x^{15} + 3x^{16} - 3x^{17} - x^{18} \\ -2 + 2x^7 + x^{17} + 3x^{18} - 3x^{19} - x^{20} \\ -2 + 2x^9 + x^{18} + 3x^{19} - 3x^{20} - x^{21} \\ -2 + 2x^{11} + x^{19} + 3x^{20} - 3x^{21} - x^{22} \\ -2 + 2x^{11} + x^{19} + 3x^{20} - 3x^{21} - x^{22} \\ -2 + 2x^{11} + x^{19} + 3x^{20} - 3x^{21} - x^{22} \\ -2 + 2x^{11} + x^{19} + 3x^{20} - 3x^{21} - x^{22} \\ -2 + 2x^{11} + x^{19} + 3x^{20} - 3x^{21} - x^{22} \\ -2 + 2x^{11} + x^{19} + 3x^{20} - 3x^{21} - x^{22} \\ -2 + 2x^{15} + x^{21} + 3x^{22} - 3x^{23} - x^{24} \\ -2 + 2x^{17} + x^{22} + 3x^{23} - 3x^{24} - x^{25} \\ -2 + 2x^{19} + x^{23} + 3x^{24} - 3x^{25} - x^{26} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{l} -8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7 \\ -3 - 3x - 3x^3 + 3x^5 - 3x^6 - 3x^7 \\ \hline R_t^{\ mod\ 30}(x)\ mod\ \Phi_{30}(x) \\ -9 + 5x^2 + 5x^3 + 4x^4 - x^5 - 5x^6 - 4x^7 \\ -x + x^3 + x^4 - x^6 - x^7 \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2x^2 - x^3 + 3x^4 - 3x^5 + x^6 + 2x^7 \\ -2 - 2x + x^4 + 3x^5 - x^6 - x^7 \\ -3 - x - x^3 + x^4 + 2x^5 + 3x^6 - 4x^7 \\ -2 + 3x + x^2 - 2x^3 - 3x^4 - 3x^5 + 5x^7 \\ -7 - 3x + x^2 + 6x^3 + 3x^4 + 2x^5 - 3x^6 - 5x^7 \\ 3 - 3x^2 - 2x^3 - x^4 - 2x^5 + 2x^6 + 2x^7 \\ -4 + 3x - x^3 + 3x^5 - 4x^6 \\ 3x^2 - 2x^3 - 3x^4 - 2x^5 + 3x^6 \\ 2 + 2x - 2x^2 + x^3 - 2x^4 - 5x^5 + 5x^7 \\ -7 - 3x + 4x^2 + 3x^3 + 6x^4 + 3x^5 - 3x^6 - 7x^7 \\ 1 - x^2 - x^3 + x^5 + x^6 \\ -4 + 5x - x^3 - x^4 + x^6 + x^7 \\ -3 - 3x + 3x^2 + 3x^3 \\ -2 - x - 3x^2 + 3x^3 + x^4 + 2x^5 \\ -2 - x^2 - 3x^3 - 3x^4 + x^5 + 2x^7 \\ -2x^2 - 3x^3 - 3x^4 + x^5 + 2x^7 \\ -2x^2 - 3x^3 - 3x^4 + x^5 + 5x^6 + x^7 \\ -2 - 2x - 3x^3 - 3x^4 + 3x^5 + 5x^6 + 2x^7 \\ -2 - 2x - 3x^2 + 3x^3 + 3x^4 + 2x^5 - 3x^6 \\ -6 - 3x - x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6 \\ -6 - 3x - x^2 + 2x^3 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13 14  t mod 30  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26                                      | $\begin{array}{c} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \\ \hline R_t^{mod 30}(x) \\ \hline -5 - x + x^{28} + 5x^{29} \\ 1 - x - x^2 + x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \\ -2 + x^6 + 3x^7 - 3x^8 - x^9 + 2x^{15} \\ -2 + x^7 + 3x^8 - 3x^9 - x^{10} + 2x^{17} \\ -2 + x^8 + 3x^9 - 3x^{10} - x^{11} + 2x^{19} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ -2 + x^{10} + 3x^{11} - 3x^{12} - x^{13} + 2x^{23} \\ -2 + x^{11} + 3x^{12} - 3x^{13} - x^{14} + 2x^{25} \\ -2 + x^{13} + 3x^{14} - 3x^{15} - x^{16} + 2x^{27} \\ -2 + x^{13} + 3x^{14} - 3x^{15} - x^{16} + 2x^{29} \\ -2 + 2x + x^{14} + 3x^{15} - 3x^{16} - x^{17} \\ -2 + 2x^3 + x^{15} + 3x^{16} - 3x^{17} - x^{18} \\ -2 + 2x^7 + x^{17} + 3x^{18} - 3x^{19} - x^{20} \\ -2 + 2x^9 + x^{18} + 3x^{19} - 3x^{20} - x^{21} \\ -2 + 2x^{11} + x^{19} + 3x^{20} - 3x^{21} - x^{22} \\ -2 + 2x^{13} + x^{20} + 3x^{21} - 3x^{22} - x^{23} \\ -2 + 2x^{15} + x^{21} + 3x^{22} - 3x^{23} - x^{24} \\ -2 + 2x^{19} + x^{23} + 3x^{24} - 3x^{25} - x^{26} \\ -2 + 2x^{21} + x^{24} + 3x^{25} - 3x^{26} - x^{27} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{l} -8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7 \\ -3 - 3x - 3x^3 + 3x^5 - 3x^6 - 3x^7 \\ \hline R_t^{\ mod\ 30}(x)\ \ mod\ \Phi_{30}(x) \\ -9 + 5x^2 + 5x^3 + 4x^4 - x^5 - 5x^6 - 4x^7 \\ -x + x^3 + x^4 - x^6 - x^7 \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2x^2 - x^3 + 3x^4 - 3x^5 + x^6 + 2x^7 \\ -2 - 2x + x^4 + 3x^5 - x^6 - x^7 \\ -3 - x - x^3 + x^4 + 2x^5 + 3x^6 - 4x^7 \\ -2 + 3x + x^2 - 2x^3 - 3x^4 - 3x^5 + 5x^7 \\ -7 - 3x + x^2 + 6x^3 + 3x^4 + 2x^5 - 3x^6 - 5x^7 \\ 3 - 3x^2 - 2x^3 - x^4 - 2x^5 + 2x^6 + 2x^7 \\ -4 + 3x - x^3 + 3x^5 - 4x^6 \\ 3x^2 - 2x^3 - 3x^4 - 2x^5 + 3x^6 \\ 2 + 2x - 2x^2 + x^3 - 2x^4 - 5x^5 + 5x^7 \\ -7 - 3x + 4x^2 + 3x^3 + 6x^4 + 3x^5 - 3x^6 - 7x^7 \\ 1 - x^2 - x^3 + x^5 + x^6 \\ -4 + 5x - x^3 - x^4 + x^6 + x^7 \\ -3 - 3x + 3x^2 + 3x^3 \\ -2 - x - 3x^2 + 3x^3 + x^4 + 2x^5 \\ -2 - x^2 - 3x^3 - 3x^4 + 3x^5 + 3x^6 + 2x^7 \\ -2 - 2x - x^4 - 3x^5 + 5x^6 + x^7 \\ -5 - 3x + x^3 + 3x^4 + 2x^5 - 3x^6 \\ -6 - 3x - x^2 + 2x^3 - 3x^4 + 3x^5 - 5x^7 \\ 3 + 3x - 5x^2 - 6x^3 - 3x^4 - 2x^5 + 3x^6 + 5x^7 \\ -7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 - 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 - 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 - 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 - 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 - 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 - 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 - 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 - 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 - 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 2x^6 -$ |
| 13 14  t mod 30  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27                                   | $\begin{array}{c} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \\ \hline R_t^{mod 30}(x) \\ \hline -5 - x + x^{28} + 5x^{29} \\ 1 - x - x^2 + x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \\ -2 + x^6 + 3x^7 - 3x^8 - x^9 + 2x^{15} \\ -2 + x^7 + 3x^8 - 3x^9 - x^{10} + 2x^{17} \\ -2 + x^8 + 3x^9 - 3x^{10} - x^{11} + 2x^{19} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ -2 + x^{10} + 3x^{11} - 3x^{12} - x^{13} + 2x^{23} \\ -2 + x^{11} + 3x^{12} - 3x^{13} - x^{14} + 2x^{25} \\ -2 + x^{12} + 3x^{13} - 3x^{14} - x^{15} + 2x^{27} \\ -2 + x^{13} + 3x^{14} - 3x^{15} - x^{16} + 2x^{29} \\ -2 + 2x + x^{14} + 3x^{15} - 3x^{16} - x^{17} \\ -2 + 2x^3 + x^{15} + 3x^{16} - 3x^{17} - x^{18} \\ -2 + 2x^7 + x^{17} + 3x^{18} - 3x^{19} - x^{20} \\ -2 + 2x^1 + x^{19} + 3x^{20} - 3x^{21} \\ -2 + 2x^{11} + x^{19} + 3x^{20} - 3x^{21} - x^{22} \\ -2 + 2x^{13} + x^{20} + 3x^{21} - 3x^{22} - x^{23} \\ -2 + 2x^{17} + x^{22} + 3x^{23} - 3x^{24} - x^{25} \\ -2 + 2x^{17} + x^{22} + 3x^{23} - 3x^{24} - x^{25} \\ -2 + 2x^{17} + x^{22} + 3x^{23} - 3x^{24} - x^{25} \\ -2 + 2x^{21} + x^{24} + 3x^{25} - 3x^{26} - x^{27} \\ -2 + 2x^{24} + 3x^{25} - 3x^{26} - x^{27} \\ -2 + 2x^{24} + 3x^{25} - 3x^{26} - x^{27} \\ -2 + 2x^{24} + 3x^{25} - 3x^{26} - x^{27} \\ -2 + 2x^{24} + 3x^{25} - 3x^{26} - x^{27} \\ -2 + 2x^{24} + 3x^{25} - 3x^{26} - x^{27} \\ -2 + 2x^{24} + 3x^{25} - 3x^{26} - x^{27} \\ -2 + 2x^{24} + 3x^{25} - 3x^{26} - x^{27} \\ -2 + 2x^{24} + 3x^{25} - 3x^{26} - x^{27} \\ -2 + 2x^{24} + 3x^{25} - 3x^{26} - x^{27} \\ -2 + 2x^{24} - 3x^{25} - 3x^{26} - x^{27} \\ -2 + 2x^{24} - 3x^{25} - 3x^{26} - x^{27} \\ -2 + 2x^{24} - 3x^{25} - 3x^{26} - x^{27} \\ -2 + 2x^{24} - 3x^{25} - 3x^{26} - x^{27} \\ -2 + 2x^{24} - 3x^{25} - 3x^{26} - x^{27} \\ -2 + 2x^{24} - 3x^{25} - 3x^{26} - x^{27} \\ -2 + 2x^{24} - 3x^{25} - 3x^{26} - x^{27} \\ -2 + 2x^{24} - 3x^{25} - 3x^{26} - x^{27} \\ -2 + 2x^{24}$ | $-8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7$ $-3 - 3x - 3x^3 + 3x^5 - 3x^6 - 3x^7$ $R_t^{\text{mod }30}(x) \text{ mod } \Phi_{30}(x)$ $-9 + 5x^2 + 5x^3 + 4x^4 - x^5 - 5x^6 - 4x^7$ $-x + x^3 + x^4 - x^6 - x^7$ $-1 + 3x - 3x^2 + x^3$ $-2 + x + 3x^2 - 3x^3 - x^4 + 2x^5$ $-2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7$ $-2x^2 - x^3 + 3x^4 - 3x^5 + x^6 - x^7$ $-3 - x - x^3 + x^4 + 2x^5 + 3x^6 - 4x^7$ $-2 + 3x + x^2 - 2x^3 - 3x^4 - 3x^5 + 5x^7$ $-7 - 3x + x^2 + 6x^3 + 3x^4 + 2x^5 - 3x^6 - 5x^7$ $3 - 3x^2 - 2x^3 - 3x^4 - 2x^5 + 2x^6 + 2x^7$ $-4 + 3x - x^3 + 3x^5 - 4x^6$ $3x^2 - 2x^3 - 3x^4 - 2x^5 + 3x^6$ $2 + 2x - 2x^2 + x^3 - 2x^4 - 5x^5 + 5x^7$ $-7 - 3x + 4x^2 + 3x^3 + 6x^4 + 3x^5 - 3x^6 - 7x^7$ $1 - x^2 - x^3 + x^5 + x^6$ $-4 + 5x - x^3 - x^4 + x^6 + x^7$ $-3 - 3x + 3x^2 + 3x^3$ $-2 - x - 3x^2 + 3x^3 + x^4 + 2x^5$ $-2 - 2x^2 - 3x^3 + 3x^4 + x^5 + 2x^7$ $-2x^2 - 3x^3 - 3x^4 + x^5 + 2x^7$ $-2x^2 - 3x^3 - 3x^4 + x^5 + 5x^6$ $-6 - 3x - x^2 + 2x^3 + 3x^4 + 3x^5 - 5x^7$ $3 + 3x - 5x^2 - 6x^3 - 3x^4 + 2x^5 - 3x^6$ $-6 - 3x - x^2 + 2x^3 + 3x^4 + 3x^5 - 5x^7$ $3 + 3x - 5x^2 - 6x^3 - 3x^4 + 2x^5 - 3x^6 - 5x^7$ $3 + 3x - 5x^2 - 6x^3 - 3x^4 + 2x^5 - 3x^6$ $-6 - 3x - x^2 + 2x^3 + 3x^4 + 2x^5 - 3x^6$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6 - 5x^7$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6 - 6x^7$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6 - 6x^7$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6 - 6x^7$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6 - 6x^7$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6 - 6x^7$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6 - 6x^7$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6 - 6x^7$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6 - 6x^7$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6 - 6x^7$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6 - 6x^7$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6 - 6x^7$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6 - 6x^7$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6 - 6x^7$ $-7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 3x^6 - 6$                                                          |
| 13 14  t mod 30  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26                                      | $\begin{array}{c} -2 + 2x^{10} + x^{11} + 3x^{12} - 3x^{13} - x^{14} \\ -3 + 3x^{12} + 3x^{13} - 3x^{14} \\ \hline R_t^{mod 30}(x) \\ \hline -5 - x + x^{28} + 5x^{29} \\ 1 - x - x^2 + x^{29} \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^3 + 3x^4 - 3x^5 - x^6 + 2x^9 \\ -2 + x^4 + 3x^5 - 3x^6 - x^7 + 2x^{11} \\ -2 + x^5 + 3x^6 - 3x^7 - x^8 + 2x^{13} \\ -2 + x^6 + 3x^7 - 3x^8 - x^9 + 2x^{15} \\ -2 + x^7 + 3x^8 - 3x^9 - x^{10} + 2x^{17} \\ -2 + x^8 + 3x^9 - 3x^{10} - x^{11} + 2x^{19} \\ -2 + x^9 + 3x^{10} - 3x^{11} - x^{12} + 2x^{21} \\ -2 + x^{10} + 3x^{11} - 3x^{12} - x^{13} + 2x^{23} \\ -2 + x^{11} + 3x^{12} - 3x^{13} - x^{14} + 2x^{25} \\ -2 + x^{13} + 3x^{14} - 3x^{15} - x^{16} + 2x^{27} \\ -2 + x^{13} + 3x^{14} - 3x^{15} - x^{16} + 2x^{29} \\ -2 + 2x + x^{14} + 3x^{15} - 3x^{16} - x^{17} \\ -2 + 2x^3 + x^{15} + 3x^{16} - 3x^{17} - x^{18} \\ -2 + 2x^7 + x^{17} + 3x^{18} - 3x^{19} - x^{20} \\ -2 + 2x^9 + x^{18} + 3x^{19} - 3x^{20} - x^{21} \\ -2 + 2x^{11} + x^{19} + 3x^{20} - 3x^{21} - x^{22} \\ -2 + 2x^{13} + x^{20} + 3x^{21} - 3x^{22} - x^{23} \\ -2 + 2x^{15} + x^{21} + 3x^{22} - 3x^{23} - x^{24} \\ -2 + 2x^{19} + x^{23} + 3x^{24} - 3x^{25} - x^{26} \\ -2 + 2x^{21} + x^{24} + 3x^{25} - 3x^{26} - x^{27} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{l} -8 + 2x - 2x^2 - x^3 + 4x^4 - 5x^5 - 2x^6 + x^7 \\ -3 - 3x - 3x^3 + 3x^5 - 3x^6 - 3x^7 \\ \hline R_t^{\ mod\ 30}(x)\ \ mod\ \Phi_{30}(x) \\ -9 + 5x^2 + 5x^3 + 4x^4 - x^5 - 5x^6 - 4x^7 \\ -x + x^3 + x^4 - x^6 - x^7 \\ -1 + 3x - 3x^2 + x^3 \\ -2 + x + 3x^2 - 3x^3 - x^4 + 2x^5 \\ -2 + x^2 + 3x^3 - 3x^4 - x^5 + 2x^7 \\ -2x^2 - x^3 + 3x^4 - 3x^5 + x^6 + 2x^7 \\ -2 - 2x + x^4 + 3x^5 - x^6 - x^7 \\ -3 - x - x^3 + x^4 + 2x^5 + 3x^6 - 4x^7 \\ -2 + 3x + x^2 - 2x^3 - 3x^4 - 3x^5 + 5x^7 \\ -7 - 3x + x^2 + 6x^3 + 3x^4 + 2x^5 - 3x^6 - 5x^7 \\ 3 - 3x^2 - 2x^3 - x^4 - 2x^5 + 2x^6 + 2x^7 \\ -4 + 3x - x^3 + 3x^5 - 4x^6 \\ 3x^2 - 2x^3 - 3x^4 - 2x^5 + 3x^6 \\ 2 + 2x - 2x^2 + x^3 - 2x^4 - 5x^5 + 5x^7 \\ -7 - 3x + 4x^2 + 3x^3 + 6x^4 + 3x^5 - 3x^6 - 7x^7 \\ 1 - x^2 - x^3 + x^5 + x^6 \\ -4 + 5x - x^3 - x^4 + x^6 + x^7 \\ -3 - 3x + 3x^2 + 3x^3 \\ -2 - x - 3x^2 + 3x^3 + x^4 + 2x^5 \\ -2 - x^2 - 3x^3 - 3x^4 + 3x^5 + 3x^6 + 2x^7 \\ -2 - 2x - x^4 - 3x^5 + 5x^6 + x^7 \\ -5 - 3x + x^3 + 3x^4 + 2x^5 - 3x^6 \\ -6 - 3x - x^2 + 2x^3 - 3x^4 + 3x^5 - 5x^7 \\ 3 + 3x - 5x^2 - 6x^3 - 3x^4 - 2x^5 + 3x^6 + 5x^7 \\ -7 + 3x^2 + 2x^3 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 - 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 - 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 + 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 - 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 - 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 - 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 - 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 - 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 - 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 3x^4 - 2x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 2x^6 - 2x^7 \\ -3x + x^3 - 3x^5 - 2x^6 -$ |

# Appendix C. $U_t^{\text{mod } b}(x) \text{ mod } \Phi_b(x)$ table

| t mod 2              | 11 mod 3(x)                                                                                                                                   | $U_t^{\text{mod }3}(x) \text{ mod } \Phi_3(x)$                                                                                                    |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{t \mod 3}{0}$ | $U_t^{\text{mod } 3}(x)$ $-3x + 3x^2$                                                                                                         | -3 - 6x                                                                                                                                           |
| 0<br>1               | $ \begin{array}{l} -3x + 3x^2 \\ 1 - x \end{array} $                                                                                          | $ \begin{array}{c} -3 - 6x \\ 1 - x \end{array} $                                                                                                 |
| 2                    | $1 - x^2$                                                                                                                                     | 2+x                                                                                                                                               |
| t mod 5              | $U_t^{\bmod 5}(x)$                                                                                                                            | $U_t^{\bmod 5}(x) \bmod \Phi_5(x)$                                                                                                                |
| 0                    | $-5x + 5x^4$                                                                                                                                  | $-5 - 10x - 5x^2 - 5x^3$                                                                                                                          |
| 1                    | $x - x^3$                                                                                                                                     | $x - x^3$                                                                                                                                         |
| 2                    | $-3 - 2x + 2x^2 + 3x^3$ $3 - 3x^2$                                                                                                            | $-3 - 2x + 2x^2 + 3x^3$ $3 - 3x^2$                                                                                                                |
| 4                    | $2 - 2x + 3x^2 - 3x^4$                                                                                                                        | $5 + x + 6x^2 + 3x^3$                                                                                                                             |
| t mod 6              | $U_t^{\bmod 6}(x)$                                                                                                                            | $U_t^{\bmod 6}(x) \bmod \Phi_6(x)$                                                                                                                |
| 0                    | $-4x - x^2 + x^4 + 4x^5$                                                                                                                      | 5 - 10x                                                                                                                                           |
| 1                    | $     \begin{array}{l}       1 - x^4 \\       -1 + x^2 + 2x^3 - 2x^5     \end{array} $                                                        | 1 + x                                                                                                                                             |
| 2                    | $-1 + x^{2} + 2x^{3} - 2x^{4}$ $-4x - x^{2} + x^{4} + 4x^{5}$                                                                                 | $ \begin{array}{l} -6 + 3x \\ 5 - 10x \end{array} $                                                                                               |
| 4                    | $1 - x^4$                                                                                                                                     | 1+x                                                                                                                                               |
| 5                    | $-1 + x^2 + 2x^3 - 2x^5$                                                                                                                      | -6 + 3x                                                                                                                                           |
| t mod 10             | $U_t^{\bmod 10}(x)$                                                                                                                           | $U_t^{\bmod 10}(x) \bmod \Phi_{10}(x)$                                                                                                            |
| 0                    | $-4x + x^4 - x^6 + 4x^9$                                                                                                                      | $3 - 6x + 3x^2 - 3x^3$                                                                                                                            |
| 1                    | $x^6 - x^8$                                                                                                                                   | $-x + x^3$                                                                                                                                        |
| 2 3                  | $-1 - 2x + 2x^3 - 2x^5 + 2x^7 + x^8$ $1 - x^2 + 2x^5 - 2x^7$                                                                                  | $ 1 - 2x - 2x^2 + x^3 \\ -1 + x^2 $                                                                                                               |
| 4                    | $-2x + x^2 - x^4 + 2x^5 + 2x^7 - 2x^9$                                                                                                        | $-3 - x - 2x^2 + x^3$                                                                                                                             |
| 5                    | $-4x + x^4 - x^6 + 4x^9$                                                                                                                      | $3 - 6x + 3x^2 - 3x^3$                                                                                                                            |
| 6                    | $x^6 - x^8$                                                                                                                                   | $-x + x^3$                                                                                                                                        |
| 7                    | $-1 - 2x + 2x^3 - 2x^5 + 2x^7 + x^8$                                                                                                          | $1 - 2x - 2x^2 + x^3$                                                                                                                             |
| 8<br>9               | $ 1 - x^2 + 2x^5 - 2x^7  -2x + x^2 - x^4 + 2x^5 + 2x^7 - 2x^9 $                                                                               | $ -1 + x^2  -3 - x - 2x^2 + x^3 $                                                                                                                 |
| t mod 15             | $U_t^{\bmod 15}(x)$                                                                                                                           | $U_t^{\bmod 15}(x) \bmod \Phi_{15}(x)$                                                                                                            |
|                      |                                                                                                                                               |                                                                                                                                                   |
| 0<br>1               | $-4x + x^4 - x^{11} + 4x^{14}$ $x^6 - x^{13}$                                                                                                 | $4 - 3x - 4x^{2} + 4x^{3} - 3x^{4} + 5x^{6} - 4x^{7}$ $-1 + x + x^{4} - x^{5} + x^{6} + x^{7}$                                                    |
| 2                    | $-1 - 2x + 2x^3 - 2x^5 + 2x^7 + x^8$                                                                                                          | $-2 - x + x^3 + x^4 - 3x^5 + 3x^7$                                                                                                                |
| 3                    | $-2x - x^2 + 2x^5 - 2x^7 + x^{10} + 2x^{11}$                                                                                                  | $-1 - 4x - x^2 + x^5 - 2x^6 - 2x^7$                                                                                                               |
| 4                    | $2-2x-x^4+2x^7-2x^9+x^{12}$                                                                                                                   | $4-2x-3x^2+2x^3-x^4+2x^6-x^7$                                                                                                                     |
| 5                    | $-2x + 2x^4 - x^6 + 2x^9 - 2x^{11} + x^{14}$ $-x + x^8 + 2x^{11} - 2x^{13}$                                                                   | $-1 + x^2 - x^3 + x^4 + x^7$<br>-3 - $x^3$ + $3x^4$ - $3x^5$ - $2x^6$ + $3x^7$                                                                    |
| 6<br>7               | $-x + x^{2} + 2x^{2} - 2x^{2}$ $-2 - 2x + x^{3} - x^{10} + 2x^{12} + 2x^{13}$                                                                 | $   \begin{array}{l}     -3 - x^{3} + 3x^{2} - 3x^{3} - 2x^{3} + 3x^{2} \\     1 - 4x - 2x^{2} + x^{3} - 2x^{4} + 3x^{5} - 4x^{7}   \end{array} $ |
| 8                    | $2 - 2x^2 + x^5 - x^{12}$                                                                                                                     | $\frac{1}{2} - \frac{1}{x^2} + \frac{1}{x^5} + \frac{1}{x^7}$                                                                                     |
| 9                    | $-2x + 2x^2 - 2x^4 + 2x^5 + x^7 - x^{14}$                                                                                                     | $-1 - 2x + 3x^2 - x^3 - x^4 + 2x^5 - x^6 + 2x^7$                                                                                                  |
| 10                   | $-3x + 2x^4 - 2x^6 + 3x^9$                                                                                                                    | $-3 - 3x + 3x^2 - 3x^3 + 2x^4 - 5x^6 + 3x^7$                                                                                                      |
| 11<br>12             | $-2x - x^3 + 2x^6 - 2x^8 + x^{11} + 2x^{13}$<br>-2x + 2x <sup>2</sup> - x <sup>5</sup> + 2x <sup>8</sup> - 2x <sup>10</sup> + x <sup>13</sup> | $4 - 7x + x^3 - 4x^4 + 4x^5 + x^6 - 4x^7$<br>$1 - x + 2x^2 - 2x^3 + x^4 + x^7$                                                                    |
| 13                   | $   \begin{array}{r}     -2x + 2x^{2} - x^{3} + 2x^{3} - 2x^{13} + x^{13} \\     1 - 2x + 2x^{6} - x^{7} + 2x^{10} - 2x^{12}   \end{array} $  | $ \begin{array}{l} 1 - x + 2x^2 - 2x^3 + x^3 + x^5 \\ -1 - 2x + 2x^2 - 2x^5 + 2x^6 + x^7 \end{array} $                                            |
| 14                   | $-2x + x^2 - x^9 + 2x^{10} + 2x^{12} - 2x^{14}$                                                                                               | $-3 - 2x - x^3 + 2x^4 - 2x^5 - x^6 - x^7$                                                                                                         |
| t mod 30             | $U_t^{\mod 30}(x)$                                                                                                                            | $U_t^{\text{mod } 30}(x) \text{ mod } \Phi_{30}(x)$                                                                                               |
| 0                    | $-4x + x^4 - x^{26} + 4x^{29}$                                                                                                                | $-4 - 5x + 4x^2 + 4x^3 + 5x^4 - 3x^6 - 4x^7$                                                                                                      |
| 1                    | $x^6 - x^{28}$                                                                                                                                | $-1 - x + x^4 + x^5 + x^6 - x^7$                                                                                                                  |
| 2                    | $-1 - 2x + 2x^3 - 2x^5 + 2x^7 + x^8$                                                                                                          | $-2 - 3x + 3x^3 + x^4 - x^5 + x^7$                                                                                                                |
| 3<br>4               | $-2x - x^2 + 2x^5 - 2x^7 + x^{10} + 2x^{11}$<br>-2x - $x^4 + 2x^7 - 2x^9 + x^{12} + 2x^{15}$                                                  | $-1 - 4x - x^2 + 3x^5 + 2x^6 - 2x^7$ $-4 - 2x + x^2 + 2x^3 - x^4 - 2x^6 + x^7$                                                                    |
| 5                    | $-2x - x^{6} + 2x^{9} - 2x^{11} + x^{14} + 2x^{19}$ $-2x - x^{6} + 2x^{9} - 2x^{11} + x^{14} + 2x^{19}$                                       | $3 - 3x^2 - 3x^3 - 3x^4 + 3x^7$                                                                                                                   |
| 6                    | $-2x - x^8 + 2x^{11} - 2x^{13} + x^{16} + 2x^{23}$                                                                                            | $5 - 3x^3 - 5x^4 - 5x^5 + 2x^6 + 5x^7$                                                                                                            |
| 7                    | $-2x - x^{10} + 2x^{13} - 2x^{15} + x^{18} + 2x^{27}$                                                                                         | $1 - 4x + 2x^2 - x^3 + 2x^4 + x^5 - 4x^7$                                                                                                         |
| 8                    | $-x^{12} + 2x^{15} - 2x^{17} + x^{20}$                                                                                                        | $-2 + 3x^2 - x^5 - x^7$                                                                                                                           |
| 9<br>10              | $-2x + 2x^5 - x^{14} + 2x^{17} - 2x^{19} + x^{22}  -2x + 2x^9 - x^{16} + 2x^{19} - 2x^{21} + x^{24}$                                          | $-1 - 2x - x^2 + x^3 + 3x^4 + 2x^5 - x^6 - 2x^7$ $1 - x - x^2 - x^3 - 2x^4 + 3x^6 + x^7$                                                          |
| 10                   | $-2x + 2x^3 - x^{18} + 2x^{21} - 2x^{23} + x^{26}$<br>$-2x + 2x^{13} - x^{18} + 2x^{21} - 2x^{23} + x^{26}$                                   | $-4 - 5x + 3x^3 + 4x^4 + 4x^5 - 3x^6 - 4x^7$                                                                                                      |
| 12                   | $-2x + 2x^{17} - x^{20} + 2x^{23} - 2x^{25} + x^{28}$                                                                                         | $1 + x - 2x^2 - 2x^3 - 3x^4 + 3x^7$                                                                                                               |
| 13                   | $1 - 2x + 2x^{21} - x^{22} + 2x^{25} - 2x^{27}$                                                                                               | $3-2x-2x^2-2x^5-2x^6+3x^7$                                                                                                                        |
| 14                   | $-2x + x^2 - x^{24} + 2x^{25} + 2x^{27} - 2x^{29}$                                                                                            | $5-2x-3x^3-2x^4-2x^5+3x^6+x^7$                                                                                                                    |
| 15<br>16             | $-4x + x^4 - x^{26} + 4x^{29}$ $x^6 - x^{28}$                                                                                                 | $-4 - 5x + 4x^{2} + 4x^{3} + 5x^{4} - 3x^{6} - 4x^{7}$<br>$-1 - x + x^{4} + x^{5} + x^{6} - x^{7}$                                                |
| 117                  | Α Α                                                                                                                                           | 1 ATA TA TA <b>T</b> A                                                                                                                            |

# Appendix D. $W_t^{\text{mod } b}(x) \text{ mod } \Phi_b(x)$ table

| t mod 3  | $W_t^{\text{mod }3}(x)$                                                                | $W_t^{\text{mod }3}(x) \mod \Phi_3(x)$                                                                    |
|----------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 0        | $-5x + 5x^2$                                                                           | -5 - 10x                                                                                                  |
| 1        | -1 + x                                                                                 | -1 + x                                                                                                    |
| 2        | $3 - 3x^2$                                                                             | 6+3x                                                                                                      |
| t mod 5  | $W_t^{\bmod 5}(x)$                                                                     | $W_t^{\bmod 5}(x) \bmod \Phi_5(x)$                                                                        |
| 0        | $-3x + 3x^4$                                                                           | $-3 - 6x - 3x^2 - 3x^3$                                                                                   |
| 1        | $-x + x^3$                                                                             | $-x + x^3$                                                                                                |
| 2        | $-1 - 2x + 2x^2 + x^3$ $1 - x^2$                                                       | $-1 - 2x + 2x^2 + x^3$<br>1 - $x^2$                                                                       |
| 4        | $   \begin{array}{c}     1 - x^{-} \\     2 - 2x + x^{2} - x^{4}   \end{array} $       | $\frac{1 - x^{-}}{3 - x + 2x^{2} + x^{3}}$                                                                |
|          |                                                                                        |                                                                                                           |
| t mod 6  | $W_t^{\bmod 6}(x)$                                                                     | $W_t^{\bmod 6}(x) \bmod \Phi_6(x)$                                                                        |
| 0        | $-4x + x^2 - x^4 + 4x^5$                                                               | 3-6x                                                                                                      |
| 1<br>2   | -1 + x4  1 - x2 + 2x3 - 2x5                                                            | $ \begin{array}{l} -1 - x \\ -2 + x \end{array} $                                                         |
| 3        | $-4x + x^2 - x^4 + 4x^5$                                                               | -2+x<br>3-6x                                                                                              |
| 4        | $-1+x^4$                                                                               | -1-x                                                                                                      |
| 5        | $1 - x^2 + 2x^3 - 2x^5$                                                                | -2+x                                                                                                      |
| t mod 10 | $W_t^{\mod 10}(x)$                                                                     | $W_t^{\mod 10}(x) \mod \Phi_{10}(x)$                                                                      |
| 0        | $-4x - x^4 + x^6 + 4x^9$                                                               | $5 - 10x + 5x^2 - 5x^3$                                                                                   |
| 1        | $-x^6 + x^8$                                                                           | $x - x^3$                                                                                                 |
| 2        | $1 - 2x + 2x^3 - 2x^5 + 2x^7 - x^8$                                                    | $3 - 2x - 2x^2 + 3x^3$                                                                                    |
| 3        | $-1 + x^2 + 2x^5 - 2x^7$                                                               | $-3 + 3x^2$                                                                                               |
| 4        | $-2x - x^2 + x^4 + 2x^5 + 2x^7 - 2x^9$                                                 | $-5 + x - 6x^2 + 3x^3$                                                                                    |
| 5        | $-4x - x^4 + x^6 + 4x^9 - x^6 + x^8$                                                   | $5 - 10x + 5x^2 - 5x^3$ $x - x^3$                                                                         |
| 6<br>7   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                  | $\begin{array}{c} x - x^{-1} \\ 3 - 2x - 2x^{2} + 3x^{3} \end{array}$                                     |
| 8        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                  | $-3 + 3x^2$                                                                                               |
| 9        | $-2x - x^2 + x^4 + 2x^5 + 2x^7 - 2x^9$                                                 | $-5 + x - 6x^2 + 3x^3$                                                                                    |
| t mod 15 | $W_t^{\mod 15}(x)$                                                                     | $W_t^{\text{mod } 15}(x) \text{ mod } \Phi_{15}(x)$                                                       |
| 0        | $-4x - x^4 + x^{11} + 4x^{14}$                                                         | $4 - 5x - 4x^2 + 4x^3 - 5x^4 + 3x^6 - 4x^7$                                                               |
| 1        | $-x^6 + x^{13}$                                                                        | $1 - x - x^4 + x^5 - x^6 - x^7$                                                                           |
| 2        | $1 - 2x + 2x^3 - 2x^5 + 2x^7 - x^8$                                                    | $2 - 3x + 3x^3 - x^4 - x^5 + x^7$                                                                         |
| 3        | $-2x + x^2 + 2x^5 - 2x^7 - x^{10} + 2x^{11}$                                           | $1 - 4x + x^2 + 3x^5 - 2x^6 - 2x^7$                                                                       |
| 4        | $2-2x+x^4+2x^7-2x^9-x^{12}$                                                            | $4-2x-x^2+2x^3+x^4+2x^6+x^7$                                                                              |
| 5        | $-2x + 2x^4 + x^6 + 2x^9 - 2x^{11} - x^{14}$                                           | $-3 + 3x^2 - 3x^3 + 3x^4 + 3x^7$                                                                          |
| 6<br>7   | $-3x + 3x^8 + 2x^{11} - 2x^{13}$<br>-2 - 2x - $x^3$ + $x^{10}$ + $2x^{12}$ + $2x^{13}$ | $-5 - 3x^{3} + 5x^{4} - 5x^{5} - 2x^{6} + 5x^{7}$<br>$-1 - 4x - 2x^{2} - x^{3} - 2x^{4} + x^{5} - 4x^{7}$ |
| 8        | $-2 - 2x - x^{3} + x^{13} + 2x^{12} + 2x^{13}$ $2 - 2x^{2} - x^{5} + x^{12}$           | $-1 - 4x - 2x^{2} - x^{3} - 2x^{4} + x^{3} - 4x^{4}$ $2 - 3x^{2} - x^{5} - x^{7}$                         |
| 8<br>9   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                   | $2 - 3x^{2} - x^{3} - x^{4} - x^{5}$ $1 - 2x + x^{2} + x^{3} - 3x^{4} + 2x^{5} + x^{6} - 2x^{7}$          |
| 10       | $-2x + 2x^{4} - 2x^{6} + x^{9}$                                                        | $-1 - x + x^2 - x^3 + 2x^4 - 3x^6 + x^7$                                                                  |
| 11       | $-2x + x^3 + 2x^6 - 2x^8 - x^{11} + 2x^{13}$                                           | $4 - 5x + 3x^3 - 4x^4 + 4x^5 + 3x^6 - 4x^7$                                                               |
| 12       | $-2x + 2x^2 + x^5 + 2x^8 - 2x^{10} - x^{13}$                                           | $-1 + x + 2x^2 - 2x^3 + 3x^4 + 3x^7$                                                                      |
| 13       | $-1 - 2x + 2x^6 + x^7 + 2x^{10} - 2x^{12}$                                             | $-3 - 2x + 2x^2 - 2x^5 + 2x^6 + 3x^7$                                                                     |
| 14       | $-2x - x^2 + x^9 + 2x^{10} + 2x^{12} - 2x^{14}$                                        | $-5 - 2x - 3x^3 + 2x^4 - 2x^5 - 3x^6 + x^7$                                                               |
| t mod 30 | $W_t^{\bmod 30}(x)$                                                                    | $W_t^{\text{mod } 30}(x) \text{ mod } \Phi_{30}(x)$                                                       |
| 0        | $-4x - x^4 + x^{26} + 4x^{29}$                                                         | $-4 - 3x + 4x^2 + 4x^3 + 3x^4 - 5x^6 - 4x^7$                                                              |

```
-x^6 + x^{28}
                                                                   1 + x - x^4 - x^5 - x^6 + x^7
                1 - 2x + 2x^3 - 2x^5 + 2x^7 - x^8
                                                                   2 - x + x^3 - x^4 - 3x^5 + 3x^7
                1 - 4x + x^2 + x^5 + 2x^6 - 2x^7
3
                                                                   -4 - 2x + 3x^2 + 2x^3 + x^4 - 2x^6 - x^7
                 -2x + x^6 + 2x^9 - 2x^{11} - x^{14} + 2x^{19}
                                                                   1 - x^2 - x^3 - x^4 + x^7
                -2x + x^8 + 2x^{11} - 2x^{13} - x^{16} + 2x^{23}
                                                                   3 - x^3 - 3x^4 - 3x^5 + 2x^6 + 3x^7
                 -2x + x^{10} + 2x^{13} - 2x^{15} - x^{18} + 2x^{27}
                                                                   -1 - 4x + 2x^2 + x^3 + 2x^4 + 3x^5 - 4x^7
                x^{12} + 2x^{15} - 2x^{17} - x^{20}
                                                                   -2 + x^2 + x^5 + x^7
8
                 -2x + 2x^5 + x^{14} + 2x^{17} - 2x^{19} - x^{22}
                                                                   1 - 2x - 3x^2 - x^3 + x^4 + 2x^5 + x^6 + 2x^7
                -2x + 2x^9 + x^{16} + 2x^{19} - 2x^{21} - x^{24}
                                                                   3 - 3x - 3x^2 - 3x^3 - 2x^4 + 5x^6 + 3x^5
10
                 -2x + 2x^{13} + x^{18} + 2x^{21} - 2x^{23} - x^{26}
                                                                   -4 - 7x + x^3 + 4x^4 + 4x^5 - x^6 - 4x^7
11
                 -2x + 2x^{17} + x^{20} + 2x^{23} - 2x^{25} - x^{28}
                                                                   -1-x-2x^2-2x^3-x^4+x^7
12

\begin{array}{l}
-1 - 2x + 2x^{21} + x^{22} + 2x^{25} - 2x^{27} \\
-2x - x^2 + x^{24} + 2x^{25} + 2x^{27} - 2x^{29}
\end{array}

                                                                   1-2x-2x^2-2x^5-2x^6+x^5
13
                                                                   3-2x-x^3-2x^4-2x^5+x^6-x^7
14
                 -4x - x^4 + x^{26} + 4x^{29}
                                                                   -4 - 3x + 4x^2 + 4x^3 + 3x^4 - 5x^6 - 4x^7
15
                 -x^6+x^{28}
                                                                   1 + x - x^4 - x^5 - x^6 + x^7
16
                \begin{array}{l} -2x + 4x \\ 1 - 2x + 2x^3 - 2x^5 + 2x^7 - x^8 \\ -2x + x^2 + 2x^5 - 2x^7 - x^{10} + 2x^{11} \\ -2x + x^4 + 2x^7 - 2x^9 - x^{12} + 2x^{15} \\ -2x + x^6 + 2x^9 - 2x^{11} - x^{14} + 2x^{19} \end{array}
                                                                   2-x+x^3-x^4-3x^5+3x^5
17
                                                                   1-4x+x^2+x^5+2x^6-2x^7
18
                                                                   -4 - 2x + 3x^2 + 2x^3 + x^4 - 2x^6 - x^7
19
                                                                   1 - x^2 - x^3 - x^4 + x^7
20
                 -2x + x^8 + 2x^{11} - 2x^{13} - x^{16} + 2x^{23}
                                                                   3 - x^3 - 3x^4 - 3x^5 + 2x^6 + 3x^7
21
                -1 - 4x + 2x^2 + x^3 + 2x^4 + 3x^5 - 4x^7
22
23
                                                                   -2 + x^2 + x^5 + x^7
24
                -2x + 2x^5 + x^{14} + 2x^{17} - 2x^{19} - x^{22}
                                                                   1 - 2x - 3x^2 - x^3 + x^4 + 2x^5 + x^6 + 2x^7
                 -2x + 2x^9 + x^{16} + 2x^{19} - 2x^{21} - x^{24}
                                                                   3 - 3x - 3x^2 - 3x^3 - 2x^4 + 5x^6 + 3x^7
                -2x + 2x^{13} + x^{18} + 2x^{21} - 2x^{23} - x^{26}
                                                                   -4 - 7x + x^3 + 4x^4 + 4x^5 - x^6 - 4x^7
26
                 -2x + 2x^{17} + x^{20} + 2x^{23} - 2x^{25} - x^{28}
                                                                   -1-x-2x^2-2x^3-x^4+x^7
                 -1 - 2x + 2x^{21} + x^{22} + 2x^{25} - 2x^{27}
                                                                   1 - 2x - 2x^2 - 2x^5 - 2x^6 + x^7
28
                 -2x - x^2 + x^{24} + 2x^{25} + 2x^{27} - 2x^{29}
                                                                   3-2x-x^3-2x^4-2x^5+x^6-x^7
```

## Appendix E. Roots of certain polynomials

In this appendix section, we will prove that some required polynomials truly do not possess any root that is a root of unity as well, as claimed multiple times throughout Section 4. The polynomials of interest shall be the four following ones:

$$Z_1(x) = 2x^{10} + x^5 + 2$$
,  $Z_2(x) = 2x^{10} - x^5 + 2$ ,  $Z_3(x) = 2x^6 + x^3 + 2$ ,  $Z_4(x) = 2x^6 - x^3 + 2$ .

First and foremost, let us define the next two additional polynomials:

$$Z'(x) = 2x^2 + x + 2$$
,  $Z''(x) = 2x^2 - x + 2$ .

It is clear that the roots of  $Z_1(x)$  are actually the fifth roots of the roots of Z'(x), while the roots of  $Z_2(x)$  are the fifth roots of the roots of Z''(x). Similarly, the roots of  $Z_3(x)$  represent the third roots of the roots of Z'(x), while the roots of  $Z_4(x)$  represent the third roots of the roots of Z''(x). Thus, in order to prove that neither of the four polynomials  $Z_1(x)$ ,  $Z_2(x)$ ,  $Z_3(x)$ ,  $Z_4(x)$  contains a root that is a root of unity, it is sufficient to show that neither of the two polynomials Z'(x), Z''(x) has such a root.

Now, if the polynomial Z'(x) were to have a root that is a root of unity, then this root would surely represent a primitive b-th root of unity for some  $b \in \mathbb{N}$ , which would imply that  $\Phi_b(x) \mid Z'(x)$  must hold. However, it is simple to show that the polynomial Z'(x) is not divisible by any cyclotomic polynomial. The same logic can be applied to the Z''(x) polynomial.

It is clear that neither Z'(x) nor Z''(x) can be divisible by a cyclotomic polynomial whose degree is greater than two. However, given the fact that deg  $\Phi_b = \varphi(b)$  for each  $b \in \mathbb{N}$ , where  $\varphi$  represents Euler's totient function, it is easy to deduce that only five cyclotomic polynomials have a degree that is not greater than two:

$$\Phi_1(x) = x - 1,$$

$$\Phi_2(x) = x + 1,$$

$$\Phi_3(x) = x^2 + x + 1,$$

$$\Phi_4(x) = x^2 + 1,$$

$$\Phi_6(x) = x^2 - x + 1.$$

It is trivial to check that neither Z'(x) nor Z''(x) is divisible by any of these five polynomials, which completes the proof.  $\Box$