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Two families of circulant nut graphs

Ivan Damnjanovića

aUniversity of Niš, Faculty of Electronic Engineering & Diffine LLC

Abstract. A circulant nut graph is a non-trivial simple graph whose adjacency matrix is a circulant matrix
of nullity one such that its non-zero null space vectors have no zero elements. The study of circulant
nut graphs was originally initiated by Bašić et al. [Art Discrete Appl. Math. 5(2) (2021) #P2.01], where a
conjecture was made regarding the existence of all the possible pairs (n, d) for which there exists a d-regular
circulant nut graph of order n. Later on, it was proved by Damnjanović and Stevanović [Linear Algebra
Appl. 633 (2022) 127–151] that for each odd t ≥ 3 such that t .10 1 and t .18 15, the 4t-regular circulant
graph of order n with the generator set {1, 2, 3, . . . , 2t + 1} \ {t}) must necessarily be a nut graph for each
even n ≥ 4t + 4. In this paper, we extend these results by constructing two families of circulant nut graphs.
The first family comprises the 4t-regular circulant graphs of order n which correspond to the generator sets
{1, 2, . . . , t− 1} ∪

{
n
4 ,

n
4 + 1

}
∪

{
n
2 − (t − 1), . . . , n

2 − 2, n
2 − 1

}
, for each odd t ∈N and n ≥ 4t+ 4 divisible by four.

The second family consists of the 4t-regular circulant graphs of order n which correspond to the generator
sets {1, 2, . . . , t − 1} ∪

{
n+2

4 ,
n+6

4

}
∪

{
n
2 − (t − 1), . . . , n

2 − 2, n
2 − 1

}
, for each t ∈N and n ≥ 4t + 6 such that n ≡4 2.

We prove that all of the graphs which belong to these families are indeed nut graphs, thereby fully resolving
the 4t-regular circulant nut graph order–degree existence problem whenever t is odd and partially solving
this problem for even values of t as well.

1. Introduction

In this paper we will consider all graphs to be undirected, finite, simple and non-null. Thus, every
graph will have at least one vertex and there shall be no loops or multiple edges. Also, for convenience, we
will take that each graph of order n has the vertex set {0, 1, 2, . . . ,n − 1}.

A graph G is considered to be a circulant graph if its adjacency matrix A has the form

A =


a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2
an−2 an−1 a0 · · · an−3
...

...
...

. . .
...

a1 a2 a3 . . . a0


.

Here, we clearly have a0 = 0, as well as a j = an− j for all j = 1,n − 1. A concise way of describing a circulant
graph is by taking into consideration the set of all the values 1 ≤ j ≤ n

2 such that a j = an− j = 1. We shall refer
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to this set as the generator set of a circulant graph and we will use Circ(n,S) to denote the circulant graph
of order n whose generator set is S.

A nut graph is a non-trivial graph whose adjacency matrix has nullity one and is such that its non-zero
null space vectors have no zero elements, as first described by Sciriha in [6]. Bearing this in mind, a circulant
nut graph is simply a nut graph whose adjacency matrix additionally represents a circulant matrix. Bašić
et al. [1] initiated the study of these graphs by providing several results, alongside the following two
conjectures.

Conjecture 1 (Bašić et al. [1]). For every even n, n ≥ 16, there exists a circulant nut graph Circ(n, {s1, s2, s3, s4,
s5, s6}) of degree 12.

Conjecture 2 (Bašić et al. [1]). For every d, where d ≡4 0, and for every even n, n ≥ d + 4, there exists a circulant
nut graph Circ(n, {s1, s2, s3, . . . , s d

2
}) of degree d.

Later on, Damnjanović and Stevanović [2, Proposition 8] proved Conjecture 1 by showing that Circ(n, {1,
2, 4, 5, 6, 7}) is a 12-regular nut graph for each even n ≥ 16. In fact, it was shown that for infinitely many odd
values of t it is possible to construct similar families of 4t-regular circulant nut graphs, as demonstrated in
the next theorem.

Theorem 1 (Damnjanović and Stevanović [2]). For each odd t ≥ 3 such that t .10 1 and t .18 15, the circulant
graph Circ(n, {1, 2, 3, . . . , 2t + 1} \ {t}) is a nut graph for each even n ≥ 4t + 4.

The primary motivation behind this paper is to improve the currently existing results regarding the
circulant nut graph order–degree existence problem. In other words, the goal is to answer the question
whether there exists a d-regular circulant nut graph of order n, for any such pair (n, d) ∈N2 of integers. As
shown by Damnjanović and Stevanović [2, Lemma 6], the order of each circulant nut graph must be even,
while its degree must be divisible by four. It is clear that a 4t-regular circulant nut graph cannot have an
order of 4t+ 2, since the adjacency matrix of such a graph would obviously have a nullity greater than one,
due to the fact that its first n

2 rows would match its following n
2 rows, respectively.

Furthermore, if t is even, then the order of a 4t-regular circulant nut graph cannot be below 4t + 6, as
demonstrated by Damnjanović and Stevanović [2, Lemma 18]. Bearing this in mind, we deduce that for a
given t ∈N, all the 4t-regular circulant nut graphs must have an even order n such that

• n ≥ 4t + 4 if 2 ∤ t;

• n ≥ 4t + 6 if 2 | t.

In this paper, we present the following two families of circulant graphs:

D
′

t,n = Circ(n,S′t,n), for each 2 ∤ t and 4 | n such that n ≥ 4t + 4,

D
′′

t,n = Circ(n,S′′t,n), for each t ∈N and n ≡4 2 such that n ≥ 4t + 6,

where

S
′

t,n = {1, 2, . . . , t − 1} ∪
{n

4
,

n
4
+ 1

}
∪

{n
2
− (t − 1), . . . ,

n
2
− 2,

n
2
− 1

}
,

S
′′

t,n = {1, 2, . . . , t − 1} ∪
{n + 2

4
,

n + 6
4

}
∪

{n
2
− (t − 1), . . . ,

n
2
− 2,

n
2
− 1

}
.

Subsequently, we prove that all of the graphs which belong to these families are nut graphs, thereby showing
that for each odd t, there does exist a 4t-regular circulant nut graph of order n, for any even n ≥ 4t+ 4. This
observation fully resolves the circulant nut graph order–degree existence problem for 4t-regular graphs
whenever t is odd.

When it comes to the even values of t, we get a partial resolution of the existence problem, given the fact
that the said constructions do cover the case when n ≡4 2. However, the case when n is divisible by four is
not yet resolved, hence these graphs remain to be further inspected in the future.
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The remainder of this paper is structured as follows. In Section 2 we preview certain theoretical facts
regarding the circulant matrices, circulant nut graphs and cyclotomic polynomials which are required in
order to successfully prove the two main theorems. Subsequently, Section 3 displays a full mathematical
proof of the fact that each D′t,n circulant graph is indeed a nut graph. Afterwards, Section 4 uses a similar
strategy in order to prove that every D′′t,n graph must be a circulant nut graph as well. Finally, Section 5
provides a brief conclusion to all the obtained results and discloses a new conjecture to be solved later on.

2. Preliminaries

First of all, it is worth pointing out that the generator sets S′t,n and S′′t,n are always well defined. It is
straightforward to check that

1 < 2 < · · · < t − 1 <
n
4
<

n
4
+ 1 <

n
2
− (t − 1) < · · · <

n
2
− 2 <

n
2
− 1

for each odd t ≥ 3 and n (≥ 4t + 4) that is divisible by four. Similarly, we have

1 < 2 < · · · < t − 1 <
n + 2

4
<

n + 6
4

<
n
2
− (t − 1) < · · · <

n
2
− 2 <

n
2
− 1

for every t ≥ 2 and n ≥ 4t + 6 such that n ≡4 2. Finally, for t = 1 we have that

1 <
n
4
<

n
4
+ 1 ≤

n
2
− 1

for every n ≥ 4t + 4 divisible by four, as well as

1 <
n + 2

4
<

n + 6
4
≤

n
2
− 1

for each n ≥ 4t + 6 such that n ≡4 2.
It is known from elementary linear algebra theory (see, for example, [4, Section 3.1]) that the circulant

matrix

A =


a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2
an−2 an−1 a0 · · · an−3
...

...
...

. . .
...

a1 a2 a3 . . . a0


must have the eigenvalues

P(1),P(ω),P(ω2), . . . ,P(ωn−1),

where ω = ei 2π
n is an n-th root of unity, and

P(x) = a0 + a1x + a2x2 + · · · + an−1xn−1.

Starting from the aforementioned result, Damnjanović and Stevanović [2] have managed to give the
necessary and sufficient conditions for a circulant graph to be a nut graph in the form of the following
lemma.

Lemma 1 (Damnjanović and Stevanović [2]). Let G = Circ(n,S) where n ≥ 2. The graph G is a nut graph if
and only if all of the following conditions hold:

• 2 | n;
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• S consists of t odd and t even integers from
{
1, 2, 3, . . . , n

2 − 1
}
, for some t ≥ 1;

• P(ω j) , 0 for each j ∈
{
1, 2, 3, . . . , n

2 − 1
}
.

All of the graphs D′t,n and D′′t,n clearly satisfy the first condition from Lemma 1. Besides that, it is easy
to show that they necessarily satisfy the second condition as well. For D′t,n, it is enough to point out that

both {1, 2, . . . , t− 1} and
{

n
2 − (t − 1), . . . , n

2 − 2, n
2 − 1

}
contain an even number of consecutive integers, due to

the fact that t − 1 is even. Since n
4 and n

4 + 1 are surely of different parities, it follows that S′t,n does contain
equally many odd and even integers. For D′′t,n, it is essential to notice that j and n

2 − j must be of different
parities, for each j = 1, t − 1, due to the fact that n

2 is odd. Furthermore, n+2
4 and n+6

4 are certainly of different
parities, hence we obtain that S′′t,n contains equally many odd and even integers, too.

Taking into consideration Lemma 1, it becomes apparent that in order to show that each graphD′t,n and
D
′′

t,n is a nut graph, it is sufficient to prove that it satisfies the third condition given in the lemma. In other
words, it is enough to demonstrate that, for these graphs, the polynomial P(x) ∈ Z[x] has no n-th roots of
unity among its roots, except potentially −1 or 1.

It is clear that ωn− j =
1
ω j for each j = 1,n − 1. Bearing this in mind, we quickly obtain that

P(ω j) =
(
ω js0 +

1
ω js0

)
+

(
ω js1 +

1
ω js1

)
+ · · · +

(
ω jsk−1 +

1
ω jsk−1

)
(1)

for an arbitrary circulant graph G = Circ(n,S), where S = {s0, s1, s2, . . . , sk−1}, provided all the generator set
elements are lower than n

2 . Formula (1) will be heavily used throughout Sections 3 and 4 while proving the
two main theorems of the paper.

Last but not least, it is crucial to point out that the cyclotomic polynomials shall play a key role in
demonstrating whether certain polynomials of interest contain the given roots of unity among their roots.
The cyclotomic polynomial Φb(x) can be defined for each b ∈N via

Φb(x) =
∏
ζ

(x − ζ),

where ζ ranges over the primitive b-th roots of unity. It is known that these polynomials have integer
coefficients and that they are all irreducible in Q[x] (see, for example, [7]). Hence, an arbitrary polynomial
in Q[x] has a primitive b-th root of unity among its roots if and only if it is divisible by Φb(x).

While inspecting whether certain integer polynomials are divisible by cyclotomic polynomials, we
will strongly rely on the following theorem on the divisibility of lacunary polynomials by cyclotomic
polynomials.

Theorem 2 (Filaseta and Schinzel [3]). Let P(x) ∈ Z[x] have N nonzero terms and let Φb(x) | P(x). Suppose that
p1, p2, . . . , pk are distinct primes such that

k∑
j=1

(p j − 2) > N − 2.

Let e j be the largest exponent such that pe j

j | b. Then for at least one j, 1 ≤ j ≤ k, we have that Φb′ (x) | P(x), where

b′ =
b

pe j

j

.

3. D’(t, n) family of circulant graphs

In this section, we will formulate and provide a full mathematical proof of the first of the two central
theorems given in the paper.
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Theorem 3. For each odd t ∈ N and n ≥ 4t + 4 such that 4 | n, the circulant graph D′t,n must be a 4t-regular nut
graph of order n.

In order to make the proof more concise, we will need a number of auxiliary lemmas. To start with, let
Qt(x),Rt(x) ∈ Z[x] be the following two integer polynomials

Qt(x) = 2x2t−1 + xt+1
− xt + xt−1

− xt−2
− 2,

Rt(x) = 2x2t−1
− xt+1

− 3xt + 3xt−1 + xt−2
− 2,

for each odd t ≥ 3. It is clear that all of these polynomials must have exactly six non-zero terms, due to the
fact that

0 < t − 2 < t − 1 < t < t + 1 < 2t − 1

for each odd t ≥ 3. Now, if we let

Lt = {0, t − 2, t − 1, t, t + 1, 2t − 1}

be the set consisting of the powers of these six terms, then it can be shown that this set has one valuable
property, as described in the following lemma.

Lemma 2. For each odd t ≥ 3 and each prime number p ≥ 5, the set Lt contains an element whose remainder modulo
p is unique within the set.

Proof. The four integers t−2, t−1, t, t+1 are consecutive, hence it is clear that they all have mutually distinct
remainders modulo p. Regardless of what their remainders modulo p are, at least two of these integers
must have a remainder that is different from the remainders of both 0 and 2t − 1.

Lemma 2 proves to be useful while demonstrating one key property of the Qt(x) and Rt(x) polynomials
regarding their divisibility by cyclotomic polynomials. This is shown in the next lemma.

Lemma 3. For any odd t ≥ 3, neither Qt(x) nor Rt(x) can be divisible by a cyclotomic polynomial Φb(x) such that
p2
| b for some prime number p.

Proof. Let b ∈ N be such that p2
| b for some prime number p. In this case, b

p is a positive integer divisible
by p, hence we get that Φb(x) = Φ b

p
(xp) (see, for example, [5, p. 160]).

Now, suppose that Φb(x) | Qt(x) for some odd integer t ≥ 3. It follows that Qt(x) = V(x)Φb(x) for some
polynomial V(x) ∈ Q[x]. Let Q( j)

t (x) be the polynomial composed of all the terms of Qt(x) whose powers
are congruent to j modulo p, for each j = 0, p − 1. Similarly, let V( j)(x) be the polynomial composed of all
the terms of V(x) whose powers are congruent to j modulo p, for each j = 0, p − 1. Given the fact that the
powers of all the terms of Φb(x) are divisible by p, it swiftly follows that

Q( j)
t (x) = V( j)(x)Φb(x)

must hold for all the j = 0, p − 1. In other words, we necessarily have

Φb(x) | Q( j)
t (x)

for all the j = 0, p − 1. The same reasoning and notation can be applied in the case that we suppose that
Φb(x) | Rt(x) is true for some odd t ≥ 3. We will finalize the proof of the lemma by taking into consideration
three separate cases depending on the value of the prime number p.

Case p ≥ 5. In this case, Lemma 2 dictates that the set Lt must contain an element whose remainder modulo
p is unique within that set. In other words, there exists a j, 0 ≤ j ≤ p − 1 such that both Q( j)

t (x) and R( j)
t (x)
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consist of exactly one non-zero term, i.e. have the form c xa for some c ∈ Z \ {0} and a ∈ N0. If we suppose
that either Φb(x) | Qt(x) or Φb(x) | Rt(x), this implies that Φb(x) must necessarily divide a polynomial with
the aforementioned form c xa, which is clearly impossible.

Case p = 3. This case can be quickly resolved by taking into consideration the modular values given in
Table 1. We divide the case into three subcases depending on the value of t mod 3.

t ≡3 0 t ≡3 1 t ≡3 2

0 mod 3 0 0 0
(t − 2) mod 3 1 2 0
(t − 1) mod 3 2 0 1

t mod 3 0 1 2
(t + 1) mod 3 1 2 0

(2t − 1) mod 3 2 1 0

Table 1: The elements of the set Lt modulo 3.

Subcase t ≡3 0. If we suppose that Φb(x) | Qt(x), we get Φb(x) | xt+1
− xt−2. Similarly, Φb(x) | Rt(x) would

imply Φb(x) | −xt+1 + xt−2. Either way, we obtain

Φb(x) | xt+1
− xt−2

=⇒ Φb(x) | xt−2 (x3
− 1)

=⇒ Φb(x) | x3
− 1,

which is not possible.

Subcase t ≡3 1. Regardless of whether we suppose that Φb(x) | Qt(x) holds or Φb(x) | Rt(x), we obtain
that Φb(x) | xt+1

− xt−2 must be true, which is impossible as we have already demonstrated in the previous
subcase.

Subcase t ≡3 2. Bearing in mind the modular values given in Table 1, we conclude that Φb(x) | Qt(x) or
Φb(x) | Rt(x) would surely imply that Φb(x) | yt, which is not possible.

Case p = 2. In this case, we have that the integers t − 2, t, 2t − 1 are odd, while 0, t − 1, t + 1 are even. We
will resolve this case separately for Qt(x) and Rt(x), thus yielding two subcases.

Subcase Φb(x) | Qt(x). Suppose that Φb(x) | Qt(x). We now get

Φb(x) | 2x2t−1
− xt
− xt−2, (2)

Φb(x) | xt+1 + xt−1
− 2. (3)

If we take into consideration that 2x2t−1
− xt
− xt−2 = xt−2 (2xt+1

− x2
− 1), Eq. (2) helps us obtain

Φb(x) | 2xt+1
− x2

− 1. (4)

By subtracting the right-hand sides of Eqs. (3) and (4), we further conclude that

Φb(x) | (2xt+1
− x2

− 1) − (xt+1 + xt−1
− 2)

=⇒ Φb(x) | xt+1
− xt−1

− x2 + 1

=⇒ Φb(x) | (xt−1
− 1)(x2

− 1)

=⇒ Φb(x) | xt−1
− 1. (5)
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Now, if we subtract the right-hand sides of Eqs. (3) and (5), we get Φb(x) | xt+1
− 1, which directly implies

Φb(x) | (xt+1
− 1) − (xt−1

− 1)

=⇒ Φb(x) | xt+1
− xt−1

=⇒ Φb(x) | xt−1 (x2
− 1)

=⇒ Φb(x) | x2
− 1,

which is not possible. Hence, Φb(x) | Qt(x) cannot hold, as desired.

Subcase Φb(x) | Rt(x). If we suppose that Φb(x) | Rt(x), it follows that

Φb(x) | 2x2t−1
− 3xt + xt−2, (6)

Φb(x) | −xt+1 + 3xt−1
− 2. (7)

Given the fact that 2x2t−1
− 3xt + xt−2 = xt−2 (2xt+1

− 3x2 + 1), Eq. (6) yields

Φb(x) | 2xt+1
− 3x2 + 1. (8)

Now, by subtracting the right-hand sides of Eqs. (7) and (8), we further obtain

Φb(x) | (2xt+1
− 3x2 + 1) − (−xt+1 + 3xt−1

− 2)

=⇒ Φb(x) | 3xt+1
− 3xt−1

− 3x2 + 3

=⇒ Φb(x) | 3(xt−1
− 1)(x2

− 1)

=⇒ Φb(x) | xt−1
− 1. (9)

If we take the right-hand side of Eq. (9), multiply it by two, then subtract it from the right-hand side of
Eq. (7), we will get another polynomial that is divisible by Φb(x). In other words, we have

Φb(x) | (−xt+1 + 3xt−1
− 2) − 2(xt−1

− 1)

=⇒ Φb(x) | −xt+1 + xt−1

=⇒ Φb(x) | xt−1 (1 − x2)

=⇒ Φb(x) | 1 − x2,

which is not possible. Thus, Φb(x) | Rt(x) cannot be true.

Lemma 3 tells us that the only cyclotomic polynomials Φb(x) that could divide either Qt(x) or Rt(x) are
those where b ∈ N is a square-free integer. In fact, for any odd t ≥ 3, the only cyclotomic polynomials that
do divide these polynomials areΦ1(b) andΦ2(b). This observation will prove to be of the utmost importance
while formulating the complete proof of Theorem 3 later on. However, in order to prove this statement, we
shall need two more additional lemmas. We begin with the next one.

Lemma 4. For each odd t ≥ 3 and each prime number p ≥ 7, neither Qt(x) nor Rt(x) can be divisible by the cyclotomic
polynomial Φp(x) or the cyclotomic polynomial Φ2p(x).

Proof. First of all, it is important to notice that for all prime numbers p ≥ 7 we have

Φp(x) =
p−1∑
j=0

x j, Φ2p(x) =
p−1∑
j=0

(−1) jx j.

Here, it is clear that degΦp = degΦ2p = p−1. We will finish the proof of the lemma by splitting the problem
into two separate cases depending on whether we are dealing with Φp(x) or Φ2p(x).
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Case Φp(x). Let Q mod p
t (x) and R mod p

t (x) be the following two polynomials:

Q mod p
t (x) = 2x(2t−1) mod p + x(t+1) mod p

− xt mod p + x(t−1) mod p
− x(t−2) mod p

− 2,

R mod p
t (x) = 2x(2t−1) mod p

− x(t+1) mod p
− 3xt mod p + 3x(t−1) mod p + x(t−2) mod p

− 2.

Suppose that Φp(x) | Qt(x). In this case, it is clear that Φp(x) | Q mod p
t (x) must hold, too. Given the fact that

deg Q mod p
t ≤ p − 1 = degΦp, we further get two possibilities:

• Q mod p
t (x) ≡ 0;

• Q mod p
t (x) = cΦp(x) for some c ∈ Q \ {0}.

By virtue of Lemma 2, there must exist a non-zero term in Qt(x) whose power has a unique remainder
modulo p. This directly implies that Q mod p

t (x) ≡ 0 cannot hold. On the other hand, Q mod p
t (x) = cΦp(x)

implies that Q mod p
t (x) andΦp(x) must have the same number of non-zero terms, i.e. Q mod p

t (x) needs to have
exactly p non-zero terms. This is clearly impossible due to the fact that Q mod p

t (x) has at most six non-zero
terms. We conclude that Φp(x) | Qt(x) cannot be true.

The proof of Φp(x) ∤ Rt(x) is completely analogous to the previously described proof of Φp(x) ∤ Qt(x).
Thus, it will be left out.

Case Φ2p(x). Let Q
mod p

t (x) and R
mod p

t (x) be the following two polynomials:

Q
mod p

t (x) = 2(−1)⌊
2t−1

p ⌋x(2t−1) mod p + (−1)⌊
t+1

p ⌋x(t+1) mod p
− (−1)⌊

t
p ⌋xt mod p

+ (−1)⌊
t−1

p ⌋x(t−1) mod p
− (−1)⌊

t−2
p ⌋x(t−2) mod p

− 2,

R
mod p

t (x) = 2(−1)⌊
2t−1

p ⌋x(2t−1) mod p
− (−1)⌊

t+1
p ⌋x(t+1) mod p

− 3(−1)⌊
t
p ⌋xt mod p

+ 3(−1)⌊
t−1

p ⌋x(t−1) mod p + (−1)⌊
t−2

p ⌋x(t−2) mod p
− 2.

Since each primitive 2p-th root of unity gives −1 when raised to the power of p, it becomes evident

that Φ2p(x) | Qt(x) is equivalent to Φ2p(x) | Q
mod p

t (x). Likewise, Φ2p(x) | Rt(x) will hold if and only if

Φ2p(x) | R
mod p

t (x) does, too.

Now, suppose that Φ2p(x) | Qt(x). In this case we obtain Φ2p | Q
mod p

t (x), where deg Q
mod p

t ≤ p − 1 =
degΦ2p. Like in the previous case, we get two possible options:

• Q
mod p

t (x) ≡ 0;

• Q
mod p

t (x) = cΦ2p(x) for some c ∈ Q \ {0}.

Lemma 2 dictates that there must exist a non-zero term in Qt(x) whose power has a unique remainder

modulo p, which means that it is impossible for Q
mod p

t (x) ≡ 0 to be true. On the other hand, from

Q
mod p

t (x) = cΦ2p(x) we get that Q
mod p

t (x) must have exactly p non-zero terms. However, this is not possible
since it is clear that this polynomial cannot have more than six non-zero terms. It swiftly follows that
Φ2p(x) ∤ Qt(x).

The proof ofΦ2p(x) ∤ Rt(x) is entirely analogous to the elaborated proof ofΦ2p(x) ∤ Qt(x). For this reason,
we choose to leave it out.

As the final piece of the puzzle, we will need to show that some concrete cyclotomic polynomials cannot
divide Qt(x) or Rt(x), for each odd integer t ≥ 3. More precisely, we will turn our interest to the cyclotomic
polynomials Φb(x) where b is a square-free integer all of whose prime factors belong to the set {2, 3, 5}.
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Lemma 5. For each odd t ≥ 3 and each positive integer b ∈ {3, 5, 6, 10, 15, 30}, the cyclotomic polynomial Φb(x)
divides neither Qt(x) nor Rt(x).

Proof. Similarly as in the proof of Lemma 4, let Q mod b
t (x) and R mod b

t (x) be the next two polynomials:

Q mod b
t (x) = 2x(2t−1) mod b + x(t+1) mod b

− xt mod b + x(t−1) mod b
− x(t−2) mod b

− 2,

R mod b
t (x) = 2x(2t−1) mod b

− x(t+1) mod b
− 3xt mod b + 3x(t−1) mod b + x(t−2) mod b

− 2.

Here, it is imperative for us to notice thatΦb(x) | Qt(x) ⇐⇒ Φb(x) | Q mod b
t (x) and also thatΦb(x) | Rt(x) ⇐⇒

Φb(x) | R mod b
t (x). However, for a fixed value of b ∈N, there exist only finitely many polynomials Q mod b

t (x)
and R mod b

t (x), as t ranges over the odd integers greater than or equal to three. This is a direct consequence
of the fact that t can only have finitely many remainders modulo b. Hence, if we are able to show that Φb(x)
divides none of these concrete polynomials, this is sufficient to prove that Φb(x) divides neither Qt(x) nor
Rt(x).

In order to prove the lemma, it is enough to demonstrate thatΦb(x) ∤ Q mod b
t (x) andΦb(x) ∤ R mod b

t (x) for
all the b ∈ {3, 5, 6, 10, 15, 30} and for all the possible remainders t mod b. Doing this is trivial via computer
with the help of some symbolic computation software. We disclose the required computational results in
the form of two tables which are given in Appendix A and Appendix B. These results clearly indicate that
for each b ∈ {3, 5, 6, 10, 15, 30} the remainders Q mod b

t (x) mod Φb(x) and R mod b
t (x) mod Φb(x) can never be

equal to the zero polynomial, regardless of what the value of t mod b is, which completes the proof of the
lemma.

It is important to notice that Theorem 2 can very conveniently be used on the polynomials Qt(x) and
Rt(x), given the fact that they only have six non-zero terms. This means that if Φb(x) | Qt(x) and p | b for
some square-free integer b and some prime number p ≥ 7, we can immediately deduce that Φ b

p
(x) | Qt(x)

is true as well. The same can be said regarding Rt(x). This practically means that if the aforementioned
divisibility holds, we can cancel out as many prime factors of b that are not below seven as we want, and
the divisibility will still have to hold. Bearing this in mind, we are now able to formulate and prove the
following lemma regarding the divisibility of Qt(x) and Rt(x) by cyclotomic polynomials.

Lemma 6. For each odd t ≥ 3, neither Qt(x) nor Rt(x) can be divisible by a cyclotomic polynomialΦb(x) where b ≥ 3.

Proof. The proof will only be given for Qt(x), given the fact that the proof regarding Rt(x) is completely
analogous. Suppose that Φb(x) | Qt(x) for some b ≥ 3. By virtue of Lemma 3, we know that b needs to
be a square-free integer. We now divide the problem into two separate cases, depending on whether b is
divisible by either 3 or 5, or not.

Case 3 ∤ b and 5 ∤ b. In this case, it is clear that b has at least one prime factor greater than 5, since b < {1, 2}.
If we repeatedly use Theorem 2 in order to cancel out all the prime factors of b that are greater than 5, until
exactly one is left, we obtain that

Φb′ (x) | Qt(x)

must hold, where b′ is square-free, not divisible by 3 or 5, and has exactly one prime factor greater than 5.
In other words, we get that eitherΦp(x) | Qt(x) orΦ2p | Qt(x) holds, for some prime number p ≥ 7. However,
this is not possible according to Lemma 4.

Case 3 | b or 5 | b. Here, we can simply use Theorem 2 in order to cancel out all the prime factors of b that
are greater than 5, until there are none left. This leads us to

Φb′ (x) | Qt(x),
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where b′ is square-free, divisible by 3 or 5, and has no prime factors outside of the set {2, 3, 5}. These
conditions imply that b′ ∈ {3, 5, 6, 10, 15, 30}. However, in this case Φb′ (x) | Qt(x) cannot possibly hold, as a
direct consequence of Lemma 5.

Both of the cases have led to a contradiction, which means thatΦb(x) | Qt(x) cannot hold for any b ≥ 3.

Lemma 6 allows us to finish the proof of Theorem 3. We present the rest of the proof in the remainder
of this section.

Proof of Theorem 3. The proof for the case t = 1 is fairly straightforward. Due to the fact thatS′1,n =
{

n
4 ,

n
4 + 1

}
,

Eq. (1) immediately gives us

P(ζ) = ζ
n
4 +

1
ζ

n
4
+ ζ

n
4+1 +

1
ζ

n
4+1
, (10)

where ζ is an arbitrary n-th root of unity different from 1 and −1. Now, the condition P(ζ) = 0 becomes
equivalent to

P(ζ) = 0

⇐⇒ ζ
n
4+1

(
ζ

n
4 +

1
ζ

n
4
+ ζ

n
4+1 +

1
ζ

n
4+1

)
= 0

⇐⇒ ζ
n
2+2 + ζ

n
2+1 + ζ + 1 = 0

⇐⇒ (ζ + 1)
(
ζ

n
2+1 + 1

)
= 0

⇐⇒ ζ
n
2+1 + 1 = 0.

Since we know that ζ
n
2 ∈ {1,−1}, we obtain that ζ

n
2+1 + 1 is equal to ζ + 1 or −ζ + 1. Either way, this value

cannot be equal to 0, hence we conclude that P(ζ) , 0. Since the value ζ was arbitrarily chosen, we obtain
that no n-th root of unity different from 1 and −1 can be a root of P(x). According to Lemma 1, this means
thatD′1,n is indeed a circulant nut graph for any n ≥ 8 divisble by four, as desired.

Now, we turn our attention to the case when t ≥ 3. In this scenario, Eq. (1) gives us

P(ζ) =
(
ζ

n
4 +

1
ζ

n
4

)
+

(
ζ

n
4+1 +

1
ζ

n
4+1

)
+

t−1∑
j=1

(
ζ j +

1
ζ j

)
+

n
2−1∑

j= n
2−t+1

(
ζ j +

1
ζ j

)
,

where ζ is an arbitrarily chosen n-th root of unity different from 1 and −1. It is easy to further conclude that

P(ζ) =
(
ζ

n
4+1 + ζ

n
4 +

1
ζ

n
4
+

1
ζ

n
4+1

)
+

t−1∑
j=1

(
ζ j +

1
ζ j + ζ

n
2− j +

1
ζ

n
2− j

)
. (11)

We will finish the proof by showing that P(ζ) , 0 must necessarily hold. In order to make the proof more
concise, we will divide it into two cases depending on whether ζ

n
2 is equal to 1 or −1.

Case ζ
n
2 = −1. In this case, we have that ζ

n
2− j = −

1
ζ j and

1
ζ

n
2− j
= −ζ j, which quickly implies

ζ j +
1
ζ j + ζ

n
2− j +

1
ζ

n
2− j
= 0

for any j = 1, t − 1. Thus, Eq. (11) simplifies to the following formula:

P(ζ) = ζ
n
4+1 + ζ

n
4 +

1
ζ

n
4
+

1
ζ

n
4+1
.



I. Damnjanović / Filomat 37:24 (2023), 8331–8360 8341

However, the obtained formula is exactly the same as Eq. (10), which we got while dealing with the case
t = 1. Hence, an almost absolutely identical proof can be used in order to show that P(ζ) , 0.

Case ζ
n
2 = 1. Here, we obtain that ζ

n
2− j =

1
ζ j and

1
ζ

n
2− j
= ζ j. This means that

ζ j +
1
ζ j + ζ

n
2− j +

1
ζ

n
2− j
= 2

(
ζ j +

1
ζ j

)
for any j = 1, t − 1. According to Eq. (11), the condition P(ζ) = 0 becomes equivalent to

P(ζ) = 0

⇐⇒

(
ζ

n
4+1 + ζ

n
4 +

1
ζ

n
4
+

1
ζ

n
4+1

)
+ 2

t−1∑
j=1

(
ζ j +

1
ζ j

)
= 0

⇐⇒

(
ζ

n
4+1 + ζ

n
4 +

1
ζ

n
4
+

1
ζ

n
4+1

)
− 2 + 2

t−1∑
j=1−t

ζ j = 0

⇐⇒ ζt−1


(
ζ

n
4+1 + ζ

n
4 +

1
ζ

n
4
+

1
ζ

n
4+1

)
− 2 + 2

t−1∑
j=1−t

ζ j

 = 0

⇐⇒

(
ζt+ n

4 + ζt+ n
4−1 + ζt− n

4−1 + ζt− n
4−2

)
− 2ζt−1 + 2

2t−2∑
j=0

ζ j = 0

⇐⇒ (ζ − 1)

ζt+ n
4 + ζt+ n

4−1 + ζt− n
4−1 + ζt− n

4−2
− 2ζt−1 + 2

2t−2∑
j=0

ζ j

 = 0

⇐⇒ ζt+ n
4+1
− ζt+ n

4−1 + ζt− n
4 − ζt− n

4−2
− 2ζt + 2ζt−1 + 2ζ2t−1

− 2 = 0. (12)

Now, we will divide the problem into two subcases depending on whether ζ
n
4 is equal to 1 or −1.

Subcase ζ
n
4 = 1. In this subcase, it is easy to see that Eq. (12) further becomes equivalent to

ζt+ n
4+1
− ζt+ n

4−1 + ζt− n
4 − ζt− n

4−2
− 2ζt + 2ζt−1 + 2ζ2t−1

− 2 = 0

⇐⇒ ζt+1
− ζt−1 + ζt

− ζt−2
− 2ζt + 2ζt−1 + 2ζ2t−1

− 2 = 0

⇐⇒ 2ζ2t−1 + ζt+1
− ζt + ζt−1

− ζt−2
− 2 = 0.

Thus, if we suppose that P(ζ) = 0, we then get that ζ is a root of the polynomial Qt(x). However, since
ζ , 1,−1 and ζn = 1, this means that ζ is a primitive b-th root of unity for some b ≥ 3. This implies that
Φb(x) necessarily divides Qt(x), which is impossible according to Lemma 6, hence P(ζ) = 0 cannot be true.

Subcase ζ
n
4 = −1. Here, Eq. (12) quickly becomes equivalent to

ζt+ n
4+1
− ζt+ n

4−1 + ζt− n
4 − ζt− n

4−2
− 2ζt + 2ζt−1 + 2ζ2t−1

− 2 = 0

⇐⇒ −ζt+1 + ζt−1
− ζt + ζt−2

− 2ζt + 2ζt−1 + 2ζ2t−1
− 2 = 0

⇐⇒ 2ζ2t−1
− ζt+1

− 3ζt + 3ζt−1 + ζt−2
− 2 = 0.

In a similar fashion, if we suppose that P(ζ) = 0, we conclude that ζ must be a root of the polynomial Rt(x).
Due to the fact that ζ , 1,−1 and ζn = 1, we see that ζ is a primitive b-th root of unity for some b ≥ 3. Hence,
Φb(x) | Rt(x) for some b ≥ 3, which is again impossible by virtue of Lemma 6. Thus, P(ζ) , 0.
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4. D”(t, n) family of circulant graphs

Here, we give the second of the two central theorems disclosed in the paper.

Theorem 4. For each t ∈ N and n ≥ 4t + 6 such that n ≡4 2, the circulant graph D′′t,n must be a 4t-regular nut
graph of order n.

The complete proof of Theorem 4 will have a very similar structure as the previously described proof of
Theorem 3, albeit with more complexity. Instead of the polynomials Qt(x) and Rt(x), here we will rely on
the integer polynomials Ut,Wt ∈ Z[x] that are defined as

Ut(x) = 2x4t−1 + x2t+4
− 2x2t+1 + 2x2t−1

− x2t−4
− 2x,

Wt(x) = 2x4t−1
− x2t+4

− 2x2t+1 + 2x2t−1 + x2t−4
− 2x,

for all the t ∈ N, t ≥ 2. These polynomials are clearly well defined for all the t ≥ 2 and must have exactly
six non-zero terms, due to the fact that

1 < 2t − 4 < 2t − 1 < 2t + 1 < 2t + 4 < 4t − 1

for each t ≥ 3, while

4t − 1 = 7, 2t + 4 = 8, 2t + 1 = 5, 2t − 1 = 3, 2t − 4 = 0, 1 = 1,

for t = 2. By setting

Mt = {1, 2t − 4, 2t − 1, 2t + 1, 2t + 4, 4t − 1}

for each t ≥ 2, we can show that the Mt sets have a property that is very similar to the one regarding the Lt
sets which was demonstrated earlier in Lemma 2 from Section 3.

Lemma 7. For each t ≥ 2 and each prime number p ≥ 7, the set Mt contains an element whose remainder modulo p
is unique within the set.

Proof. It is easy to notice that the four integers 2t − 4, 2t − 1, 2t + 1, 2t + 4 necessarily have mutually distinct
remainders modulo p. This quickly implies that at least two of them must have a remainder modulo p that
is different from the remainders of both 1 and 4t − 1.

We will now implement Lemma 7 in order to prove a valuable property of the Ut(x) and Wt(x) polyno-
mials regarding their division by cyclotomic polynomials, as demonstrated in the following lemma.

Lemma 8. For any t ≥ 2, neither Ut(x) nor Wt(x) can be divisible by a cyclotomic polynomial Φb(x) such that p2
| b

for some prime number p ≥ 3.

Proof. This proof will be done in a completely analogous manner as that of Lemma 3. In case b ∈ N and
p2
| b for some prime number p, we will again use the fact that Φb(x) = Φ b

p
(xp).

Suppose that Φb(x) | Ut(x) for some t ≥ 2 and b ∈ N such that p2
| b for some prime number p ≥ 3. Let

U( j)
t (x) denote the polynomial composed of all the terms of Ut(x) whose powers are congruent to j modulo

p, for each j = 0, p − 1. The same logic used in the proof of Lemma 3 allows us to conclude that

Φb(x) | U( j)
t (x)

must hold for all the j = 0, p − 1. It is clear that the same notation and implication can be used regarding
the Wt(x) polynomial in case Φb(x) | Wt(x) is true. We will now finalize the proof of the lemma by taking
into consideration three separate cases depending on the value of the prime number p.
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Case p ≥ 7. In this scenario, Lemma 7 tells us that the set Mt must contain an element whose remainder
modulo p is unique within that set. Hence, this case can be proved completely analogously to the case p ≥ 5
from the proof of Lemma 3.

Case p = 5. If t ≡5 2 or t ≡5 4, then there exists an element of the set Mt whose remainder modulo 5 is
unique with that set, as shown in Table 2. In this subcase, a contradiction can easily be obtained if we
suppose that either Φb(x) | Ut(x) or Φb(x) | Wt(x), by using the same logic as in the p ≥ 7 case. We resolve
the remaining three subcases separately.

t ≡5 0 t ≡5 1 t ≡5 2 t ≡5 3 t ≡5 4

1 mod 5 1 1 1 1 1
(2t − 4) mod 5 1 3 0 2 4
(2t − 1) mod 5 4 1 3 0 2
(2t + 1) mod 5 1 3 0 2 4
(2t + 4) mod 5 4 1 3 0 2
(4t − 1) mod 5 4 3 2 1 0

Table 2: The elements of the set Mt modulo 5.

Subcase t ≡5 0. If we suppose that Φb | Ut(x), then we get

Φb(x) | −2x2t+1
− x2t−4

− 2x,

Φb(x) | 2x4t−1 + x2t+4 + 2x2t−1.

Since t ≥ 5, we quickly obtain

Φb(x) | −2x2t+1
− x2t−4

− 2x

=⇒ Φb(x) | −x (2x2t + x2t−5 + 2)

=⇒ Φb(x) | 2x2t + x2t−5 + 2, (13)

as well as

Φb(x) | 2x4t−1 + x2t+4 + 2x2t−1

=⇒ Φb(x) | x2t−1 (2x2t + x5 + 2)

=⇒ Φb(x) | 2x2t + x5 + 2. (14)

Furthermore, if we subtract the right-hand sides of Eqs. (13) and (14), this leads us to

Φb(x) | (2x2t + x2t−5 + 2) − (2x2t + x5 + 2)

=⇒ Φb(x) | x2t−5
− x5

=⇒ Φb(x) | x5 (x2t−10
− 1)

=⇒ Φb(x) | x2t−10
− 1.

Now, Eq. (14) helps us obtain

Φb(x) | 2x2t + x5 + 2

=⇒ Φb(x) | 2x2t + x5 + 2 − 2x10 (x2t−10
− 1)

=⇒ Φb(x) | 2x10 + x5 + 2.

However, none of the roots of the polynomial 2x10 + x5 + 2 are actually roots of unity, as demonstrated in
Appendix E, hence we obtain a contradiction.
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Similarly, if we suppose that Φb(x) |Wt(x), then we get

Φb(x) | −2x2t+1 + x2t−4
− 2x,

Φb(x) | 2x4t−1
− x2t+4 + 2x2t−1.

Due to t ≥ 5, we have

Φb(x) | −2x2t+1 + x2t−4
− 2x

=⇒ Φb(x) | −x (2x2t
− x2t−5 + 2)

=⇒ Φb(x) | 2x2t
− x2t−5 + 2 (15)

and

Φb(x) | 2x4t−1
− x2t+4 + 2x2t−1

=⇒ Φb(x) | x2t−1(2x2t
− x5 + 2)

=⇒ Φb(x) | 2x2t
− x5 + 2. (16)

By subtracting the right-hand sides of Eqs. (15) and (16), it follows that

Φb(x) | (2x2t
− x2t−5 + 2) − (2x2t

− x5 + 2)

=⇒ Φb(x) | −x2t−5 + x5

=⇒ Φb(x) | −x5 (x2t−10
− 1)

=⇒ Φb(x) | x2t−10
− 1.

Hence, Eq. (16) is now able to give us

Φb(x) | 2x2t
− x5 + 2

=⇒ Φb(x) | 2x2t
− x5 + 2 − 2x10 (x2t−10

− 1)

=⇒ Φb(x) | 2x10
− x5 + 2.

However, similarly as with Ut(x), none of the roots of 2x10
− x5 + 2 are roots of unity, as shown in Appendix

E, which leads to a contradiction.

Subcase t ≡5 1. If we suppose that Φb | Ut(x), we immediately get

Φb(x) | x2t+4 + 2x2t−1
− 2x,

Φb(x) | 2x4t−1
− 2x2t+1

− x2t−4.

It is easy to see that

Φb(x) | x2t+4 + 2x2t−1
− 2x

=⇒ Φb(x) | x (x2t+3 + 2x2t−2
− 2)

=⇒ Φb(x) | x2t+3 + 2x2t−2
− 2, (17)

as well as

Φb(x) | 2x4t−1
− 2x2t+1

− x2t−4

=⇒ Φb(x) | x2t−4 (2x2t+3
− 2x5

− 1)

=⇒ Φb(x) | 2x2t+3
− 2x5

− 1. (18)
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By using Eqs. (17) and (18) together, we further obtain

Φb(x) | 2(x2t+3 + 2x2t−2
− 2) − (2x2t+3

− 2x5
− 1)

=⇒ Φb(x) | 4x2t−2 + 2x5
− 3. (19)

Now, by using Eqs. (18) and (19) together, we see that

Φb(x) | 2(2x2t+3
− 2x5

− 1) − x5 (4x2t−2 + 2x5
− 3)

=⇒ Φb(x) | −2x10
− x5

− 2,

which is not possible since the polynomial 2x10 + x5 + 2 has no roots of unity among its roots, as discussed
earlier.

In a similar fashion, if we suppose that Φb |Wt(x), this gives us

Φb(x) | −x2t+4 + 2x2t−1
− 2x,

Φb(x) | 2x4t−1
− 2x2t+1 + x2t−4,

from which we swiftly obtain

Φb(x) | −x2t+4 + 2x2t−1
− 2x

=⇒ Φb(x) | −x (x2t+3
− 2x2t−2 + 2)

=⇒ Φb(x) | x2t+3
− 2x2t−2 + 2 (20)

and

Φb(x) | 2x4t−1
− 2x2t+1 + x2t−4

=⇒ Φb(x) | x2t−4 (2x2t+3
− 2x5 + 1)

=⇒ Φb(x) | 2x2t+3
− 2x5 + 1. (21)

If we use Eqs. (20) and (21) together, we conclude that

Φb(x) | (2x2t+3
− 2x5 + 1) − 2(x2t+3

− 2x2t−2 + 2)

=⇒ Φb(x) | 4x2t−2
− 2x5

− 3. (22)

Furthermore, by using Eqs. (21) and (22) together, we get

Φb(x) | x5 (4x2t−2
− 2x5

− 3) − 2(2x2t+3
− 2x5 + 1)

=⇒ Φb(x) | −2x10 + x5
− 2,

which is impossible given the fact that the polynomial 2x10
− x5 + 2 has no roots of unity among its roots,

as we have already discussed.

Subcase t ≡5 3. If we suppose that Φb(x) | Ut(x), we obtain

Φb(x) | x2t+4 + 2x2t−1,

Φb(x) | −2x2t+1
− x2t−4,

which directly gives us

Φb(x) | x2t+4 + 2x2t−1

=⇒ Φb(x) | x2t−1 (x5 + 2)

=⇒ Φb(x) | x5 + 2 (23)
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and

Φb(x) | −2x2t+1
− x2t−4

=⇒ Φb(x) | −x2t−4 (2x5 + 1)

=⇒ Φb(x) | 2x5 + 1. (24)

By combining Eqs. (23) and (24), we reach

Φb(x) | 2(x5 + 2) − (2x5 + 1)
=⇒ Φb(x) | 3,

thus yielding a contradiction.
On the other hand, if we suppose that Φb(x) |Wt(x), this gives us

Φb(x) | −x2t+4 + 2x2t−1,

Φb(x) | −2x2t+1 + x2t−4,

which further implies

Φb(x) | −x2t+4 + 2x2t−1

=⇒ Φb(x) | −x2t−1 (x5
− 2)

=⇒ Φb(x) | x5
− 2, (25)

as well as

Φb(x) | −2x2t+1 + x2t−4

=⇒ Φb(x) | −x2t−4 (2x5
− 1)

=⇒ Φb(x) | 2x5
− 1. (26)

By combining Eqs. (25) and (26), we conclude that

Φb(x) | 2(x5
− 2) − (2x5

− 1)
=⇒ Φb(x) | −3,

which is not possible.

Case p = 3. This case can be resolved by taking into consideration the modular values given in Table 3.
Thus, we divide the case into three subcases depending on the value of t mod 3.

t ≡3 0 t ≡3 1 t ≡3 2

1 mod 3 1 1 1
(2t − 4) mod 3 2 1 0
(2t − 1) mod 3 2 1 0
(2t + 1) mod 3 1 0 2
(2t + 4) mod 3 1 0 2
(4t − 1) mod 3 2 0 1

Table 3: The elements of the set Mt modulo 3.

Subcase t ≡3 0. In this subcase, if we suppose that Φb(x) | Ut(x), we then have

Φb(x) | x2t+4
− 2x2t+1

− 2x,

Φb(x) | 2x4t−1 + 2x2t−1
− x2t−4,
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which immediately gives

Φb(x) | x2t+4
− 2x2t+1

− 2x

=⇒ Φb(x) | x (x2t+3
− 2x2t

− 2)

=⇒ Φb(x) | x2t+3
− 2x2t

− 2 (27)

and

Φb(x) | 2x4t−1 + 2x2t−1
− x2t−4

=⇒ Φb(x) | x2t−4 (2x2t+3 + 2x3
− 1)

=⇒ Φb(x) | 2x2t+3 + 2x3
− 1. (28)

By using Eqs. (27) and (28) together, we obtain

Φb(x) | (2x2t+3 + 2x3
− 1) − 2(x2t+3

− 2x2t
− 2)

=⇒ Φb(x) | 4x2t + 2x3 + 3. (29)

Now, by using Eqs. (28) and (29), we get

Φb(x) | 2(2x2t+3 + 2x3
− 1) − x3 (4x2t + 2x3 + 3)

=⇒ Φb(x) | −2x6 + x3
− 2.

However, none of the roots of the polynomial 2x6
− x3 + 2 are actually roots of unity, as shown in Appendix

E, which leads us to a contradiction.
Similarly, if we suppose that Φb(x) |Wt(x), we obtain

Φb(x) | −x2t+4
− 2x2t+1

− 2x,

Φb(x) | 2x4t−1 + 2x2t−1 + x2t−4,

which quickly leads us to

Φb(x) | −x2t+4
− 2x2t+1

− 2x

=⇒ Φb(x) | −x (x2t+3 + 2x2t + 2)

=⇒ Φb(x) | x2t+3 + 2x2t + 2 (30)

and

Φb(x) | 2x4t−1 + 2x2t−1 + x2t−4

=⇒ Φb(x) | x2t−4 (2x2t+3 + 2x3 + 1)

=⇒ Φb(x) | 2x2t+3 + 2x3 + 1. (31)

If we use Eqs. (30) and (31) together, we conclude that

Φb(x) | 2(x2t+3 + 2x2t + 2) − (2x2t+3 + 2x3 + 1)

=⇒ Φb(x) | 4x2t
− 2x3 + 3. (32)

Furthermore, by combining Eqs. (31) and (32), we reach

Φb(x) | 2(2x2t+3 + 2x3 + 1) − x3 (4x2t
− 2x3 + 3)

=⇒ Φb(x) | 2x6 + x3 + 2,
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which leads to a contradiction, given the fact that the polynomial 2x6 + x3 + 2 has no root which represents
a root of unity, as demonstrated in Appendix E.

Subcase t ≡3 1. In this scenario, supposing that Φb(x) | Ut(x) is true leads to

Φb(x) | 2x2t−1
− x2t−4

− 2x,

Φb(x) | 2x4t−1 + x2t+4
− 2x2t+1.

Given the fact that t ≥ 4, we swiftly get

Φb(x) | 2x2t−1
− x2t−4

− 2x

=⇒ Φb(x) | x (2x2t−2
− x2t−5

− 2)

=⇒ Φb(x) | 2x2t−2
− x2t−5

− 2, (33)

as well as

Φb(x) | 2x4t−1 + x2t+4
− 2x2t+1

=⇒ Φb(x) | x2t+1 (2x2t−2 + x3
− 2)

=⇒ Φb(x) | 2x2t−2 + x3
− 2. (34)

Furthermore, subtracting the right-hand sides of Eqs. (33) and (34) helps us obtain

Φb(x) | (2x2t−2 + x3
− 2) − (2x2t−2

− x2t−5
− 2)

=⇒ Φb(x) | x2t−5 + x3

=⇒ Φb(x) | x3 (x2t−8 + 1)

=⇒ Φb(x) | x2t−8 + 1. (35)

Now, by combining Eqs. (34) and (35), we conclude that

Φb(x) | (2x2t−2 + x3
− 2) − 2x6 (x2t−8 + 1)

=⇒ Φb(x) | −2x6 + x3
− 2,

thus yielding a contradiction due to the fact that the polynomial 2x6
− x3 + 2 has no roots of unity among

its roots, as discussed earlier.
In a similar fashion, supposing that Φb(x) |Wt(x) gives us

Φb(x) | 2x2t−1 + x2t−4
− 2x,

Φb(x) | 2x4t−1
− x2t+4

− 2x2t+1.

Since t ≥ 4, this immediately leads us to

Φb(x) | 2x2t−1 + x2t−4
− 2x

=⇒ Φb(x) | x (2x2t−2 + x2t−5
− 2)

=⇒ Φb(x) | 2x2t−2 + x2t−5
− 2, (36)

as well as

Φb(x) | 2x4t−1
− x2t+4

− 2x2t+1

=⇒ Φb(x) | x2t+1 (2x2t−2
− x3

− 2)

=⇒ Φb(x) | 2x2t−2
− x3

− 2. (37)
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We can now subtract the right-hand sides of Eqs. (36) and (37) in order to obtain

Φb(x) | (2x2t−2 + x2t−5
− 2) − (2x2t−2

− x3
− 2)

=⇒ Φb(x) | x2t−5 + x3

=⇒ Φb(x) | x3 (x2t−8 + 1)

=⇒ Φb(x) | x2t−8 + 1. (38)

Furthermore, combining Eqs. (37) and (38) gives us

Φb(x) | (2x2t−2
− x3

− 2) − 2x6 (x2t−8 + 1)

=⇒ Φb(x) | −2x6
− x3

− 2,

which is impossible since the polynomial 2x6 + x3 + 2 has no roots of unity among its roots, as we have
already discussed.

Subcase t ≡3 2. In this subcase, if we suppose that Φb(x) | Ut(x), then we directly obtain

Φb(x) | x2t+4
− 2x2t+1,

Φb(x) | 2x2t−1
− x2t−4,

which leads us to

Φb(x) | x2t+4
− 2x2t+1

=⇒ Φb(x) | x2t+1 (x3
− 2)

=⇒ Φb(x) | x3
− 2 (39)

and

Φb(x) | 2x2t−1
− x2t−4

=⇒ Φb(x) | x2t−4 (2x3
− 1)

=⇒ Φb(x) | 2x3
− 1. (40)

By using Eqs. (39) and (40) together, we reach

Φb(x) | (2x3
− 1) − 2(x3

− 2)
=⇒ Φb(x) | 3,

thus yielding a contradiction.
Similarly, if we suppose that Φb(x) |Wt(x), we obtain

Φb(x) | −x2t+4
− 2x2t+1,

Φb(x) | 2x2t−1 + x2t−4,

which further gives

Φb(x) | −x2t+4
− 2x2t+1

=⇒ Φb(x) | −x2t+1 (x3 + 2)

=⇒ Φb(x) | x3 + 2, (41)
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as well as

Φb(x) | 2x2t−1 + x2t−4

=⇒ Φb(x) | x2t−4 (2x3 + 1)

=⇒ Φb(x) | 2x3 + 1. (42)

By combining Eqs. (41) and (42), we get

Φb(x) | (2x3 + 1) − 2(x3 + 2)
=⇒ Φb(x) | −3,

which is clearly not possible.

It is clear that the formulation of Lemma 8 is very similar to that of the previously proven Lemma 3 from
Section 3. The key difference is that Lemma 8 does not cover the case for p = 2. In fact, it can be shown that
this property does not hold for the Ut(x) and Wt(x) polynomials, i.e. it is possible that they are divisible by
a cyclotomic polynomial Φb(x) such that 4 | b. However, although the condition 4 | b can hold, it can be
shown that the only way for this to happen is if b ∈ {4, 8}, as demonstrated in the following lemma.

Lemma 9. For any t ≥ 2, if Ut(x) or Wt(x) are divisible by some cyclotomic polynomial Φb(x) such that 4 | b, then
b = 4 or b = 8.

Proof. Suppose that 4 | b. Given the fact that 2 | b
2 , it is clear that Φb(x) = Φ b

2
(x2) (see, for example, [5, p.

160]). By using the same logic as in the proofs of Lemmas 3 and 8, we obtain that Φb(x) | Ut(x) would imply

Φb(x) | U( j)
t (x)

for each j = 0, 1, where U( j)
t (x) represents the polynomial composed of the terms of Ut(x) whose powers are

congruent to j modulo 2. The same conclusion and notation can be applied to Wt(x) as well.
Since all the values 1, 2t − 1, 2t + 1, 4t − 1 are odd, while 2t + 4 and 2t − 4 are even, we conclude that

Φb | Ut(x) would immediately imply

Φb(x) | x2t+4
− x2t−4,

while Φb |Wt(x) would give

Φb(x) | −x2t+4 + x2t−4.

Either way, we would reach

Φb(x) | x2t+4
− x2t−4

=⇒ Φb(x) | x2t−4 (x8
− 1)

=⇒ Φb(x) | x8
− 1.

This practically means that each primitive b-th root of unity must be an eighth root of unity, i.e. b | 8. This
is only possible if b = 4 or b = 8.

A direct consequence of Lemmas 8 and 9 is that if the cyclotomic polynomial Φb(x) divides Ut(x) or
Wt(x), then the integer b ∈ N needs to either be square-free, or be equal to 4 or 8. In fact, for any t ≥ 2,
the only cyclotomic polynomials that could divide Ut(x) or Wt(x) are actuallyΦ1(x),Φ2(x),Φ4(x),Φ8(x). This
observation forms the central part of the proof of Theorem 4. However, in order to prove this claim, we will
be in need of two more auxiliary lemmas that hold a great resemblance to the previously proven Lemmas 4
and 5 from Section 3.



I. Damnjanović / Filomat 37:24 (2023), 8331–8360 8351

Lemma 10. For each t ≥ 2 and each prime number p ≥ 7, neither Ut(x) nor Wt(x) can be divisible by the cyclotomic
polynomial Φp(x) or the cyclotomic polynomial Φ2p(x).

Proof. The proof can be done in an entirely analogous manner as the proof of Lemma 4 from Section 3, the
only difference being that Lemma 7 is used to conclude that there exists an element of the set Mt that has a
unique remainder within that set, instead of Lemma 2. Thus, we choose to leave the proof out.

Lemma 11. For each t ≥ 2 and each positive integer b ∈ {3, 5, 6, 10, 15, 30}, the cyclotomic polynomial Φb(x) divides
neither Ut(x) nor Wt(x).

Proof. The proof can be done by using an absolutely identical mechanism as the proof of Lemma 5 from
Section 3. We disclose the necessary computational results in Appendix C and Appendix D.

We shall now formulate and prove the central lemma regarding the divisibility of the Ut(x) and Wt(x)
polynomials by cyclotomic polynomials. Given the fact that these polynomials also have six non-zero
terms, like the Qt(x) and Rt(x) polynomials from Section 3, using Theorem 2 becomes very convenient once
again. The same prime number cancellation mechanism can be implemented for each prime number p ≥ 7
that divides b whenever Φb(x) divides either Ut(x) or Wt(x), as it was elaborated in Section 3. Bearing this
in mind, we give the following lemma.

Lemma 12. For each t ≥ 2, neither Ut(x) nor Wt(x) can be divisible by a cyclotomic polynomial Φb(x) such that
b < {1, 2, 4, 8}.

Proof. The proof will only be given for Ut(x), given the fact that the proof regarding Wt(x) is completely
analogous. Suppose that Φb(x) | Ut(x), for some b ∈N such that b < {1, 2, 4, 8}. Since b is not equal to 4 or 8,
Lemmas 8 and 9 tell us that b must be a square-free integer. We now divide the problem into two separate
cases, depending on whether b is divisible by either 3 or 5, or not.

Case 3 ∤ b and 5 ∤ b. This case is proved completely analogously to the corresponding case from the proof
of Lemma 6 from Section 3. The only small difference is that Lemma 10 is used instead of Lemma 4.

Case 3 | b or 5 | b. This case is also proved entirely analogously to the corresponding case from the proof
of Lemma 6. As expected, the only minor difference is that Lemma 11 is used instead of Lemma 5.

Taking into consideration all the results obtained in the previously disclosed lemmas, we are finally able
to complete the proof of Theorem 4. Thus, we present the rest of the proof.

Proof of Theorem 4. The case t = 1 is trivial to prove. Here, we simply have S′′1,n =
{

n+2
4 ,

n+6
4

}
, hence Eq. (1)

directly gives us

P(ζ) = ζ
n+2

4 +
1

ζ
n+2

4

+ ζ
n+6

4 +
1

ζ
n+6

4

, (43)

where ζ is an arbitrary n-th root of unity different from 1 and−1. The condition P(ζ) = 0 is clearly equivalent
to

P(ζ) = 0

⇐⇒ ζ
n+6

4

(
ζ

n+2
4 +

1

ζ
n+2

4

+ ζ
n+6

4 +
1

ζ
n+6

4

)
= 0

⇐⇒ ζ
n
2+3 + ζ

n
2+2 + ζ + 1 = 0

⇐⇒ (ζ + 1)
(
ζ

n
2+2 + 1

)
= 0

⇐⇒ ζ
n
2+2 + 1 = 0.
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Due to the fact that ζ
n
2 ∈ {1,−1}, it is obvious that ζ

n
2+2 is equal to either ζ2 + 1 or −ζ2 + 1. However, both of

these expressions cannot be equal to zero. If ζ2 + 1 were to equal zero, then we would have that ζ ∈ {i,−i},
which is impossible due to the fact that n ≡4 2, hence both i and −i are not n-th roots of unity. On the other
hand, −ζ2 + 1 , 0 purely because ζ was chosen in such a way that it is distinct from both 1 and −1. Thus,
we get that P(ζ) , 0 for any n-th root of unity different from 1 and −1. By virtue of Lemma 1, we conclude
thatD′′1,n truly is a circulant nut graph for any n ≥ 10 such that n ≡4 2.

In the remainder of the proof, we will suppose that t ≥ 2. Eq. (1) now gives us

P(ζ) =
(
ζ

n+2
4 +

1

ζ
n+2

4

)
+

(
ζ

n+6
4 +

1

ζ
n+6

4

)
+

t−1∑
j=1

(
ζ j +

1
ζ j

)
+

n
2−1∑

j= n
2−t+1

(
ζ j +

1
ζ j

)
,

where ζ is an arbitrarily chosen n-th root of unity different from 1 and −1. It is not difficult to further obtain

P(ζ) =
(
ζ

n+6
4 + ζ

n+2
4 +

1

ζ
n+2

4

+
1

ζ
n+6

4

)
+

t−1∑
j=1

(
ζ j +

1
ζ j + ζ

n
2− j +

1
ζ

n
2− j

)
. (44)

We will finalize the proof by demonstrating that P(ζ) , 0 must be true. We will divide this proof into two
cases in the same way as it was done while proving Theorem 3.

Case ζ
n
2 = −1. In this case, it is straightforward to notice that ζ

n
2− j = −

1
ζ j and

1
ζ

n
2− j
= −ζ j, which directly

leads us to

ζ j +
1
ζ j + ζ

n
2− j +

1
ζ

n
2− j
= 0

for any j = 1, t − 1. Hence, it is convenient to simplify Eq. (44) in order to get

P(ζ) = ζ
n+6

4 + ζ
n+2

4 +
1

ζ
n+2

4

+
1

ζ
n+6

4

.

However, this formula is identical to Eq. (43) which we had to deal with while solving the case t = 1. An
almost absolutely identical proof can be used in order to show that P(ζ) , 0 must hold, as desired, hence
we choose to leave it out.

Case ζ
n
2 = 1. It is easy to see that ζ

n
2− j =

1
ζ j and

1
ζ

n
2− j
= ζ j. This implies

ζ j +
1
ζ j + ζ

n
2− j +

1
ζ

n
2− j
= 2

(
ζ j +

1
ζ j

)
for any j = 1, t − 1. According to Eq. (44), the equality P(ζ) = 0 becomes equivalent to

P(ζ) = 0

⇐⇒

(
ζ

n+6
4 + ζ

n+2
4 +

1

ζ
n+2

4

+
1

ζ
n+6

4

)
+ 2

t−1∑
j=1

(
ζ j +

1
ζ j

)
= 0

⇐⇒

(
ζ

n+6
4 + ζ

n+2
4 +

1

ζ
n+2

4

+
1

ζ
n+6

4

)
− 2 + 2

t−1∑
j=1−t

ζ j = 0
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⇐⇒ ζt−1


(
ζ

n+6
4 + ζ

n+2
4 +

1

ζ
n+2

4

+
1

ζ
n+6

4

)
− 2 + 2

t−1∑
j=1−t

ζ j

 = 0

⇐⇒

(
ζt+ n+2

4 + ζt+ n−2
4 + ζt− n+6

4 + ζt− n+10
4

)
− 2ζt−1 + 2

2t−2∑
j=0

ζ j = 0

⇐⇒ (ζ − 1)

ζt+ n+2
4 + ζt+ n−2

4 + ζt− n+6
4 + ζt− n+10

4 − 2ζt−1 + 2
2t−2∑
j=0

ζ j

 = 0

⇐⇒ ζt+ n+6
4 − ζt+ n−2

4 + ζt− n+2
4 − ζt− n+10

4 − 2ζt + 2ζt−1 + 2ζ2t−1
− 2 = 0

⇐⇒ 2ζ2t−1 + ζt+ n+6
4 − ζt+ n−2

4 − 2ζt + 2ζt−1 + ζt− n+2
4 − ζt− n+10

4 − 2 = 0.

Now, if we define ψ to be one of the two possible square roots of ζ, i.e. a complex number such that
ψ2 = ζ, then it is easy to see that the condition P(ζ) = 0 becomes equivalent to

2ψ4t−2 + ψ2t+3+ n
2 − ψ2t−1+ n

2 − 2ψ2t + 2ψ2t−2 + ψ2t−1− n
2 − ψ2t−5− n

2 − 2 = 0. (45)

Taking into consideration that the condition ζ
n
2 = 1 translates to ψn = 1, it becomes clear that in order to

prove that P(ζ) , 0 for any n-th root of unity ζ such that ζ , 1,−1 and ζ
n
2 = 1, it is enough to show that

Eq. (45) does not hold for any n-th root of unity ψ such that ψ < {1,−1, i,−i}. Since i and −i are not n-th roots
of unity to begin with, due to n ≡4 2, it suffices to prove that Eq. (45) is not safisfied for any n-th root of
unity, besides potentially 1 and −1.

We now divide the case into two subcases, depending on whether ψ
n
2 is equal to 1 or −1.

Subcase ψ
n
2 = 1. Here, it is straightforward to deduce that Eq. (45) is equivalent to

2ψ4t−2 + ψ2t+3
− ψ2t−1

− 2ψ2t + 2ψ2t−2 + ψ2t−1
− ψ2t−5

− 2 = 0

⇐⇒ 2ψ4t−2 + ψ2t+3
− 2ψ2t + 2ψ2t−2

− ψ2t−5
− 2 = 0

⇐⇒ 2ψ4t−1 + ψ2t+4
− 2ψ2t+1 + 2ψ2t−1

− ψ2t−4
− 2ψ = 0.

Now, suppose that Eq. (45) does hold for some n-th root of unity ψ different from 1 and −1. It is clear that
ψ must be a primitive b-th root of unity for some b , 1, 2, since ψ , 1,−1. Also, due to the fact that b | n
and n ≡4 2, we conclude that b , 4, 8. However, Eq. (45) directly implies that ψ is a root of the polynomial
Ut(x). Hence, we get that Ut(x) is divisible by a cyclotomic polynomial Φb(x) such that b , 1, 2, 4, 8, which
is not possible according to Lemma 12, thus yielding a contradiction.

Subcase ψ
n
2 = −1. In this subcase, Eq. (45) quickly becomes equivalent to

2ψ4t−2
− ψ2t+3 + ψ2t−1

− 2ψ2t + 2ψ2t−2
− ψ2t−1 + ψ2t−5

− 2 = 0

⇐⇒ 2ψ4t−2
− ψ2t+3

− 2ψ2t + 2ψ2t−2 + ψ2t−5
− 2 = 0

⇐⇒ 2ψ4t−1
− ψ2t+4

− 2ψ2t+1 + 2ψ2t−1 + ψ2t−4
− 2ψ = 0.

If we suppose that Eq. (45) is true for some n-th root of unity ψ different from 1 and −1, we can use the same
logic implemented in the previous subcase in order to immediately obtain that ψ has to be a primitive b-th
root of unity for some b < {1, 2, 4, 8}. However, Eq. (45) implies that ψ is a root of the polynomial Wt(x),
which further means that this polynomial has to be divisible by a cyclotomic polynomial Φb(x) such that
b < {1, 2, 4, 8}. By virtue of Lemma 12, this is impossible, which completes the proof.

5. Conclusion

In conclusion, Theorems 3 and 4 provide a construction for any 4t-regular circulant nut graph of order
n, whenever



I. Damnjanović / Filomat 37:24 (2023), 8331–8360 8354

• t is odd and n ≥ 4t + 4;

• t is even and n ≥ 4t + 6 and n ≡4 2.

For the odd values of t, these two theorems provide a way to construct a 4t-regular circulant nut graph of
every possible order, thereby fully resolving the circulant nut graph order–degree existence problem. On
the other hand, for the even values of t, Theorem 12 shows that there exists a 4t-regular circulant nut graph
of each order n ≥ 4t + 6 such that n ≡4 2, without covering the case when 4 | n.

Damnjanović and Stevanović [2, Proposition 19] have shown that an interesting irregularity exists for
the case t = 2. Moreover, there does not exist an 8-regular circulant nut graph of order 16. In fact, the set of
all the values n such that there exists an 8-regular circulant nut graph of order n is given by the expression
{14} ∪ {18, 20, 22, 24, 26, . . .}.

Despite the irregularity that occurs for t = 2, the experimental results obtained in [2] dictate that for
each even integer t such that 4 ≤ t ≤ 1300 there does exist a 4t-regular circulant nut graph of order n for
each even n ≥ 4t + 6. Bearing this in mind, we end the paper with the following conjecture.

Conjecture 3. For each even t ≥ 4 and each n ≥ 4t+ 8 divisible by four, there exists a 4t-regular circulant nut graph
of order n.

References
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Appendix A. Q mod b
t

(x) mod Φb(x) table

t mod 3 Q mod 3
t (x) Q mod 3

t (x) mod Φ3(x)

0 −3 + 3x2
−6 − 3x

1 −1 + x −1 + x
2 x − x2 1 + 2x

t mod 5 Q mod 5
t (x) Q mod 5

t (x) mod Φ5(x)

0 −3 + x − x3 + 3x4
−6 − 2x − 3x2

− 4x3

1 −1 + x + x2
− x4 2x + 2x2 + x3

2 −3 + x − x2 + 3x3
−3 + x − x2 + 3x3

3 −x + x2
− x3 + x4

−1 − 2x − 2x3

4 −1 + x2 + x3
− x4 x + 2x2 + 2x3

t mod 6 Q mod 6
t (x) Q mod 6

t (x) mod Φ6(x)

0 −3 + x − x4 + 3x5
−x

1 −1 + x + x2
− x5

−3 + 3x
2 −3 + x − x2 + 3x3

−5
3 −2 − x + x2

− x3 + x4 + 2x5
−3x

4 −2 + 2x − x2 + x3
− x4 + x5

−1 + x
5 −1 + x3 + x4

− x5
−3

t mod 10 Q mod 10
t (x) Q mod 10

t (x) mod Φ10(x)

0 −3 + x − x8 + 3x9
−2x + 3x2

− 2x3

1 −1 + x + x2
− x9

−2 + 2x + x3

2 −3 + x − x2 + 3x3
−3 + x − x2 + 3x3

3 −2 − x + x2
− x3 + x4 + 2x5

−5

encyclopediaofmath.org/index.php?title=Cyclotomic_polynomials
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4 −2 − x2 + x3
− x4 + x5 + 2x7

−2 − x − 2x2

5 −2 − x3 + x4
− x5 + x6 + 2x9

−2x + x2
− 2x3

6 −2 + 2x − x4 + x5
− x6 + x7

−2 + 2x − x3

7 −2 + 2x3
− x5 + x6

− x7 + x8
−1 − x + x2 + x3

8 −2 + 2x5
− x6 + x7

− x8 + x9
−3

9 −1 + x7 + x8
− x9

−2 + x − 2x2

t mod 15 Q mod 15
t (x) Q mod 15

t (x) mod Φ15(x)

0 −3 + x − x13 + 3x14
−1 + 2x − 3x2 + 3x3

− 2x4
− x5 + 3x6

− 2x7

1 −1 + x + x2
− x14

−2 + x + 2x2
− x3 + x4

− x6 + x7

2 −3 + x − x2 + 3x3
−3 + x − x2 + 3x3

3 −2 − x + x2
− x3 + x4 + 2x5

−2 − x + x2
− x3 + x4 + 2x5

4 −2 − x2 + x3
− x4 + x5 + 2x7

−2 − x2 + x3
− x4 + x5 + 2x7

5 −2 − x3 + x4
− x5 + x6 + 2x9

−4 + 2x2
− 3x3 + x4

− x5
− x6 + 2x7

6 −2 − x4 + x5
− x6 + x7 + 2x11

−2 − 2x − x4 + x5
− 3x6 + x7

7 −2 − x5 + x6
− x7 + x8 + 2x13

−1 − x − x3
− x4 + x6

− 2x7

8 −x6 + x7
− x8 + x9

−x + x2
− x4 + x5

− 2x6 + x7

9 −2 + 2x2
− x7 + x8

− x9 + x10
−3 + x + x2 + x4

− 2x5 + x6
− x7

10 −2 + 2x4
− x8 + x9

− x10 + x11
−1 − 2x + x2 + x4 + 2x5

− 2x6

11 −2 + 2x6
− x9 + x10

− x11 + x12
−2 + x − 2x2 + x3

− x5 + 4x6
− 2x7

12 −2 + 2x8
− x10 + x11

− x12 + x13
−2 + x2

− 2x3 + x4
− x6 + 2x7

13 −2 + 2x10
− x11 + x12

− x13 + x14
−4 + 2x − 2x2 + x3

− 3x5 + 2x6
− x7

14 −1 + x12 + x13
− x14

−1 − x − x3 + x5
− x6

− x7

t mod 30 Q mod 30
t (x) Q mod 30

t (x) mod Φ30(x)

0 −3 + x − x28 + 3x29
−7 + 3x2 + 3x3 + 4x4 + x5

− 3x6
− 4x7

1 −1 + x + x2
− x29 x − x3

− x4 + x6 + x7

2 −3 + x − x2 + 3x3
−3 + x − x2 + 3x3

3 −2 − x + x2
− x3 + x4 + 2x5

−2 − x + x2
− x3 + x4 + 2x5

4 −2 − x2 + x3
− x4 + x5 + 2x7

−2 − x2 + x3
− x4 + x5 + 2x7

5 −2 − x3 + x4
− x5 + x6 + 2x9

−2x2
− 3x3 + x4

− x5 + 3x6 + 2x7

6 −2 − x4 + x5
− x6 + x7 + 2x11

−2 − 2x − x4 + x5 + x6 + x7

7 −2 − x5 + x6
− x7 + x8 + 2x13

−5 − 3x + x3 + 3x4 + 2x5 + x6
− 4x7

8 −2 − x6 + x7
− x8 + x9 + 2x15

−2 + x − x2
− 2x3

− x4
− x5 + 3x7

9 −2 − x7 + x8
− x9 + x10 + 2x17

−5 − x − x2 + 2x3 + x4 + 2x5
− x6

− 3x7

10 −2 − x8 + x9
− x10 + x11 + 2x19 1 − x2

− 2x3
− 3x4

− 2x5 + 2x6 + 2x7

11 −2 − x9 + x10
− x11 + x12 + 2x21

−4 + x + x3 + x5
− 4x6

12 −2 − x10 + x11
− x12 + x13 + 2x23 x2

− 2x3
− x4

− 2x5 + x6

13 −2 − x11 + x12
− x13 + x14 + 2x25 2 + 2x − 2x2

− x3
− 2x4

− 3x5 + 3x7

14 −2 − x12 + x13
− x14 + x15 + 2x27

−5 − x + 4x2 + x3 + 2x4 + x5
− x6

− 5x7

15 −2 − x13 + x14
− x15 + x16 + 2x29

−1 + x2 + x3
− x5

− x6

16 −2 + 2x − x14 + x15
− x16 + x17

−4 + 3x + x3 + x4
− x6

− x7

17 −2 + 2x3
− x15 + x16

− x17 + x18
−1 − x + x2 + x3

18 −2 + 2x5
− x16 + x17

− x18 + x19
−2 + x − x2 + x3

− x4 + 2x5

19 −2 + 2x7
− x17 + x18

− x19 + x20
−2 + x2

− x3 + x4
− x5 + 2x7

20 −2 + 2x9
− x18 + x19

− x20 + x21
−2x2

− x3
− x4 + x5 + x6 + 2x7

21 −2 + 2x11
− x19 + x20

− x21 + x22
−2 − 2x + x4

− x5 + 3x6
− x7

22 −2 + 2x13
− x20 + x21

− x22 + x23
−3 − x − x3 + x4 + 2x5

− x6

23 −2 + 2x15
− x21 + x22

− x23 + x24
−6 − x + x2 + 2x3 + x4 + x5

− 3x7

24 −2 + 2x17
− x22 + x23

− x24 + x25 1 + x − 3x2
− 2x3

− x4
− 2x5 + x6 + 3x7

25 −2 + 2x19
− x23 + x24

− x25 + x26
−5 + x2 + 2x3

− x4 + 2x5
− 2x6

− 2x7

26 −2 + 2x21
− x24 + x25

− x26 + x27
−x − x3

− x5

27 −2 + 2x23
− x25 + x26

− x27 + x28 4x − x2
− 2x3

− 3x4
− 2x5

− x6 + 4x7

28 −2 + 2x25
− x26 + x27

− x28 + x29
−2 − 2x + 2x2 + x3 + 2x4

− x5
− 3x7

29 −1 + x27 + x28
− x29 1 + x − x3

− 2x4
− x5 + x6 + x7

Appendix B. R mod b
t

(x) mod Φb(x) table

t mod 3 R mod 3
t (x) R mod 3

t (x) mod Φ3(x)

0 −5 + 5x2
−10 − 5x

1 1 − x 1 − x
2 3x − 3x2 3 + 6x

t mod 5 R mod 5
t (x) R mod 5

t (x) mod Φ5(x)

0 −5 − x + x3 + 5x4
−10 − 6x − 5x2

− 4x3

1 1 − x − x2 + x4
−2x − 2x2

− x3

2 −1 + 3x − 3x2 + x3
−1 + 3x − 3x2 + x3

3 x + 3x2
− 3x3

− x4 1 + 2x + 4x2
− 2x3
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4 −3 + 3x2 + 3x3
− 3x4 3x + 6x2 + 6x3

t mod 6 R mod 6
t (x) R mod 6

t (x) mod Φ6(x)

0 −5 − x + x4 + 5x5
−7x

1 1 − x − x2 + x5 3 − 3x
2 −1 + 3x − 3x2 + x3 1
3 −2 + x + 3x2

− 3x3
− x4 + 2x5 3x

4 −2 + 2x + x2 + 3x3
− 3x4

− x5
−7 + 7x

5 −3 + 3x3 + 3x4
− 3x5

−9

t mod 10 R mod 10
t (x) R mod 10

t (x) mod Φ10(x)

0 −5 − x + x8 + 5x9
−6x + 5x2

− 6x3

1 1 − x − x2 + x9 2 − 2x − x3

2 −1 + 3x − 3x2 + x3
−1 + 3x − 3x2 + x3

3 −2 + x + 3x2
− 3x3

− x4 + 2x5
−3 + 4x2

− 4x3

4 −2 + x2 + 3x3
− 3x4

− x5 + 2x7 2 − 3x + 2x2

5 −2 + x3 + 3x4
− 3x5

− x6 + 2x9 2x − x2 + 2x3

6 −2 + 2x + x4 + 3x5
− 3x6

− x7
−6 + 6x + x3

7 −2 + 2x3 + x5 + 3x6
− 3x7

− x8
−3 − 3x + 3x2 + 3x3

8 −2 + 2x5 + x6 + 3x7
− 3x8

− x9
−5 − 4x2 + 4x3

9 −3 + 3x7 + 3x8
− 3x9

−6 + 3x − 6x2

t mod 15 R mod 15
t (x) R mod 15

t (x) mod Φ15(x)

0 −5 − x + x13 + 5x14 1 − 2x − 5x2 + 5x3
− 6x4 + x5 + 5x6

− 6x7

1 1 − x − x2 + x14 2 − x − 2x2 + x3
− x4 + x6

− x7

2 −1 + 3x − 3x2 + x3
−1 + 3x − 3x2 + x3

3 −2 + x + 3x2
− 3x3

− x4 + 2x5
−2 + x + 3x2

− 3x3
− x4 + 2x5

4 −2 + x2 + 3x3
− 3x4

− x5 + 2x7
−2 + x2 + 3x3

− 3x4
− x5 + 2x7

5 −2 + x3 + 3x4
− 3x5

− x6 + 2x9
−4 + 2x2

− x3 + 3x4
− 3x5

− 3x6 + 2x7

6 −2 + x4 + 3x5
− 3x6

− x7 + 2x11
−2 − 2x + x4 + 3x5

− 5x6
− x7

7 −2 + x5 + 3x6
− 3x7

− x8 + 2x13 1 − 3x + x3
− 3x4 + 4x5 + 3x6

− 6x7

8 x6 + 3x7
− 3x8

− x9 4 − 3x − x2 + 4x3
− 3x4 + 3x5 + 2x6

− x7

9 −2 + 2x2 + x7 + 3x8
− 3x9

− x10
−1 + 3x − x2 + 3x4

− 2x5 + 3x6 + x7

10 −2 + 2x4 + x8 + 3x9
− 3x10

− x11
−3 + 2x + 3x2

− 4x3 + 3x4 + 2x5
− 2x6 + 4x7

11 −2 + 2x6 + x9 + 3x10
− 3x11

− x12
−6 + 3x + 2x2

− x3
− 3x5 + 4x6 + 2x7

12 −2 + 2x8 + x10 + 3x11
− 3x12

− x13
−6 + 3x2

− 2x3 + 3x4
− 4x5

− 3x6 + 6x7

13 −2 + 2x10 + x11 + 3x12
− 3x13

− x14
−8 + 2x − 2x2

− x3 + 4x4
− 5x5

− 2x6 + x7

14 −3 + 3x12 + 3x13
− 3x14

−3 − 3x − 3x3 + 3x5
− 3x6

− 3x7

t mod 30 R mod 30
t (x) R mod 30

t (x) mod Φ30(x)

0 −5 − x + x28 + 5x29
−9 + 5x2 + 5x3 + 4x4

− x5
− 5x6

− 4x7

1 1 − x − x2 + x29
−x + x3 + x4

− x6
− x7

2 −1 + 3x − 3x2 + x3
−1 + 3x − 3x2 + x3

3 −2 + x + 3x2
− 3x3

− x4 + 2x5
−2 + x + 3x2

− 3x3
− x4 + 2x5

4 −2 + x2 + 3x3
− 3x4

− x5 + 2x7
−2 + x2 + 3x3

− 3x4
− x5 + 2x7

5 −2 + x3 + 3x4
− 3x5

− x6 + 2x9
−2x2

− x3 + 3x4
− 3x5 + x6 + 2x7

6 −2 + x4 + 3x5
− 3x6

− x7 + 2x11
−2 − 2x + x4 + 3x5

− x6
− x7

7 −2 + x5 + 3x6
− 3x7

− x8 + 2x13
−3 − x − x3 + x4 + 2x5 + 3x6

− 4x7

8 −2 + x6 + 3x7
− 3x8

− x9 + 2x15
−2 + 3x + x2

− 2x3
− 3x4

− 3x5 + 5x7

9 −2 + x7 + 3x8
− 3x9

− x10 + 2x17
−7 − 3x + x2 + 6x3 + 3x4 + 2x5

− 3x6
− 5x7

10 −2 + x8 + 3x9
− 3x10

− x11 + 2x19 3 − 3x2
− 2x3

− x4
− 2x5 + 2x6 + 2x7

11 −2 + x9 + 3x10
− 3x11

− x12 + 2x21
−4 + 3x − x3 + 3x5

− 4x6

12 −2 + x10 + 3x11
− 3x12

− x13 + 2x23 3x2
− 2x3

− 3x4
− 2x5 + 3x6

13 −2 + x11 + 3x12
− 3x13

− x14 + 2x25 2 + 2x − 2x2 + x3
− 2x4

− 5x5 + 5x7

14 −2 + x12 + 3x13
− 3x14

− x15 + 2x27
−7 − 3x + 4x2 + 3x3 + 6x4 + 3x5

− 3x6
− 7x7

15 −2 + x13 + 3x14
− 3x15

− x16 + 2x29 1 − x2
− x3 + x5 + x6

16 −2 + 2x + x14 + 3x15
− 3x16

− x17
−4 + 5x − x3

− x4 + x6 + x7

17 −2 + 2x3 + x15 + 3x16
− 3x17

− x18
−3 − 3x + 3x2 + 3x3

18 −2 + 2x5 + x16 + 3x17
− 3x18

− x19
−2 − x − 3x2 + 3x3 + x4 + 2x5

19 −2 + 2x7 + x17 + 3x18
− 3x19

− x20
−2 − x2

− 3x3 + 3x4 + x5 + 2x7

20 −2 + 2x9 + x18 + 3x19
− 3x20

− x21
−2x2

− 3x3
− 3x4 + 3x5 + 3x6 + 2x7

21 −2 + 2x11 + x19 + 3x20
− 3x21

− x22
−2 − 2x − x4

− 3x5 + 5x6 + x7

22 −2 + 2x13 + x20 + 3x21
− 3x22

− x23
−5 − 3x + x3 + 3x4 + 2x5

− 3x6

23 −2 + 2x15 + x21 + 3x22
− 3x23

− x24
−6 − 3x − x2 + 2x3 + 3x4 + 3x5

− 5x7

24 −2 + 2x17 + x22 + 3x23
− 3x24

− x25 3 + 3x − 5x2
− 6x3

− 3x4
− 2x5 + 3x6 + 5x7

25 −2 + 2x19 + x23 + 3x24
− 3x25

− x26
−7 + 3x2 + 2x3

− 3x4 + 2x5
− 2x6

− 2x7

26 −2 + 2x21 + x24 + 3x25
− 3x26

− x27
−3x + x3

− 3x5

27 −2 + 2x23 + x25 + 3x26
− 3x27

− x28 4x − 3x2
− 2x3

− x4
− 2x5

− 3x6 + 4x7

28 −2 + 2x25 + x26 + 3x27
− 3x28

− x29
−2 − 2x + 2x2

− x3 + 2x4 + x5
− 5x7

29 −3 + 3x27 + 3x28
− 3x29 3 + 3x − 3x3

− 6x4
− 3x5 + 3x6 + 3x7
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Appendix C. U mod b
t

(x) mod Φb(x) table

t mod 3 U mod 3
t (x) U mod 3

t (x) mod Φ3(x)

0 −3x + 3x2
−3 − 6x

1 1 − x 1 − x
2 1 − x2 2 + x

t mod 5 U mod 5
t (x) U mod 5

t (x) mod Φ5(x)

0 −5x + 5x4
−5 − 10x − 5x2

− 5x3

1 x − x3 x − x3

2 −3 − 2x + 2x2 + 3x3
−3 − 2x + 2x2 + 3x3

3 3 − 3x2 3 − 3x2

4 2 − 2x + 3x2
− 3x4 5 + x + 6x2 + 3x3

t mod 6 U mod 6
t (x) U mod 6

t (x) mod Φ6(x)

0 −4x − x2 + x4 + 4x5 5 − 10x
1 1 − x4 1 + x
2 −1 + x2 + 2x3

− 2x5
−6 + 3x

3 −4x − x2 + x4 + 4x5 5 − 10x
4 1 − x4 1 + x
5 −1 + x2 + 2x3

− 2x5
−6 + 3x

t mod 10 U mod 10
t (x) U mod 10

t (x) mod Φ10(x)

0 −4x + x4
− x6 + 4x9 3 − 6x + 3x2

− 3x3

1 x6
− x8

−x + x3

2 −1 − 2x + 2x3
− 2x5 + 2x7 + x8 1 − 2x − 2x2 + x3

3 1 − x2 + 2x5
− 2x7

−1 + x2

4 −2x + x2
− x4 + 2x5 + 2x7

− 2x9
−3 − x − 2x2 + x3

5 −4x + x4
− x6 + 4x9 3 − 6x + 3x2

− 3x3

6 x6
− x8

−x + x3

7 −1 − 2x + 2x3
− 2x5 + 2x7 + x8 1 − 2x − 2x2 + x3

8 1 − x2 + 2x5
− 2x7

−1 + x2

9 −2x + x2
− x4 + 2x5 + 2x7

− 2x9
−3 − x − 2x2 + x3

t mod 15 U mod 15
t (x) U mod 15

t (x) mod Φ15(x)

0 −4x + x4
− x11 + 4x14 4 − 3x − 4x2 + 4x3

− 3x4 + 5x6
− 4x7

1 x6
− x13

−1 + x + x4
− x5 + x6 + x7

2 −1 − 2x + 2x3
− 2x5 + 2x7 + x8

−2 − x + x3 + x4
− 3x5 + 3x7

3 −2x − x2 + 2x5
− 2x7 + x10 + 2x11

−1 − 4x − x2 + x5
− 2x6

− 2x7

4 2 − 2x − x4 + 2x7
− 2x9 + x12 4 − 2x − 3x2 + 2x3

− x4 + 2x6
− x7

5 −2x + 2x4
− x6 + 2x9

− 2x11 + x14
−1 + x2

− x3 + x4 + x7

6 −x + x8 + 2x11
− 2x13

−3 − x3 + 3x4
− 3x5

− 2x6 + 3x7

7 −2 − 2x + x3
− x10 + 2x12 + 2x13 1 − 4x − 2x2 + x3

− 2x4 + 3x5
− 4x7

8 2 − 2x2 + x5
− x12 2 − x2 + x5 + x7

9 −2x + 2x2
− 2x4 + 2x5 + x7

− x14
−1 − 2x + 3x2

− x3
− x4 + 2x5

− x6 + 2x7

10 −3x + 2x4
− 2x6 + 3x9

−3 − 3x + 3x2
− 3x3 + 2x4

− 5x6 + 3x7

11 −2x − x3 + 2x6
− 2x8 + x11 + 2x13 4 − 7x + x3

− 4x4 + 4x5 + x6
− 4x7

12 −2x + 2x2
− x5 + 2x8

− 2x10 + x13 1 − x + 2x2
− 2x3 + x4 + x7

13 1 − 2x + 2x6
− x7 + 2x10

− 2x12
−1 − 2x + 2x2

− 2x5 + 2x6 + x7

14 −2x + x2
− x9 + 2x10 + 2x12

− 2x14
−3 − 2x − x3 + 2x4

− 2x5
− x6

− x7

t mod 30 U mod 30
t (x) U mod 30

t (x) mod Φ30(x)

0 −4x + x4
− x26 + 4x29

−4 − 5x + 4x2 + 4x3 + 5x4
− 3x6

− 4x7

1 x6
− x28

−1 − x + x4 + x5 + x6
− x7

2 −1 − 2x + 2x3
− 2x5 + 2x7 + x8

−2 − 3x + 3x3 + x4
− x5 + x7

3 −2x − x2 + 2x5
− 2x7 + x10 + 2x11

−1 − 4x − x2 + 3x5 + 2x6
− 2x7

4 −2x − x4 + 2x7
− 2x9 + x12 + 2x15

−4 − 2x + x2 + 2x3
− x4

− 2x6 + x7

5 −2x − x6 + 2x9
− 2x11 + x14 + 2x19 3 − 3x2

− 3x3
− 3x4 + 3x7

6 −2x − x8 + 2x11
− 2x13 + x16 + 2x23 5 − 3x3

− 5x4
− 5x5 + 2x6 + 5x7

7 −2x − x10 + 2x13
− 2x15 + x18 + 2x27 1 − 4x + 2x2

− x3 + 2x4 + x5
− 4x7

8 −x12 + 2x15
− 2x17 + x20

−2 + 3x2
− x5

− x7

9 −2x + 2x5
− x14 + 2x17

− 2x19 + x22
−1 − 2x − x2 + x3 + 3x4 + 2x5

− x6
− 2x7

10 −2x + 2x9
− x16 + 2x19

− 2x21 + x24 1 − x − x2
− x3

− 2x4 + 3x6 + x7

11 −2x + 2x13
− x18 + 2x21

− 2x23 + x26
−4 − 5x + 3x3 + 4x4 + 4x5

− 3x6
− 4x7

12 −2x + 2x17
− x20 + 2x23

− 2x25 + x28 1 + x − 2x2
− 2x3

− 3x4 + 3x7

13 1 − 2x + 2x21
− x22 + 2x25

− 2x27 3 − 2x − 2x2
− 2x5

− 2x6 + 3x7

14 −2x + x2
− x24 + 2x25 + 2x27

− 2x29 5 − 2x − 3x3
− 2x4

− 2x5 + 3x6 + x7

15 −4x + x4
− x26 + 4x29

−4 − 5x + 4x2 + 4x3 + 5x4
− 3x6

− 4x7

16 x6
− x28

−1 − x + x4 + x5 + x6
− x7
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17 −1 − 2x + 2x3
− 2x5 + 2x7 + x8

−2 − 3x + 3x3 + x4
− x5 + x7

18 −2x − x2 + 2x5
− 2x7 + x10 + 2x11

−1 − 4x − x2 + 3x5 + 2x6
− 2x7

19 −2x − x4 + 2x7
− 2x9 + x12 + 2x15

−4 − 2x + x2 + 2x3
− x4

− 2x6 + x7

20 −2x − x6 + 2x9
− 2x11 + x14 + 2x19 3 − 3x2

− 3x3
− 3x4 + 3x7

21 −2x − x8 + 2x11
− 2x13 + x16 + 2x23 5 − 3x3

− 5x4
− 5x5 + 2x6 + 5x7

22 −2x − x10 + 2x13
− 2x15 + x18 + 2x27 1 − 4x + 2x2

− x3 + 2x4 + x5
− 4x7

23 −x12 + 2x15
− 2x17 + x20

−2 + 3x2
− x5

− x7

24 −2x + 2x5
− x14 + 2x17

− 2x19 + x22
−1 − 2x − x2 + x3 + 3x4 + 2x5

− x6
− 2x7

25 −2x + 2x9
− x16 + 2x19

− 2x21 + x24 1 − x − x2
− x3

− 2x4 + 3x6 + x7

26 −2x + 2x13
− x18 + 2x21

− 2x23 + x26
−4 − 5x + 3x3 + 4x4 + 4x5

− 3x6
− 4x7

27 −2x + 2x17
− x20 + 2x23

− 2x25 + x28 1 + x − 2x2
− 2x3

− 3x4 + 3x7

28 1 − 2x + 2x21
− x22 + 2x25

− 2x27 3 − 2x − 2x2
− 2x5

− 2x6 + 3x7

29 −2x + x2
− x24 + 2x25 + 2x27

− 2x29 5 − 2x − 3x3
− 2x4

− 2x5 + 3x6 + x7

Appendix D. W mod b
t

(x) mod Φb(x) table

t mod 3 W mod 3
t (x) W mod 3

t (x) mod Φ3(x)

0 −5x + 5x2
−5 − 10x

1 −1 + x −1 + x
2 3 − 3x2 6 + 3x

t mod 5 W mod 5
t (x) W mod 5

t (x) mod Φ5(x)

0 −3x + 3x4
−3 − 6x − 3x2

− 3x3

1 −x + x3
−x + x3

2 −1 − 2x + 2x2 + x3
−1 − 2x + 2x2 + x3

3 1 − x2 1 − x2

4 2 − 2x + x2
− x4 3 − x + 2x2 + x3

t mod 6 W mod 6
t (x) W mod 6

t (x) mod Φ6(x)

0 −4x + x2
− x4 + 4x5 3 − 6x

1 −1 + x4
−1 − x

2 1 − x2 + 2x3
− 2x5

−2 + x
3 −4x + x2

− x4 + 4x5 3 − 6x
4 −1 + x4

−1 − x
5 1 − x2 + 2x3

− 2x5
−2 + x

t mod 10 W mod 10
t (x) W mod 10

t (x) mod Φ10(x)

0 −4x − x4 + x6 + 4x9 5 − 10x + 5x2
− 5x3

1 −x6 + x8 x − x3

2 1 − 2x + 2x3
− 2x5 + 2x7

− x8 3 − 2x − 2x2 + 3x3

3 −1 + x2 + 2x5
− 2x7

−3 + 3x2

4 −2x − x2 + x4 + 2x5 + 2x7
− 2x9

−5 + x − 6x2 + 3x3

5 −4x − x4 + x6 + 4x9 5 − 10x + 5x2
− 5x3

6 −x6 + x8 x − x3

7 1 − 2x + 2x3
− 2x5 + 2x7

− x8 3 − 2x − 2x2 + 3x3

8 −1 + x2 + 2x5
− 2x7

−3 + 3x2

9 −2x − x2 + x4 + 2x5 + 2x7
− 2x9

−5 + x − 6x2 + 3x3

t mod 15 W mod 15
t (x) W mod 15

t (x) mod Φ15(x)

0 −4x − x4 + x11 + 4x14 4 − 5x − 4x2 + 4x3
− 5x4 + 3x6

− 4x7

1 −x6 + x13 1 − x − x4 + x5
− x6

− x7

2 1 − 2x + 2x3
− 2x5 + 2x7

− x8 2 − 3x + 3x3
− x4

− x5 + x7

3 −2x + x2 + 2x5
− 2x7

− x10 + 2x11 1 − 4x + x2 + 3x5
− 2x6

− 2x7

4 2 − 2x + x4 + 2x7
− 2x9

− x12 4 − 2x − x2 + 2x3 + x4 + 2x6 + x7

5 −2x + 2x4 + x6 + 2x9
− 2x11

− x14
−3 + 3x2

− 3x3 + 3x4 + 3x7

6 −3x + 3x8 + 2x11
− 2x13

−5 − 3x3 + 5x4
− 5x5

− 2x6 + 5x7

7 −2 − 2x − x3 + x10 + 2x12 + 2x13
−1 − 4x − 2x2

− x3
− 2x4 + x5

− 4x7

8 2 − 2x2
− x5 + x12 2 − 3x2

− x5
− x7

9 −2x + 2x2
− 2x4 + 2x5

− x7 + x14 1 − 2x + x2 + x3
− 3x4 + 2x5 + x6

− 2x7

10 −x + 2x4
− 2x6 + x9

−1 − x + x2
− x3 + 2x4

− 3x6 + x7

11 −2x + x3 + 2x6
− 2x8

− x11 + 2x13 4 − 5x + 3x3
− 4x4 + 4x5 + 3x6

− 4x7

12 −2x + 2x2 + x5 + 2x8
− 2x10

− x13
−1 + x + 2x2

− 2x3 + 3x4 + 3x7

13 −1 − 2x + 2x6 + x7 + 2x10
− 2x12

−3 − 2x + 2x2
− 2x5 + 2x6 + 3x7

14 −2x − x2 + x9 + 2x10 + 2x12
− 2x14

−5 − 2x − 3x3 + 2x4
− 2x5

− 3x6 + x7

t mod 30 W mod 30
t (x) W mod 30

t (x) mod Φ30(x)

0 −4x − x4 + x26 + 4x29
−4 − 3x + 4x2 + 4x3 + 3x4

− 5x6
− 4x7
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1 −x6 + x28 1 + x − x4
− x5

− x6 + x7

2 1 − 2x + 2x3
− 2x5 + 2x7

− x8 2 − x + x3
− x4

− 3x5 + 3x7

3 −2x + x2 + 2x5
− 2x7

− x10 + 2x11 1 − 4x + x2 + x5 + 2x6
− 2x7

4 −2x + x4 + 2x7
− 2x9

− x12 + 2x15
−4 − 2x + 3x2 + 2x3 + x4

− 2x6
− x7

5 −2x + x6 + 2x9
− 2x11

− x14 + 2x19 1 − x2
− x3

− x4 + x7

6 −2x + x8 + 2x11
− 2x13

− x16 + 2x23 3 − x3
− 3x4

− 3x5 + 2x6 + 3x7

7 −2x + x10 + 2x13
− 2x15

− x18 + 2x27
−1 − 4x + 2x2 + x3 + 2x4 + 3x5

− 4x7

8 x12 + 2x15
− 2x17

− x20
−2 + x2 + x5 + x7

9 −2x + 2x5 + x14 + 2x17
− 2x19

− x22 1 − 2x − 3x2
− x3 + x4 + 2x5 + x6 + 2x7

10 −2x + 2x9 + x16 + 2x19
− 2x21

− x24 3 − 3x − 3x2
− 3x3

− 2x4 + 5x6 + 3x7

11 −2x + 2x13 + x18 + 2x21
− 2x23

− x26
−4 − 7x + x3 + 4x4 + 4x5

− x6
− 4x7

12 −2x + 2x17 + x20 + 2x23
− 2x25

− x28
−1 − x − 2x2

− 2x3
− x4 + x7

13 −1 − 2x + 2x21 + x22 + 2x25
− 2x27 1 − 2x − 2x2

− 2x5
− 2x6 + x7

14 −2x − x2 + x24 + 2x25 + 2x27
− 2x29 3 − 2x − x3

− 2x4
− 2x5 + x6

− x7

15 −4x − x4 + x26 + 4x29
−4 − 3x + 4x2 + 4x3 + 3x4

− 5x6
− 4x7

16 −x6 + x28 1 + x − x4
− x5

− x6 + x7

17 1 − 2x + 2x3
− 2x5 + 2x7

− x8 2 − x + x3
− x4

− 3x5 + 3x7

18 −2x + x2 + 2x5
− 2x7

− x10 + 2x11 1 − 4x + x2 + x5 + 2x6
− 2x7

19 −2x + x4 + 2x7
− 2x9

− x12 + 2x15
−4 − 2x + 3x2 + 2x3 + x4

− 2x6
− x7

20 −2x + x6 + 2x9
− 2x11

− x14 + 2x19 1 − x2
− x3

− x4 + x7

21 −2x + x8 + 2x11
− 2x13

− x16 + 2x23 3 − x3
− 3x4

− 3x5 + 2x6 + 3x7

22 −2x + x10 + 2x13
− 2x15

− x18 + 2x27
−1 − 4x + 2x2 + x3 + 2x4 + 3x5

− 4x7

23 x12 + 2x15
− 2x17

− x20
−2 + x2 + x5 + x7

24 −2x + 2x5 + x14 + 2x17
− 2x19

− x22 1 − 2x − 3x2
− x3 + x4 + 2x5 + x6 + 2x7

25 −2x + 2x9 + x16 + 2x19
− 2x21

− x24 3 − 3x − 3x2
− 3x3

− 2x4 + 5x6 + 3x7

26 −2x + 2x13 + x18 + 2x21
− 2x23

− x26
−4 − 7x + x3 + 4x4 + 4x5

− x6
− 4x7

27 −2x + 2x17 + x20 + 2x23
− 2x25

− x28
−1 − x − 2x2

− 2x3
− x4 + x7

28 −1 − 2x + 2x21 + x22 + 2x25
− 2x27 1 − 2x − 2x2

− 2x5
− 2x6 + x7

29 −2x − x2 + x24 + 2x25 + 2x27
− 2x29 3 − 2x − x3

− 2x4
− 2x5 + x6

− x7

Appendix E. Roots of certain polynomials

In this appendix section, we will prove that some required polynomials truly do not possess any root
that is a root of unity as well, as claimed multiple times throughout Section 4. The polynomials of interest
shall be the four following ones:

Z1(x) = 2x10 + x5 + 2, Z2(x) = 2x10
− x5 + 2, Z3(x) = 2x6 + x3 + 2, Z4(x) = 2x6

− x3 + 2.

First and foremost, let us define the next two additional polynomials:

Z′(x) = 2x2 + x + 2, Z′′(x) = 2x2
− x + 2.

It is clear that the roots of Z1(x) are actually the fifth roots of the roots of Z′(x), while the roots of Z2(x) are
the fifth roots of the roots of Z′′(x). Similarly, the roots of Z3(x) represent the third roots of the roots of Z′(x),
while the roots of Z4(x) represent the third roots of the roots of Z′′(x). Thus, in order to prove that neither
of the four polynomials Z1(x),Z2(x),Z3(x),Z4(x) contains a root that is a root of unity, it is sufficient to show
that neither of the two polynomials Z′(x),Z′′(x) has such a root.

Now, if the polynomial Z′(x) were to have a root that is a root of unity, then this root would surely
represent a primitive b-th root of unity for some b ∈ N, which would imply that Φb(x) | Z′(x) must hold.
However, it is simple to show that the polynomial Z′(x) is not divisible by any cyclotomic polynomial. The
same logic can be applied to the Z′′(x) polynomial.

It is clear that neither Z′(x) nor Z′′(x) can be divisible by a cyclotomic polynomial whose degree is greater
than two. However, given the fact that degΦb = φ(b) for each b ∈ N, where φ represents Euler’s totient
function, it is easy to deduce that only five cyclotomic polynomials have a degree that is not greater than
two:

Φ1(x) = x − 1,
Φ2(x) = x + 1,

Φ3(x) = x2 + x + 1,

Φ4(x) = x2 + 1,
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Φ6(x) = x2
− x + 1.

It is trivial to check that neither Z′(x) nor Z′′(x) is divisible by any of these five polynomials, which completes
the proof.
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