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Abstract. The aim of this paper is to study zero-divisor graphs of some polarity rings, and certain special
rings whose zero-divisor graphs are of tournament. Especially, zero-divisor graphs of polar rings, J-polar
rings and nil-polar rings are connected. In addition, a ring whose zero-divisor graph is a tournament, must
be quasinormal, but the converse is not true.

1. Introduction

Let R be an associate ring with unit 1. As usual, denote by U(R), E(R) and N(R) the set of all invertible
elements of R, the set of all idempotents of R and the set of all nilpotent elements of R, respectively. In
1988, Beck [2] introduced the coloring properties of a graph, whose vertices are all the elements of the ring
and two vertices are adjacent if their product is 0. In 1999, Anderson and Livingston [1] simplified this
definition by zero-divisor graph, and proved that the zero-divisor graphs of commutative rings are always
connected with the diameter at most three. In 2012, Dolžan and Oblak [11] proved that the zero-divisor
graphs of semirings are always connected and have diameters at most 3.

In 2002, Koliha and Patrı́cio [16] defined a set comm(a) = {y ∈ R|ay = ya}, the commutant of a in ring
R, and introduced the notion of quasipolar elements of rings. In 2012, Ying and Chen [26] showed that
every strongly π-regular ring is quasipolar, and if a ring R is quasipolar, then so is eRe, for any e ∈ E(R).
Furthermore, J-quasipolar rings and nil-quasipolar rings were studied in [6, 12], and every J-quasipolar
ring was quasipolar. In 2015, Calci, Halicioglu and Harmanci [7] extended the results of J-quasipolar rings
to weakly J-quasipolar rings, and proved that if a ring R is weakly J-quasipolar (or J-quasipolar), then it
must be directly finite. In 2017, Pekacar Calci, Halicioglu and Harmanci [23] introduced δ-quasipolar rings,
and proved that every abelian δ-quasipolar ring is strongly regular, and established the relation between
δ-quasipolar ring and directly finite ring.

Motivated by these classes of quasipolarity versions of rings, we introduce polar rings, J-polar rings and
nil-polar rings. A ring R is called a polar (J-polar) ring, if for each a ∈ R, there is an idempotent p ∈ comm(a)
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such that a+p ∈ U(R) (a+p ∈ J(R)) and ap ∈ N(R) (a(1−p) ∈ N(R)), where J(R) is the Jacobson radical of R. A
ring R is called a nil-polar ring, if for each a ∈ R, there is an idempotent p ∈ comm(a) such that a + p ∈ N(R).

There are several useful rings with special characteristics as follows. An element a in a ring R is said to
be π-regular if there is an integer n ≥ 1 and b ∈ R satisfying an = anban. A ring R is said to be π-regular if for
any a ∈ R is π-regular, and is called a left C2 ring, if for any a ∈ R, Ra � R as left R-module implies Ra = Re,
for some e ∈ E(R). A ring R is said to be semiprime if a ∈ R and aRa = 0 imply a = 0. The centralizer of
semiprime ring is studied in [28].

In this paper, we study zero-divisor graphs of some polarity rings, and certain special rings whose zero-
divisor graphs are of tournament. In section 3, we first prove that zero-divisor graphs of polar rings, J-polar
rings and nil-polar rings are connected. Motivated by the relation between quasipolar ring and directly
finite ring (or strongly π-regular ring) [23, 26], we present that polar rings, J-polar rings and nil-polar rings
are directly finite, but the converse is not true. Moreover, we prove that a π-regular ring (or left C2 ring)
is directly finite if and only if its zero-divisor graph is connected. In section 4, we show that a ring whose
zero-divisor graph is a tournament, must be quasinormal, but the converse is not true. Furthermore, we
prove that a semiprime ring must be reduced, under the condition mentioned above.

2. Preliminaries

Let G = {V,E} be a graph. G is said to be complete if there is an edge between every pair of the vertices,
that is, any two vertices are adjacent. A graph G is said to be connected if there is at least one path between
any two vertices in G. A directed graph G is called a tournament if for every two vertices x and y in G,
either x → y or y → x is an edge of G. The distance d(x, y) in G of two vertices x and y is the length of a
short x − y path in G, if no such path exists, we write d(x, y) = ∞. The greatest distance between any two
vertices in G is the diameter of G, denoted by diam(G).

Let R be a ring. An element 0 , a ∈ R is called a left (right) zero-divisor if there exists 0 , x ∈ R such that
ax = 0 (xa = 0). Denote by ZL(R) (ZR(R)) the set of all left (right) zero-divisors of R. The zero-divisor graph
of a ring R, denoted by Γ(R), is a directed graph with the vertex set Z(R) in which for any two vertices x and
y, x→ y is an edge if and only if x , y and xy = 0.

3. Zero-divisor graph and polarity rings

In this section, we work in an associative ring with unit 1 unless otherwise stated. We discuss the
relation between polarity rings (or directly finite rings) and their zero-divisor graphs. It is well known that
a zero-divisor graph which is connected, is not complete in general as follows.

Example 3.1. Let R = T2(Z2) =
{(

x y
0 z

) ∣∣∣∣∣x, y, z ∈ Z2

}
. It is easy to check that

Z(R) =
{ (

0 1
0 1

)
,

(
0 0
0 1

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
1 1
0 0

) }
.

We denote the five elements of Z(R) by 1, 2, 3, 4 and 5, respectively. Then the corresponding zero-divisor
graph Γ(R) is
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which is connected, but is not complete.
We first consider when the zero-divisor graph Γ(R) of a ring R is connected. There is a relation between

connected zero-divisor graph Γ(R) and left (right) zero-divisor of R.

Lemma 3.2. [24, Theorem 2.3] Let R be a ring. Then the zero-divisor graph Γ(R) is connected if and only if
ZL(R) = ZR(R).

Here, there is an example of noncommutative polar ring as follows.

Example 3.3. R =M2(Z2) is a ring with addition and multiplication of matrices.

R =
{ (

0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
1 1
0 0

)
,

(
1 0
1 0

)
,

(
0 1
1 0

)
,

(
0 1
0 1

)
,(

0 0
1 1

)
,

(
1 1
1 0

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
,

(
0 1
1 1

)
,

(
1 1
1 1

) }
.

Since
(

1 1
1 0

) (
1 0
1 1

)
,

(
1 0
1 1

) (
1 1
1 0

)
, R is noncommutative. Moreover,

if a =
(

0 0
0 0

)
, then p =

(
1 0
0 1

)
. If a =

(
1 0
0 1

)
, then p =

(
0 0
0 0

)
.

If a =
(

1 0
0 0

)
, then p =

(
0 0
0 1

)
. If a =

(
0 0
0 1

)
, then p =

(
1 0
0 0

)
.

If a =
(

0 1
0 0

)
, then p =

(
1 0
0 1

)
. If a =

(
0 0
1 0

)
, then p =

(
1 0
0 1

)
.

If a =
(

1 1
0 0

)
, then p =

(
0 1
0 1

)
. If a =

(
1 0
1 0

)
, then p =

(
0 0
1 1

)
.

If a =
(

0 1
1 0

)
, then p =

(
0 0
0 0

)
. If a =

(
0 1
0 1

)
, then p =

(
1 1
0 0

)
.

If a =
(

0 0
1 1

)
, then p =

(
1 0
1 0

)
. If a =

(
1 1
1 0

)
, then p =

(
0 0
0 0

)
.

If a =
(

1 0
1 1

)
, then p =

(
0 0
0 0

)
. If a =

(
1 1
0 1

)
, then p =

(
0 0
0 0

)
.

If a =
(

0 1
1 1

)
, then p =

(
0 0
0 0

)
. If a =

(
1 1
1 1

)
, then p =

(
1 0
0 1

)
.

Therefore, R is a polar ring. That is, R is a noncommutative polar ring.

From Lemma 3.2, in order to discuss when the zero-divisor graph Γ(R) of a ring R is connected, it only
remains to verify that ZL(R) = ZR(R). Next, we will prove that ZL(R) = ZR(R) in polar ring R (or J-polar
ring, or nil-polar ring).

Proposition 3.4. If R is a polar ring, then ZL(R) = ZR(R).

Proof. Assume that a < ZR(R). Then there exists p2 = p ∈ comm(a) such that a + p ∈ U(R) and ap ∈ N(R).
Moreover, there is an integer n ≥ 1 satisfying (ap)n = 0, which implies (pan−1)a = 0. Since a < ZR(R), we get
pan−1 = 0. Repeating the above process, we have p = 0, which gives a ∈ U(R). That is, a < ZL(R). Hence
ZL(R) ⊆ ZR(R). In the same manner, we can see that ZR(R) ⊆ ZL(R).

Motivated by the proof of Proposition 3.4, we have the following two propositions.

Proposition 3.5. If R is a J-polar ring, then ZL(R) = ZR(R).

Proof. Assume that a < ZR(R). Then there exists p2 = p ∈ comm(a) such that a + p ∈ J(R) and a(1 − p) ∈ N(R).
From the proof of Proposition 3.4, we obtain p = 1. That is, a + 1 ∈ J(R), which implies a ∈ U(R). It means
that a < ZL(R). Therefore, ZL(R) ⊆ ZR(R). Similarly, ZR(R) ⊆ ZL(R).
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Proposition 3.6. If R is a nil-polar ring, then ZL(R) = ZR(R).

Proof. Assume that a < ZR(R). Then there exists p2 = p ∈ comm(a) such that a+p ∈ N(R). Set a+p = m ∈ N(R).
Then mp = pm, because p ∈ comm(a). On the other hand, since m ∈ N(R), there exists an integer n ≥ 1
satisfying mn = 0. Thus, [(1 − p)m]n = (1 − p)mn = 0, which leads to [(1 − p)a]n = 0. As in the proof of
Proposition 3.4, we infer that p = 1. It follows that a = (a + 1) − 1 = (a + p) − 1 = m − 1 ∈ U(R). That is,
a < ZL(R). Consequently, ZL(R) ⊆ ZR(R). In the same way, we obtain that ZR(R) ⊆ ZL(R).

Therefore, zero-divisor graphs of polar ring, J-polar ring, and nil-polar ring are connected from Lemma
3.2 and Proposition 3.4-3.6. Here we introduce a set SN(R) = {x ∈ R|xn , 0, f or all n ≥ 1}. Then, we can
replace the condition ZL(R) = ZR(R) by Z(R) ∩ SN(R) ⊆ ZL(R) ∩ ZR(R) in Lemma 3.2, and the result still
holds.

Theorem 3.7. Let R be a ring. Then the zero-divisor graph Γ(R) is connected if and only if Z(R) ∩ SN(R) ⊆
ZL(R) ∩ ZR(R).

Proof. “⇐” Take a, b ∈ Z(R) and a , b.
(1) ab = 0. In this case, a→ b is a path from a to b.
(2) ab , 0.
1) an = 0 and an−1 , 0.
If there is an integer k ≥ 2 such that an−1bk−1 , 0 and an−1bk = 0, then there is a path a→ an−1bk−1

→ b.
If an−1bk , 0, for all k ≥ 1, then b ∈ Z(R) ∩ SN(R) ⊆ ZL(R) ∩ ZR(R). Thus, there exists 0 , x ∈ R such that

xb = 0.
If an−1x = 0, then there is a path a→ an−1

→ x→ b.
If an−1x , 0, then there is also a path a→ an−1x→ b.
2) bm = 0 and bm−1 , 0.
If there is an integer k ≥ 2 such that ak−1bm−1 , 0 and akbm−1 = 0, then there is a path a→ ak−1bm−1

→ b.
If akbm−1 , 0, for all k ≥ 1, then a ∈ Z(R) ∩ SN(R) ⊆ ZL(R) ∩ ZR(R). Thus, there exists 0 , y ∈ R satisfying

ay = 0.
If ybm−1 = 0, then there is a path a→ y→ bm−1

→ b.
If ybm−1 , 0, then there is also a path a→ ybm−1

→ b.
3) a, b ∈ SN(R).
In this case, a, b ∈ Z(R) ∩ SN(R) ⊆ ZL(R) ∩ ZR(R). Thus there exist 0 , x, y ∈ R such that ax = 0 = yb.
If xy = 0, then there is a path a→ x→ y→ b.
If xy , 0, then there is also a path a→ xy→ b.
Summarizing, there is always a path form a to b, and its distance d(a, b) is no more than 3, which imply

that the zero-divisor graph Γ(R) is connected and diam(Γ(R)) ≤ 3.
“⇒” Take x ∈ Z(R) ∩ SN(R). Then x ∈ Z(R). Since Γ(R) is connected, there exists 0 , y ∈ R such that

xy = 0 or yx = 0.
If xy = 0, then x ∈ ZL(R). Since Γ(R) is connected, there is a path P = (V,E) from y to x, where

V = {y = z1, z2, · · · , zr, zr+1 = x} and E = {z1z2, z2z3, · · · , zrzr+1}. That is, there exist distinct inner vertices
y = z1, z2, · · · , zr+1 = x of P such that z1 → z2, z2 → z3, · · · , zr → zr+1 in Γ(R). Thus zrx = 0 which yields
x ∈ ZR(R). Hence x ∈ ZL(R) ∩ ZR(R). Similarly, if yx = 0, then x ∈ ZL(R) ∩ ZR(R).

Recall that a ring R is a directly finite ring if ab = 1 implies ba = 1, where a, b ∈ R. Based on the relation
between polar ring and its left (right) zero-divisor, we will discuss the relation between directly finite ring
and its left (right) zero-divisor.

Lemma 3.8. Let R be a ring. If ZL(R) ∩ SN(R) ⊆ ZR(R), then R is a directly finite ring.

Proof. Assume that ab = 1, where a, b ∈ R. Then a(1 − ba) = 0. If 1 − ba , 0, then a ∈ ZL(R) ∩ SN(R) ⊆ ZR(R).
In fact, if a < SN(R), then there is an integer n such that an = 0. Moreover, an−1 = anb = 0. Repeating the
above step, we have a = a2b = 0, which is a contradiction. Thus, there exists 0 , c ∈ R such that ca = 0. It
follows that c = c1 = cab = 0, which is a contradiction. Hence ba = 1.
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However, the converse of Lemma 3.8 is not true from the following example.

Example 3.9. Let R =


 a a b

0 0 c
0 0 d


∣∣∣∣∣a, b, c, d ∈ R

 . It is easy to verify that R is a directly finite ring. Take

0 , A =

 1 1 0
0 0 1
0 0 1

 , and 0 , B =

 0 0 2
0 0 −2
0 0 0

 ∈ R. Then AB = 0, and An =

 1 1 n − 1
0 0 1
0 0 1

 , 0, for all

n ≥ 1, which imply A ∈ ZL(R) ∩ SN(R). Assume that A ∈ ZR(R). Then there exists 0 , C ∈ R such that

CA = 0. Write C =

 x x y
0 0 z
0 0 r

 ∈ R. Then we have CA =

 x x x + y
0 0 z
0 0 r

 = 0. This gives x = y = z = r = 0,

that is, C = 0, which is a contradiction. Hence A < ZR(R).

Therefore, polar ring, J-polar ring, and nil-polar ring are directly finite, but the converse is not true. In
what follows, we consider the relation between zero-divisor graph Γ(R) of a ring R is connected and it is a
directly finite ring.

Proposition 3.10. Let R be a left C2 ring. Then Γ(R) is connected if and only if R is a directly finite ring.

Proof. Assume that R is a directly finite ring. Fix 0 , a ∈ R \ ZR(R). We first define a mapping σ : R → R,
r 7→ ra. It is easy to check that the mapping σ is a left R-homomorphism and Ra = Imσ � R. Thus, there
exists e ∈ E(R) such that Ra = Re. Write e = ba. Then we have a = aba, which implies ab = 1. Moreover,
ba = 1. If a ∈ ZL(R), then there is 0 , x ∈ R such that ax = 0, that is, x = bax = 0, which is a contradiction.
Hence a < ZL(R). It means that ZL(R) ⊆ ZR(R). Similarly, we obtain ZR(R) ⊆ ZL(R). From Lemma 3.2, Γ(R)
is connected. The converse is obvious by Lemma 3.2 and 3.8.

Recall that an element a in a ring R is said to be regular if there exists b ∈ R such that aba = a, and is
said to be strongly π-regular if there is an integer n ≥ 1 and b, c ∈ R satisfying an = an+1b and an = can+1. It
is obvious that if a ∈ R is regular or strongly π-regular, then a must be π-regular. Denote by Rre1 the set of
all regular elements of R. A ring is said to be regular (strongly π-regular) if every element in ring is regular
(strongly π-regular). It is not a necessary condition that a ring R is a left C2 ring in Proposition 3.10. Next,
we consider π-regular ring, and the conclusion still holds.

Proposition 3.11. Let R be a π-regular ring. Then Γ(R) is connected if and only if R is a directly finite ring.

Proof. Suppose that R is a directly finite ring. Fix 0 , a ∈ R \ ZR(R). Since a is π-regular, there is an integer
n ≥ 1 and an element b ∈ R such that an = anban, which gives (1−anb)an = 0. Thus, anb = 1, because a < ZR(R).
Since R is a directly finite ring, we have ban = 1, which leads to a < ZL(R) by the proof of Proposition 3.10.
That is, ZL(R) ⊆ ZR(R). Similarly, we get ZR(R) ⊆ ZL(R).

As all we know, if a ring R is regular, then it is π-regular. From Proposition 3.11, we have the following
corollary.

Corollary 3.12. Let R be a regular ring. Then Γ(R) is connected if and only if R is a directly finite ring.

Moreover, if a ring R is strongly π-regular, then it must be a directly finite ring by the following corollary.
From Proposition 3.11, the zero-divisor graph Γ(R) of R is connected.

Corollary 3.13. If R is a strongly π-regular ring, then Γ(R) is connected.

Proof. Assume that ab = 1, where a, b ∈ R. There is an integer n ≥ 1 and an element c ∈ R such that bn = bn+1c.
It is easy to see that 1 = anbn = anbn+1c = bc, which implies a = a1 = abc = 1c = c. That is, ba = bc = 1.
Consequently, R is a directly finite ring. From Proposition 3.11, we obtain that Γ(R) is connected.
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4. Tournament and some special rings

Motivated by Section 3, this section is devoted to the study of some rings, whose zero-divisor graph are
of tournament. Recall that a ring R is quasinormal, if eR(1 − e)Re = 0 for each e ∈ E(R) [25]. The following
proposition describes that thus a ring must be quasinormal, under the condition stated above.

Proposition 4.1. Let R be a ring. If Γ(R) is a tournament, then R is a quasinormal ring.

Proof. Assume that e ∈ E(R). If eR(1 − e)Re , 0, then there exist x, y ∈ R satisfying ex(1 − e)ye , 0. Thus,
1 − e , 0. It follows that there is a path 1 − e→ ex(1 − e)ye→ 1 − e, which proves that 1 − e = ex(1 − e)ye. It
is easy to see that ex(1 − e)ye = 0, which is a contradiction. Therefore, eR(1 − e)Re = 0.

The converse of Proposition 4.1 is not true from the following example.

Example 4.2. Let R = T2(Z2) =
{(

a b
0 c

) ∣∣∣∣∣a, b, c ∈ Z2

}
. It is easy to check that

E(R) =
{ (

0 0
0 0

)
,

(
0 0
0 1

)
,

(
1 0
0 0

)
,

(
0 1
0 1

)
,

(
1 1
0 0

)
,

(
1 0
0 1

) }
.

By direct computation, we infer that R is a quasinormal ring. Furthermore, there is a path
(

1 0
0 0

)
→(

0 0
0 1

)
→

(
1 0
0 0

)
and

(
1 0
0 0

)
,

(
0 0
0 1

)
. Therefore, Γ(R) is not a tournament.

Then, we will discuss regular elements in a ring with the condition stated above. Recall that the group
inverse of a in a ring R is the element a#

∈ R satisfying aa#a = a, a#aa# = a#, aa# = a#a. Note that if a# exists,
then it is unique [3]. We denote the set of all group invertible elements of R by R#. An element a ∈ R is
group invertible if and only if a ∈ a2R ∩ Ra2 [8, 22].

Proposition 4.3. Let R be a ring. If Γ(R) is a tournament, then for any regular element a ∈ R is either a ∈ U(R) or
a2 = 0.

Proof. Since a is regular, there is an element b ∈ R such that a = aba. Write e = ba. Then e2 = e and a = ae. It
means that eb(1 − e)a = eb(1 − e)ae ∈ eR(1 − e)Re. From Proposition 4.1, we get eb(1 − e)a = 0, which implies
e = ebea = eb2a2. It follows that a = ae = ab2a2

∈ Ra2. We now apply this argument again, with e = ba
replaced by 1 = ab, to obtain a = a2b2a ∈ a2R. So a ∈ R#, that is, a(1 − a#a) = 0 = (1 − a#a)a. If 1 − a#a , 0,
then there is a path a→ 1 − a#a→ a, which yields a = 1 − a#a. Hence a2 = (1 − a#a)a = 0. If 1 − a#a = 0, then
a ∈ U(R).

Corollary 4.4. Let R be a ring. If Γ(R) is a tournament, then R# = U(R)
⋃
{0}.

Proof. Suppose that a ∈ R#. Then a is a regular element. If a < U(R), then a2 = 0 by Proposition 4.3, which
infers that a = a#a2 = 0.

Let R be a ∗-ring. The Moore-Penrose inverse (or MP-inverse) [21] of a ∈ R is the element a† ∈ R
satisfying aa†a = a, a†aa† = a†, (aa†)∗ = aa†, (a†a)∗ = a†a. There is at most one a† satisfying the above equations
[13, 14, 17]. Denote by R† the set of all MP-invertible elements of R. An element a ∈ R† satisfying aa† = a†a
is said to be EP. Denote by REP the set of all EP elements of R. Various characterizations of EP element in
complex matrices, Hilbert spaces and rings with involution, are presented in [4, 5, 9, 10, 18–20, 27].

Corollary 4.5. Let R be a ∗-ring. If Γ(R) is a tournament, then R# = R†.



R. Zhao, J. Wei / Filomat 37:24 (2023), 8229–8236 8235

Proof. Assume that 0 , a ∈ R†. Then aa∗ ∈ R# and aa∗ , 0. In fact, if aa∗ = 0, then a = aa∗(a†)∗ = 0, which is
a contradiction. From Proposition 4.1 and Corollary 4.4, aa∗ ∈ U(R) and R is a quasinormal ring. From [25,
Theorem 2.4], R is a directly finite ring. Hence a ∈ U(R) ⊆ R#. Thus, R† ⊆ R#. On the other hand, it is clear
that U(R) ⊆ R†. From Corollary 4.4, R#

⊆ R†. Therefore, R# = R†.

From Corollary 4.4 and the proof of Corollary 4.5, we have the following corollary.

Corollary 4.6. Let R be a ∗-ring. If Γ(R) is a tournament, then R# = REP = Rre1.

Recall that a ring R is called a CN ring if N(R) ⊆ C(R), where C(R) is the center of R, and is called a
reduced ring if N(R) = 0. In [15], it is shown that a ring R is reduced if and only if the classical right quotient
ring of R is reduced. Next, we will find out that in what conditions can a ring R, whose zero-divisor graph
Γ(R) is a tournament, be a reduced ring (or CN ring)? Thus, we first consider a ring, which is semiprime.

Theorem 4.7. If R is a semiprime ring and Γ(R) is a tournament, then R is a reduced ring.

Proof. Suppose that the assertion of the theorem is false. Then there exists an element 0 , a ∈ R and an
integer n ≥ 2 such that an = 0 and an−1 , 0. This means that there is a path a → an−1

→ a. Since Γ(R) is
a tournament, it follows that a = an−1, which implies a2 = 0. Next, we only need to show that aRa = 0.
If there is an element x ∈ R satisfying axa , 0, then axa = a, because there is a path a → axa → a. That
is, a = axaxa and xax , 0. If ax2a , 0, then there is a path a → ax2a → a, which leads to a = ax2a. Thus,
ax(1 − xax) = 0 = (1 − xax)xa. We claim that 1 − xax , 0. In fact, if 1 − xax = 0, then xax = 1. It follows
that a = axax = ax and 1 = xax = xa. Thus a = xa2 = 0, which is a contradiction. Furthermore, there
is a path xax → 1 − xax → xax, which yields xax = 1 − xax. That is, xax2 = x − xax2. It follows that
xa = xax2a = (x − xax2)a = xa − xa = 0, that is, a = axa = 0, which is a contradiction. Thus, ax2a = 0. It
means that there is a path ax → xa → ax, which gives ax = xa. We thus get a = axa = xa2 = 0, which is a
contradiction. From the above discussions, we obtain aRa = 0. Since R is a semiprime ring, we have a = 0,
which is also a contradiction. Therefore, R is a reduce ring.

According to the above result, in what follows, we will discuss a ring R with the condition that there is
an integer n ≥ 1 such that an

∈ C(R) for any a ∈ SN(R).

Theorem 4.8. Let R be a ring. If Γ(R) is a tournament, and there is an integer n ≥ 1 such that an
∈ C(R) for any

a ∈ SN(R), then R is a CN ring.

Proof. Assume that a ∈ N(R). If a = 0, then a ∈ C(R). If a , 0, then there exists an integer n ≥ 2 such that
an = 0 and an−1 , 0. Assume that there is an element x ∈ R satisfying ax − xa , 0.
If an−1(ax− xa) , 0, then there is a path an−1(ax− xa)→ an−1

→ an−1(ax− xa), which gives an−1(ax− xa) = an−1.
It follows that an−1(ax− xa)a = an−1a = 0. There is also a path an−1(ax− xa)→ a→ an−1(ax− xa), which yields
a = an−1(ax − xa) = an−1. So a2 = 0 and a , 0. Moreover, a(ax − xa) = an−1(ax − xa) = a , 0, that is, a = −axa.
Set e = −ax. Then e2 = e ∈ SN(R). By the hypothesis, we have e ∈ C(R). The result is a = ea = ae = −a2x = 0,
which is a contradiction. Therefore, an−1(ax − xa) = 0. By a similar argument, we can get (ax − xa)an−1 = 0.
From the above discussions, there is a path an−1

→ ax − xa → an−1, which shows that an−1 = ax − xa. It
follows that a(ax − xa) = aan−1 = 0 = an−1a = (ax − xa)a. There is also a path a→ ax − xa→ a, which leads to
a = ax−xa = an−1. Hence a2 = 0 and axa = 0. If ax , 0, then there is a path ax→ a→ ax, which implies ax = a
and xa = 0. This means a = ax = ax2 = · · · = axn = · · · . Since a , 0, we have x ∈ SN(R). By assumption,
there exists an integer n ≥ 1 such that xn

∈ C(R). This forces a = axn = xna = 0, which is a contradiction.
Consequently, ax = 0.
In conclusion, we can deduce that a = ax − xa = −xa = (−x)2a = · · · = (−x)ka = · · · . Since a , 0, there is an
integer k ≥ 1 satisfying (−x)k

∈ C(R). Thus a = a(−x)k = 0, which is a contradiction. Hence, ax − xa = 0 for
any x ∈ R, that is, a ∈ C(R). The proof is completed.
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[10] D. S. Djordjević, J. J. Koliha, Characterizing Hermitian, normal and EP operators, Filomat 21(1) (2007), 39–54.
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