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SEP elements and solutions of related equations in a ring with
involution

Angqi Li?, Mengge Guan?, Junchao Wei?®

?College of mathematical science, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China

Abstract. In this paper, we study many new characterizations of SEP elements in a rings with involution,
mainly, we first discuss some properties of SEP elements by means of regular elements, {1,3}-inverses and
the equality of certain set. Next, we give some necessity and sufficiency conditions of SEP elements by
discussing the solutions of related equations. Finally, we characterize SEP elements by constructing the
group inverses and MP inverses.

1. Introduction

Let R be a ring and a € R. If there exists b € R such that a = aba, then 4 is called a regular element, and
b is called the inner inverse element of a. Clearly, bab is also an inner inverse of 2. We denote the set of all
inner inverses of a by a{1}, and a- is an inner inverse of 4, and denote the set of all regular element of R by
Rreg'
If there exists a* € R such that
adta = a, a*aa® = a*, ad® = a*a,
the element a is called group invertible element and a* is called the group inverse of a [4, 8, 9], and it is

uniquely determined by these equations. We write R to denote the set of all group invertible elements of
R.

If a map *: R — R satisfies
@) =a, (a+b) =a"+0b", (ab)" =b'a’,

then R is said to be an involution ring or a *—ring.
Let R be a *-ring and a € R. If the following equations:

a = axa, ax = (ax)*

have a common solution, then a is called {1,3} invertible element of R, and such solution is called the
{1, 3}-inverse of a. If the following equations:

a =axa, xa = (xa)*
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have a common solution, then a is called {1,4} invertible element of R, and such solution is called the
{1,4}-inverse of a.
Let R be a +-ring and a € R. If there exists a* € R such that

a=aa*a, a* =a*aa*, (aa*) = aa*, (a*a)’ = a*a,
then a is called Moore Penrose invertible element, and a* is called the Moore Penrose inverse of a [3, 6]. Let
R* denote the set of all Moore Penrose invertible elements of R.

Ifa € R* N R* and 4" = a*, then a is called EP element. On the studies of EP, the readers can refer to
[2,3,5,7,10-14, 20, 21].

If a = aa*a, then a is called partial isometry [15, 18]. It is known that a € R is a partial isometry if and
only ifa € R* and 4" = a* [11].

a € R* N R is called SEP element if a* = a* = a*. Clearly, a € R* N R* is SEP if and only a € RF? and
a € RPI, Where REP |, RPI and R5EP are denoted the set of all EP elements, all PI elements and all SEP elements
of R respectively.

In [11], many characterizations of SEP elements are given. In [19], it is shown that a € R* N R* is SEP
if and only if the equation xa*a = xaa* has at least one solution in x, =: {a, at,a*,a, (a*), (@")}. In [16],
it is proved that 2 € R* N R* is SEP if and only if the equation yxa* = yxa* has at least one solution in
X2 = {(x, y)lx, y € xa}. In [18], it is shown that a € R* N R* is SEP if and only if the equation a*xa = aa*x has
at least one solution in yx,.

Motivated by these results, this paper mainly study the ways to characterize SEP elements.

2. Some characterizations of SEP elements

Leta € R*NR*. Then, clearly, a € RS if and only if a%a* = a = (a*)", this induces us to give the following
characterization of SEP elements.

Theorem 2.1. Let a € R* N R*. Then a € RSP if and only if (a%a* — (a*)")? = a(a®a* — (a*)").

Proof. (=) It is evident because a*a™ — (a*)* = 0.
(&) Assume that (a2a* — (a*)*)? = a(a®a* — (a*)*). Then

aat —a@*) - @) a*at + @) (@*) =aPat —a@t),

this gives (a*)'a?a™ = (a*)*(a*)". Multiplying the equality on the left by a*, one has a*a’a*™ = a*a(a*)". Again
multiply the last equality on the left by aa*, one gets

@ =@,

it follows that (a*)* = (a*)*aa" = (a*a™)aa* = a. Hence a € R and a?a* = (a*)* = 4, this infers a € REP by [11,
Theorem 1.2.1]. Thus a € R%P. O

The following corollary is an immediate result of Theorem 2.1.
Corollary 2.2. Leta € R* N R*. Then a € RSE? if and only if a?a* = (a*)".
Noting that (a?a*)* = aa*a*. Hence Corollary 2.2 leads to the following theorem.

Theorem 2.3. Let a € R* N R*. Then a € R°” if and only if aa*a* = a*.

RSEP if and only if a* € RSE?, replacing a in Corollary 2.2 by a*, one obtains

Since a €
Corollary 2.4. [11, Theorem 1.5.3] Let a € R* N R*. Then a € R if and only if a*a*a = a*.

Noting that a* = a*aa*. Then Corollary 2.4 induces the following result.
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Corollary 2.5. Leta € R* N\ R*. Then a € R°EY if and only if aa*a*a = aa*.
Theorem 2.6. Leta € R* N R*. Then a € R°Y if and only if (a*)a* = aa*.
Proof. Noting that (aa*a*a)™ = (a*)'a* and (aa™)* = aa*. Hence we are done by Corollary 2.5. [
Theorem 2.7. Let a € R* N R*. Then a € RS” if and only if a*a(a*)'a*aa® = aa*.

Proof. Since (aa*a*a)* = a*a(a*)*a*aa* and (aa™)* = aa*, we are done by Corollary 2.5. [

3. Construct regular elements to characterize SEP elements
From Theorem 2.3, we have the following lemma.

Lemma 3.1. Leta € R* N R*. Then a € RSP if and only if a = aa* (a*)".

_—_
Theorem 3.2. Let a € R* N R*. Then a € RE? if and only zf( @ ) is a reqular element and (aa*a* 1- aa+) €

aa* (a*)*
( ¢ ) mn
Proof. (=)1fa € RE?, then aaa* = aaa® = a. It follows that

(aa*(a#)*) (aa*a* 1- ua*) (aa*(a#) ) (aa*(a#) ) (an’(a#)*).
a a aaa* a

aa*t(a®) )

+(,#)*
Hence (aa @) ) is a regular element and (aa*a* 1—aa ) ( {1}.

+( Y +( e
(&) If (aa @y ) is a regular element and (aa*a* 1—aa* (aa @y ) }, then

(aa*(a#)*) _ (aa*(a#)*) (aa*a* 1— aa*) (aa*(a#) ) (au*(a ) )
a a a aaat |’

it follows that a%a* = a. Hence a € REP. O

+(#
Theorem 3.3. Leta € R* N R*. Then a € RS if and only zf(a+ 1- aa*) € (aa L(za ) ){1}.

Proof. (=) Ifa € RSP, thena € REP and a = aa* (a*)* by Lemma 3.1.

+(g*Y*
This gives (aa a 1-aa ) € (aa 1(;[ y ){1} by Theorem 3.2.

+( 4+
Noting that a®™ = (aa*(a*)")* = aa*a*. Then (11+ 1- aa*) € (uu ,ga ) ){1}.

(<) From the assumption, one has

aa* (@ _ [aat @)\ o o\ [(aat @) _ (aa*(@*)at(@®)
( a )_( a (a 1=aa ) a )7\ aat@®y |
This infers a = aa*(a*)". By Lemma 3.1,a € R%(P. O

+( AH\*
Theorem 3.4. Leta € R* N\ R*. Then a € RS if and only if(aa+a* 1- (a*)*a#) € (ua @) ){1}.
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Proof. (=) If a € R°”, then a = (a*)* and a* = a*. It follows that aa* = (a*)*a*. Hence (aa*a* 1- (a*)*a#) €

+( Y
({M ;a ) ){1} by Theorem 3.2.

(<) From the assumption, one has

(ua+(a#)*) _ (aa*fla#)*) (aa+a* 1 (a+)*a#) (aa+(a#)*)

a a

_ (aa*@*)" + aa*(@") (a - (a*)")

B ( a?a* +a(a - (a*)") )

This gives
aa* (@")* = aa* (") + aat (@") @@ - @*)"). (3.1)
a=a’a* +a(a— (a*)). (3.2)

Multiplying the Eq.(3.2) on the right by a*a, one obtains a’a* = a?a*aa, this gives

a* =aaat = ad’dlat = a'd*aPatata = a'ata,

and
(aa*)" = (a*)'a* = (a*)'(a'a*a) = a*a.

Hence a € REP by [11, Theorem 1.1.3], this implies aa*(a*)* = a*a(a*)* = (a*)*. From the Eq.(3.1), one gets
(@) (a—(a*)) =0, that is, a*a* = a*a*. Hence a € R by [11, Theorem 1.5.2]. Thusa € Rt’. ]

4. Using the equality of sets to characterize SEP elements
Leta,b e R. Weseta V b = {a?, ab, ba, b?}, and use this to characterize SEP elements as follows.
Theorem 4.1. Leta € R* N R*. Then a € RS if and only if a*a® v a = a*a® v aa* (a*)".

Proof. (=) Assume thata € R°EP. Then a = aa*(a*)* by Lemma 3.1. Hence a*a® V a = a*a® v aa* (a*)".
(<) Noting thata*a? v a = {a*a?,a?},

ata® v aat(@*y = a*a®, atalat(a®), aat(a*)'ata?, aa* (a*) (a")").

By hypothesis, we have {a*a%,a?} = {a*a®, a*aa*(a*)*, aa*(a")a*a®, aa*(a*) (a")").
(1) If a*a® = a?, then we have a*a® = a*a’a* (a*)* = aa* (a*)'a*a® = aa* (a*)*(a*)". Since a*a® = a2, a € REP by
[11], this infers
a? = a*a® = atalat (a*) = a*a* (a") = a(a®Y,
and

*

a=aa® =aa@) = (@").

Hence a € R°FP.
(2) If a*a® # a?, then we can discuss the following cases.
a? = aa*(a*)*a*a®. In this case, we have

ata® = ataba* (a*) and aa* (a*)'a*a® = aa* (a*) ("),

or
ata® = atala*t (a") = aa*(a*) (a%),

or
ata® = aa*(a")(a")" and atala* (a")" = aat(a*)ata?,
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or
atalat(@®) = aat (@) (@") = aat (@*)ata®.

In the first case and the second case, we have
ata® = ataba* (a*) = (a*aPat (") )aat = atatat,
and
a=daata® = a*(atata™) = ala*.

So a € RE?, one obtains a*a® = a2, which is a contradiction.

In the third case, we also have a*a® = aa* (a*)*(a*)* = aa* (a")*(a*)*aa* = a*a*a*. So a € REP, and a*a® = a?,
which is also a contradiction.

In the fourth case, we have a® = a*a’a* (a*)*. Multiplying the equality on the left by a*, one hasa = aa™ (a*)".
Hence a € Rt by Lemma 3.1.

@) a? = aa*(a*)(a*)". Then a’a* = aa*(a*)(a*)aa* = aa*(a*)*(a*)* = . It follows that a € REP, this gives
a*a® = a?, which is a contradiction.

@ a% = a*a’a*(a")*. From the proof of the fourth case in @ we get a € RSEP. Therefore, in any case, we
havea € REP. O

Similarly, we have the following theorems.
Theorem 4.2. Let a € R* N R*. Then a € R°” if and only if a%a* v a = aa* v aa* (a*)".

Theorem 4.3. Let a € R* N R*. Then a € RS if and only ifa*a*a v a* = a*a*a V a*aa*.

5. Using the (1, 3)-inverse and (1, 4)—inverse to characterize SEP elements
Theorem 5.1. Let a € R* N R*. Then a € R°E” if and only if aa* (a*)* € a*{1,3}.

Proof. (=) Assume that a € RS, Then a = aa*(a*)* by Lemma 3.1. Noting that a € a*{1,3}. Then
aa*(a*)* € a*{1,3}.
(&) If aa* (a*)* € a*{1,3}, then

at(aa* (@) )at = a". (5.1)

a*(aa* (@*)") = (a* (aa* (@")"))". (5.2)

By the Eq.(5.2), one has a*(a*)* = a*(a*)". Multiplying the equality on the right by a*, one obtains

a* = a*aa*. Hence a € RFP by [11, Theorem 1.2.1]. By the Eq.(5.1), one gets a* = a*(a*)'a*, this gives
a=aa*a = aat(a*)a*a = (a*)". Hencea € R” and soa € RSE’. O

Corollary 5.2. Leta € R* N R*. Then a € RSEY ifand only if a* = a*(a*)a™.

Proof. (=) If a € R5FP, then aa*(a*)* € a*{1,3} by Theorem 5.1. It follows that a* = (aa*(a*)")*(a*)a* =
ataa*(a*)a*t = a*(a*)a”.
(&) Assume that a* = a*(a*)*a*. Then
aa* = aa®(@")at = (@")a" and a* = a*aa” = a*(a*)'at =a’.
It follows that a*a = (a*(a*)*a*)a = a*(a*)* = a*a. Hence a € REP and soa € R°EP. [

Theorem 5.3. Let a € R* N R*. Then a € R°E” if and only if a* € aa* (a*)*{1,4}.
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Proof. (=)1fa € R°EP. Then a = aa*(a*)* by Lemma 3.1. Noting that a* € a{1,4}. Then a* € aa*(a*)*{1, 4}.
() Ifa* € aat(a*)*{1,4}, then

aa*(a")* = aa*(a")'a*aa* (a")". (5.3)
(a*aa* (a*)")" = a*aa* (a*)". (5.4)
By the Eq.(5.3), one yields aa*(a*)* = (a*)*a*(a*)*. Multiplying the equality on the right by a*, one has
aa* = (a*)'a*. Hence a € R"!. By the Eq.(5.4), one obtains
Fat) =at (@
By Theorem 5.1, we have a € REP. Hencea € RSP, O
Theorem 5.4. Leta € R* N\ R*. Then a € RSP if and only if (a*)'a® — aa™ € l(a*) = {x|x € R, xa* = 0}.
Proof. (=) Ifa € RSE?, then we have a = aa*(a*)* by Lemma 3.1. Noting that
aat(@*)at = (@a*)at and a* = a".

Then (a*)'a* — aa™ = aa*(a*)'a*™ — aa* = aa* —aa*™ = 0 € I(a*).
(&) If (@*yat —aa* € I(a*), then (a*)'a*a®™ = aa*a™. By [2, Lemma 2.10], we have (a*)'a* = aa*. It follows
that a* = a*(a*)*a* = a*aa™ = a*, and so

(aa")* = (a*)'a" = (@*)'a* = aa*.

Hence a € RE” by [1, Theorem 1.3.1]. [

6. Characterizing SEP elements by the solution of univariate equations in a given set

When a € R°EP, we have aa*(a*)* = a = aa*a by Lemma 3.1. Hence we can construct the following
equation:

xa* (") = aa*x. (6.1)

Theorem 6.1. Let a € R* N R*. Then a € RSP if and only if Eq.(6.1) has at least one solution in p, =
{a,a*,a*,a%, (@), @"), @*)*, (a*)"}.

Proof. (=) Ifa € RSE?, then x = a is a solution by Lemma 3.1.

(&) (1) If x = a is a solution, then aa*(a*)* = aa*a = a. Hence a € R by Lemma 3.1;

(2) If x = a”, then a*a* (a*)* = aa*a® = a*. Multiplying the equality by a* on the left, we have a = aa* (a*)".
Hence a € Rt by Lemma 3.1;

(3) If x = a*, then a*a*(a*)* = aa*a®. Multiplying the equality on the right by a* , one has a*a* = aa*a*a".
Again multiply the last equality by a* on the left, one gets

atata® =a*tata’.

Hence a*a* = a*a* = a*a*aa* and a* = a*aa* = a* by [2, Lemma 2.10]. It follows that a* = a*a*(a*)" =
ata*(a") = aa*a*, and a* = a*aa* = (aa*a*)aa* = aa*a*. Taking involution of the above equality, we obtains
thata = a%a*. Hence a € REP by [11, Theorem 1.2.1]. Thus a € R57;

(4) If x = a*, then a*a™ (a*)* = aa*a*. Multiplying the equality on the left by (aa®)", one yields a*a* (a*)* = a*.
It follows that a* = aa*a*. Hence a € RE’. Now we have aa* = (a*)'a* = (a*)'a*a*(a*)* = aa*a*(a*)* = a*(a*)",
and a = a?a* = aa*(a*)*. Thus a € R°E? by Lemma 3.1;

(5) If x = (a*)", then (a*)'a*(a*)* = aa*(a*)* = (a*)*. Multiplying the equality on the left by aa*, one gets
aa*(a*)* = a. Hence a € RSP by Lemma 3.1;
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(6) If x = (a*)", then (a*)'a*(a*)* = aa*(a*)". Multiplying the equality on the left by a*a*, one yields
a‘a*(a*)* = a*. Hence a € R°" by (4);

(7) If x = (a")* = (aa*)'a(aa®)", then (aa®)*a(aa®)ya*(a*)* = aa*(aa*)'a(aa®)", e.g., (@a*)* = a(aa®)*. Multiplying
the equality on the left by a*a*, one obtains a*a*(a*)* = a*. Hence a € R°EF by (4);

(8) If x = (a")* = a*a’a*, then a*ala*ta® (a*)* = aa*a*a®a*. Multiplying the equality on the left by a*a, one

hasaatata®at = ata’a*ata’a®. Again multiply the last equality on the right by a*, one getsaata*a = a*a?a*a*a.
It follows that

aat = aa* (@t aa* (")) = a*a’atata(a (@*)) = aTala’.
Hence a € RE?, this infers x = (a*)* = aa’a* = a. Thusa € R by (1). O
Noting that a € R°” if and only if a* € R°EP. Then replace a by a* in Eq.(6.1), one gets
x(a*)'a" = a*ax. (6.2)
Theorem 6.2. Let a € R* N R*. Then a € RSE” if and only if Eq.(6.2) has at least one solution in p,.
Since a € R°” if and only if a € REP and (a*)* = (a*)*(a*)'a* = a?a* = a®a*a’. Hence we can revise Eq.(6.1)

as follows.

xa*a’atat = an*x. (6.3)

Theorem 6.3. Let a € R* N R*. Then a € RS if and only if Eq.(6.3) has at least one solution in p,.

Noting that when a € REP, we have ata’a®™ = (ata)a(aa*)* = (aa*)'a(aa®)*. Then Eq.(6.3) can be changed
as follows.

x(aa®)'aa" = aa*x. (6.4)

Theorem 6.4. Let a € R* N R*. Then a € RS if and only if Eq.(6.4) has at least one solution in p,.

7. The general solution of bivariate equations
Now we generalize Eq.(6.1) as follows
xa*(a*) = aa*y. (7.1)
Theorem 7.1. Let a € R* N R*. Then the general solution of Eq.(7.1) is given by

. /P U, VER. (7.2)

x=aa‘p+u—uata
y=pa*(a") +v-aatv

Proof. First (aa™p + u — ua*a)a*(a*)* = aa*pa*(a*)* = aa* (pa*(a*)* + v — aa*v). It follows that the formula (7.2)
is the solution of Eq.(7.1).

X=X
Next, let { 3 ’ be any solution of Eq.(7.1). Then xoa* (a*)* = aa*y,.

Choose p i/xo,yz? =yoand u = xp —aa*p. Then
ua*ta = (xo —aa*p)ata = xoata — aa*xoata = xpa*a — aa*xo(a* (@*)'a)a
= xoa*a — aa* (xpa* (a*)")a*a = xoa*a — aa* (aa* yo)a'a = xpa*a — aa* yoa‘a
= xoa™a — (xoa* (") )a'a = xpata — xpaTa = 0.
It follows that xg = aa*p + (xo —aa™p) = aa*p + u = aa*p + u — ua*a. Noting that
aa*v = aa*yy = xpa* (a*)* = pa*(@*)".

Then yo = pa*(a®)* + yo — aa*v = pa*(a*)* + v — aa*v. Hence the general solution of Eq.(7.1) is given by the
formula (7.2). O



A. Li et al. / Filomat 37:24 (2023), 8213-8228 8220

Theorem 7.2. Leta € R* N\ R*. Then a € R°” if and only if the general solution of Eq.(7.1) is given by

,p,u,ZJER. ;.3
( )

y=pata+v—aav

Proof. (=) If a € RSP, then (a*)* = a. By Theorem 7.1, one gets the general solution of Eq.(7.1) is given by
the formula (7.3).
(<) From the assumption, we get (aa™p + u — ua*a)a*(a*)* = aa*(pa*a + v — aa*v), e.g.,

aa*pa*(a*)* = aa*pa*a for allp € R.

Choosep = (a*)*, then (a*)'a*(a*)* = (a™)*. Taking involution of the above equality, one obtains a*(a*)*a* = a™.
Multiplying the equality on the right by aa*, one has aa*a™ = a*. Again multiply the last equality on the right
by a, one gets aa* = a*a. Hence a € R°EP by [11, Theorem 1.5.3]. [

Theorem 7.3. Let a € R* N R*. Then a € RSP if and only if the general solution of Eq.(7.1) is given by

x=aap+u—ua‘a R 74
,p, u, vER .
y=pa* (@) +v-aatv P

Proof. (=) If a € R°?, then a*a = a*a = aa* = aa*. It follows from Theorem 7.1 that the general solution of

Eq.(7.1) is given by the formula (7.4).
(<) From the assumption, we get (a*ap + u — ua*a)a*(a*)* = aa*(pa* (a*)* + v —aa*v), e.g.,

a‘apa*(a®)* = aa*pa*(a*)* forallp € R.

Choose p = a, then a*a®a* (a*)* = aa*(a*)*. Multiplying the equality on the right by a*aa*a*, one has a* = aa*a*.

Hence a € RSP, O

We don’t know the general solution of which equation is given by formula (7.4), for this we can construct
the equation as follows.

xa*(a") = a*a(aa®)'y. (7.5)
Theorem 7.4. Let a € R* N R*. Then the general solution of Eq.(7.5) is given by
where p,u,v € Rwitha*p =a*a*ap. (7.6)

4

x=aap+u—ua‘a
y=pat @) +v-aato

Proof. When a*p = a*a*ap, we have a*a(a*)*a*p = a*ap. So
@ap + u —ua*a)a* (a*) = a'a(@*)'a’pa*(a*) = a*a(aa®) (pa* (") +v — aa*v).

It follows that the formula (7.6) is the solution of Eq.(7.5).

X = Xo .

yey be any solution of Eq.(7.5). Then xoa* (a*)* = a*a(aa®)*y,.
=Y

Choose p = (aa*)'yoa‘a, v = yo — (aa*)*yo and u = xg. Then

Next, let {

a*p = a*(aa"y yoa'a = a*(a*a(aa") yoa*a) = ata*ap,
uata = xoata = xoa* (a*)'a‘a = a*a(aa®) yoa‘a = a*ap.
It follows that xo = u = a*ap + u — ua*a. Noting that

aa*v = aa* (yo — (aa#)*yo) =aa*yy - aa+(aa#)*yo =aa*yy—aa*yy =0,
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and pat (@) = (aa) yoa'aa* (a*)' = (aa*) yo(ad®)’ = a* a(aa®) yo(aa®)’
= a* (@Y a'aaa®y yo(aa®)’ = a*(@*) xoa™ (a*) (aa®)’ = a* (@*) xoa* (a*)"
= a* (@) aaaa®) yo = a*a(aa®) yo = (aa")"yo.
Then yo = pa*(@*)* + yo — (aa*)"yo = pa*(a*)* + v — aa*v. Hence the general solution of Eq.(7.5) is given by
formula (7.6). O

Theorem 7.5. Let a € R* N R*. Then a € RSEY if and only if Eq.(7.1) and Eq.(7.5) have the same solution.

Proof. (=) If a € RSEP. Then by Theorem 7.3, one has the general solution of Eq.(7.1) is given by formula
(7.4). Since a € REP, then a*a*a = a*. Hence formula (7.6) is consistent with formula (7.4). By Theorem 7.4,
one obtains the general solution of Eq.(7.5) is given by formula (7.4). Hence Eq.(7.1) and Eq.(7.5) have the
same solution.

(<) If Eq.(7.1) and Eq.(7.5) have the same solution. By Theorem 7.1, one gets the general solution of
Eq.(7.5) is given by formula (7.2). Then

(aa*p + u—ua*a)a* (@) = a*a(aa®) (pa* (@*)* + v — aa*v),
e.g.
aa*pa*(a’) = a*a(aa)pa*t(a*)* for all p € R.
Choose p = a, then aa*(a*)* = a*a(a")*. Multiplying the equality on the right by a*a*, one has aa*a* = a*.
Again multiply the last equality on the left by a*, one gets
atat =ata’ =a"ataa".
By [2, Lemma 2.10], we have a* = a*aa* = a*. Hence a € R”’. By Theorem 7.4, one obtains the general
solution of Eq.(7.1) is given by formula (7.6). Then
@ap +u—ua*a)a* (@)’ = aa*(pa*(@")* + v —aa*v),
e.g.
a‘apa* (@*)* = aa*pa*(a*)" for p € R witha*a*ap = a*p.

Choose p = a*, one yields a*a*(a*)* = aa*a*a* (a*)*. Noting that a* = a*, then we have a* = aa*a*, so a = a’a".

Hence a € R°” by [11, Theorem 1.5.3].
O

8. The solution of bivariate equations in a fixed set

Lemma8.1. Leta € R* NR*, y € R, x € p,. If x(a*)*y = 0, then (a*)*y = 0.

ad® x e, = {a,a", (@)}
Proof. Noting that x*x = u ¥ 4 , 4.4 - Thenwe have
(aa™Y',x € 0, =:{a*,a*, (@), (a*)", (a")*}
(1) if x € 7,, then (a*)'y = a*a(a®)'y = a*aaa® (@*)'y = aTax*x(a*)y = 0.
(2) if x € 6,, then (a*)*y = (aa®)*(a*)"y = x*x(a")'y = 0.
Thus, in any case, we have (a*)'y = 0. O
Since a € R°EP, aa™(a*)* = a = a(aa®)*a*a. Hence we can give the following equation.
xy(a#)* = x(aa#)*ya. (8.1)

Theorem 8.2. Leta € R*“NR*. Thena € RE? ifand only if Eq.(8.1) has at least one solution in p2 £ {(x, y)Ix, y € pa}-
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Proof. (=) Clearly (x,y) = (a,4") is a solution.
(<) (1) If y = a, then we have xa(a*)* = x(aa*)*a®.
If x = a, then a*(a*)* = a(aa")*a®. Multiplying the equality on the right by a*a, one yields a*(@*)* =
a*(a*)'a*a. Again multiply the last equality on the left by a*a*a*a®, one gets

Hence a € RF?, it follows that a?(a*)* = a(aa*)'a® = a(aa*)'a® = a®. Thus a®> = a*a® = a*a(@*)* = a(a")*. Hence
ae RSEP’.
@1fx = a*, then a*a(a*)* = a*(aa*)a>. Multiplying the equality on the leftby a2, one has a2(a*)* = a(aa*)a?.
Hence a € RSP by (D);
(3) If x = a*, then a*a(a®)* = a* (aa")'a?, e.g., (a*)* = a*a®. This gives a(a")* = a%. Hence a € RSEF;
(4) If x = a*, then a*a(a*)’ = a*(aa*)'a® = a’a®. Multiplying the equality on the left by (a*)*, one obtains
a(a*)* = a>. Hence a € R°7;
(B If x = (a*), then (a*)'a(a*)* = (a*)*(aa*)'a®. Multiplying the equality on the left by aa*, one has
a*(@*) = a(aa")a*. Hence a € R%FP by (1);
If x = (a*), then (a*)'a(a®)" = (a*)'(aa")*a®. Multiplying the equality on the left by a*a*, one gets
a‘a(a®)* = a*(aa")*a®. Hence a € RSEP by é@;
If x = (@) = (aa")'a(aa")", then (aa®)*a(aa®)a(a®) = (aa*)*a(aa")*(aa")*a®. Multiplying the equality on
the left by a*a*, one obtains a*a(a*)* = a*(aa*)*a>. Hence a € R°E” by (4);
If x = (a*)* = a*a®a®, then ata®a*a(a®) = a*a’a*(aa*)a?, e.g., ata®(a*)* = a*a*. This induces a(a®)* =
a*ata’(a*) = a*a*a* = a®. Hence a € RS,
(2) If y = a*, then we have xa*(a*)* = x(aa*)*a*a.
If x = a, then aa®(a*)* = a(aa®)*a*a. Multiplying the equality on the right by aa*, one obtains

a(aa®yaa = a(aa®) aa* = a(aa®).

Again multiply the last equality on the left by aa*a®, one has aa* = aa*. Hence a € RE?, it follows that
(@) = a*a(a®)* = aa®(a")* = a(aa*)'a*a = aaa*a*a = a. Hence a € R5F?;
If x = a*, then aa*(a")* = a*(aa")*a*a. Multiplying the equality on the left by 42, one has aa®(a*)* =
a(aa®)*a*a. Hence a € RSEP by (9);
é If x = a*, then a*a*(a*)* = a*(aa*)'a*a = a*a*a. Multiplying the equality on the left by 4%, one gets
a(a*)* = a>. Hence a € R°7;
If x = a*, then a*a*(a*)* = a*(aa*)'a*a = a*a*a. Multiplying the equality on the left by a?(a*)*, one has
a(a®)* = a*>. Hence a € RF7;
A If x = (a*)", then (a*)'a*(a*)* = (a*)*(aa®)'a*a. Multiplying the equality on the left by aa*, one obtains
aa*(a*)* = a(aa*)*a*a. Hence a € RSP by é
If x = (a*), then (a*)a*(a*)" = (a*)*(aa*)*a’a. Multiplying the equality on the left by a*a*, one gets
a‘a*(a®) = a*(aa*)'a*a = a*a*a. Hence a € R by (12);
O If x = (%), then (aa*)a(aa®)a*(a*)* = (aa*)'a(aa®)*(aa*)*a*a. Multiplying the equality on the left by
a‘a*, one has a*a*(a*)* = a*a*a. Hence a € RSP by (12);
If x = (a")*, then a*a’ata®(a*)" = a*alat(aa")a'a, e.g., (a*)* = a*a®. This gives a(a*)" = a*. Hence
ae RSEP’.
(3) If y = a*, then we have xa*(a*)* = x(aa")*a*a, that is, xa* (a*)* = xa*a.
If x = a, then aa*(a*)* = aa*a = a. Hence a € RSP by Lemma 3.1;
A9 If x = a*, then a*a* (a*)* = a*a*a = a*. Multiplying the equality on the left by %, one gets aa*(a*)* = a.
Hence a € RSEP by Lemma 3.1;
If x = a*, then a*a*(a*)* = a*a*a. By [17, Lemma 2.10], we get a*(a*)* = a*a. Multiplying the equality
on the left by a, one obtains aa*(a*)* = a. Hence a € R°t” by Lemma 3.1;
Q0 If x = a*, then a*a*(a*)* = a*a*a. Multiplying the equality on the left by (a*)", one has a*(a*)* = a*a.
Hence a € R by ;
If x = (a*), then (a*)'a*(a")" = (a*)'a*a = (a*)". Multiplying the equality on the left by aa*, one gets
aa*(a*)* = a. Hence a € RSP by Lemma 3.1;

7
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@) If x = (a%), then (a*)'a*(a*)* = (a*)'a*a. Multiplying the equality on the left by aa*, one obtains
aa*(a")* = a. Hence a € RSP by Lemma 3.1;

@3 If x = (a*)*, then (aa*)'a(aa®)'a* (a*)" = (aa*)a(aa®y a*a. Multiplying the equality on the left by a*a*,
one gets a*a*(a*)* = a*a*a. Hence a € RE” by Q0);

If x = (a*)*, then a*a®a*a*(a*)* = a*ala*a*a. Multiplying the equality on the left by a*a*a*a, one has
a*a*(a*)* = a*a*a. Hence a € RSEP by (19);

(4) If y = a*, then we have xa*(a*)* = x(aa*)'a*a, e.g., xa*(a*)* = xa*a. Multiplying the equation on the right
by a*, one obtains xa* = xa*. Hence a € R"! by [18, Lemma 2.2]. It follows that y = a* = a*. Hence a € R°EF
by (3).

(5) If y = (a™)", then we have x(a™)*(a*)* = x(aa®)*(a*)"a.

If x = a, then a(a™)*(a*)* = a(aa®)*(a*)"a. Multiplying the equality on the right by a*a, one yields

a(@*) @) = a@*y(a"ya*a.
Again multiply the last equality on the left by a*a*a”, one has
a' (@) =ata.

Applying the involution to the last equality, we get a*a = a*a. Hence a € RE?, it follows that a(a*)*(a*)* =
a(a*)*a. Taking involution of the above equality, we obtain

adtatat = a'atar.

Multiplying the equality on the right by (a*)*a, one gets a'a*a = a* = a*. Hence a € RSEP by [11, Theorem

1.5.3];
é@ If x = a*, then a*(a*)*(a")" = a*(aa*)"(a*)'a. Multiplying the equality on the left by a?, one has
a(a*)'(a")* = a(aa®)*(a*)*a. Hence a € R5EP by @9);
If x = a*, then a*(a*)*(a")* = a*(aa®)*(a™)*a. Multiplying the equality on the right by a*a, one yields

at(a*) (@) = at(a*) (@) a*a.
Again multiply the last equality on the left by 4, one has
(a*)(@") = @) @"ya"a.

Applying the involution to the last equality, we get a*a* = a*aa*a*™. Multiplying the equality on the right by
a%, one gets a’a = a*ta. Hence a € REP. Tt follows that x = a* = a*. Hence a € R°t" by @%;
If x = a*, then a*(a*)*(a")* = a*(aa")*(a*)'a, e.g., (a")* = a*aa. Multiplying the equality on the left by 4,
one yields a(a*)* = a>. Hence a € RSE;
If x = (a*)", then (a*)*(a*)*(a")* = (a*)*(aa")*(a*)"a. Multiplying the equality on the left by aa*, one has
a(a*)'(a")* = a(aa*) (a*)*a. Hence a € R5EP by @9);
GO If x = (a*), then (a*)*(a*)"(a*)* = (a*)*(aa®)*(a*)’a. Multiplying the equality on the left by a*a*, one
obtains a*(a*)*(a*)* = a*(aa®)*(a*)*a. Hence a € RSEP by @);
If x = (a*)¥, then (aa*)*a(aa®)*(a*) (a*)" = (aa*)*a(aa®) (aa")*(a*)*a. Multiplying the equality on the left
by a*a®, one gets (a*)* = a*aa. Hence a € R°” by 9);
If x = (a")*, then a*a’a* (a*)*(a*)* = a*a®a* (aa")*(a*)'a, e.g.,
a+a2(a+)=&(a#)=e — a+a2(a+)>fa.
Multiplying the equality on the left by a*a*aa, one has a*(a*)*(a")* = a*(aa")*(a*)"a. Hence a € RSEP by @9);
(6) If y = (a*)", then we have x(a*)*(a*)* = x(aa")*(a*)*a. Multiplying the equality on the right by 1 — aa™,
one yields
x(a")'a(l - aa®) = 0.

By Lemma 8.1, we get
(@"ya(l —aa®) = 0.
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Again multiply the last equality on the left by aa*a*, one has a = a*a*. Hence a € REP. Tt follows that
y = (a")* = (a*)". Hence a € RSP by (5).
(7) If y = (a™)*, then we have x(a*)*(a")* = x(aa")*(a*)*a, e.g.,
x(aa®) a(aa®) (a")" = x(aa®) (aa®) a(aa®)a.
Multiplying the equality on the right by (1 — a*a), one obtains
x(aa®)*a(@®) (1 —a*a) = 0.
By Lemma 8.1, one has (aa*)*a(a*)*(1 — a*a) = 0. Again multiply the last equality on the left by a*a*a*, one
yields a* = a*a*a. Hence a € REP. This infers y = (a*)* = (a*)* = a. Hence a € RSP by (1).
(8) If y = (a")*, then we have xa*a®a*(a*)* = x(aa*)*a*aa*a, that is
xatalat(a*) = xatal.
Multiplying the equality on the right by 1 —aa*, one obtains
xata®(1 —aa™) = 0.
Noting thata* = (@yaa®. By Lemma 8.1, one gets

ata®(1-aa*) = 0.

Again multiply the last equality on the left by ¥, one has a = a%a*. Hence a € REF. This infers y = (a*)" =
(a")* = a. Hencea € R by (1). [

RSEP

It is well known thata € if and only if a* € R°EP. Hence instead a in Eq.(8.1) by a*, one obtains the

following equation and theorem.

xya® = xaa®ya*. (8.2)
Theorem 8.3. Let a € R* N R*. Then a € RS if and only if Eq.(8.2) has at least one solution in p2.

Now we establish the following equation.

xya* +a* = xaa*ya* +a*. (8.3)
Theorem 8.4. Let a € R* N R*. Then a € R°E” if and only if Eq.(8.3) has at least one solution in p?.

Proof. (=) Assume that a € R°EP. Then a* = a*, this infers Eq.(8.1) has the same solution as Eq.(8.3). By
Theorem 8.1, we are done.

(<) Assume that Eq.(8.3) has at least one solution in p2. Let (x, y) = (xo, ¥o) be any solution of Eq.(8.3).
Then we have

xoyoat +a" = xoaa®yoa* +a*.

Multiplying the equality on the right by 1 —aa*, one gets a*(1 —aa*) = 0. This gives a* = a’aa*. Hencea € REP
by [11, Theorem 1.2.1]. Thus Eq.(8.1) has the same solution as Eq.(8.3). By Theorem 8.1, 2 € R%EF. [
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9. The consistency of equations and SEP elements
Consider the following equation
ax(a")" = a. 9.1)

Theorem 9.1. Let a € R* N R*. Then Eq.(9.1) is consistent if and only if a € REP. In this case, the general solution
of Eq.(9.1) is given by

x=a +u—-atauata, where u € R. 9.2)

Proof. (=) Assume that Eq.(9.1) is consistent. Then a = a%a™, it follows that a € RFP.

(<) If a € RFP, then aa*(a*)* = a(aa®)* = aaa® = a by [1, Theorem 1.3.1]. Hence x = a* is a solution, so
Eq.(9.1) is consistent. Now if Eq.(9.1) is consistent, then x = a* is a solution and a € RE’. Hence the formula
(9.2) is the solution of Eq.(9.1). Let x = x; be any solution of Eq.(9.1). Then ax,(a*)* = a. Clearly

ataxoaa™ = a*(axo(a®))aata = ataatata = a'ata = a’.
Hence xy = a* + xo — a*axoa*a. Thus the general solution of Eq.(9.1) is given by formula (9.2). O

Theorem 9.2. Leta € R* N R*. Then a € R°P if and only if Eq.(9.1) is consistent and the general solution is given
by

x=a"+u—a*aua*a, where u € R. 9.3)

Proof. (=)1fa € R ?, thena € REP and a* = a*. It follows that the formula (9.2) is equal to the formula (9.3).
By Theorem 9.1, we get Eq.(9.1) is consistent and the general solution is given by the formula (9.3).
(<) From the assumption, we get a(a®™ + u — ataua*a)(a®)* = a, e.g.,

aa*(a")* + au(a®)" — aua*a(a®)" = a for alla € R.
This gives aa*(a*)* = a. Hence a € Rt by Lemma 3.1. [
It is easy to show that the general solution of the following equation is given by (9.3).
a(aa®)axata = a. (9.4)
Hence we have the following corollary.
Corollary 9.3. Leta € R* N R*. Then a € R°EP if and only if Eq.(9.1) has the same solution as Eq.(9.4).
Now we change Eq.(9.4) as follows.
a(aa®)axata = (a*). (9.5)

Lemma 9.4. Leta € R* N R*. Then Eq.(9.5) is consistent if and only if a € RE”.
In this case, the general solution of Eq.(9.5) is given by

x =ata*(a*) + u —a*aua*a, where u € R. 9.6)

Theorem 9.5. Leta € R*NR*. Thena € RSEY ifand only if Eq.(9.5) is consistent and the general solution of Eq.(9.5)
is given by x = a* + u — a*aua*a, where u € R.

Proof. (=)1fa € RSP, thena® = a* = a*, this gives ata* (a*)* = a*. By Lemma 9.4, we get Eq.(9.5) is consistent
and the general solution of Eq.(9.5) is given by x = a* + u —a*aua*a, where u € R.

(<) From the assumption, we get a(aa®)*a(a™ + u—a*aua*a)a*a = (a*)", this gives a = (a*)*. Hence a € R5EP
by [11, Theorem 1.5.3]. O
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10. Constructions of group invertible elements and Moore Penrose invertible elements

We need the following lemma which proof is routine.

Lemma 10.1. Leta € R* N R*. Then
(1) x(aa®)'x* = aa*, where x € 7,;
(2) x(aa®)*x* = a*a, where x € 0,.

Noting that a € RE if and only if a € R* and aa* = a*a and a € RSEP if and only if a € R* N R* and
aa* = a'a or a*a = aa’. Hence the following theorem is an immediate corollary of Lemma 10.1.

Theorem 10.2. Let a € R* N R*. Then the following conditions are equivalent:
(1) a € REP;
(2) x(aa*)*x* = a*a for some x € 1,;
(3) x(aa®)*x* = aa* for some x € O,;
(4) x(aa®)*x* = a*a for some x € T,;
(5) x(aa®y*x* = aa* for some x € O,.

Theorem 10.3. Leta € R* N R*. Then
aata‘a(aa®yxtx €T,
(1) (xa+(a#)*)# — e ;
aax” x €0,
(2) (@) = (aa*ya*(aa®)";
aat x €1,
(3) (xa* (a*))(xa* (a*)")* = {(aa#)*,x o,
(4) a € RSP if and only if (xa*(a*)*)(xa* (a*)")* = a*a for some x € 1,;
(5) a € RSP if and only if (xa* (a*)*)(xa* (a*)*)* = aa* for some x € O,.
Proof. (1) If x € 7, then we have aa™x = x, this gives
(xa* (@®Y)aa*a*a(aa®) x*) = x(aa®)'x* = aa™;
(aa*a*a(aa®) x)(xa* (a*)") = aata*a(aa®y ataat (@*) = aa*;
(xa*(a"))aa*a*a(aa®) x*)(xa* (@")") = aa*xa* (a")* = xa* (a")";
and
(aata*a(aa®) x ") (xa* (a*))aata*a(aa®) x") = aa* (aa*a*a(aa®) x* = aa*ta*a(aa®) x*.
Hence (xa*(a*)")* = aa*a*a(aa®)*x*;
If x € 6,, then we have (aa")"x = x, this gives
(xa* (@)@ ax®) = xatax* = (aa")";
(@ ax™\(xa* (a*)") = a*a(aa®)a* (@) = (aa®)";
(xa* (a*)")(@"ax*) (xa* (a*)") = (aa") xa* (a*)" = xa* (a*)";
and
(@ ax®(xat (@) ) (@ ax®) = (aa®) (@*ax®) = a*ax®.
Hence (xa* (a*)*)* = a*ax*;
(2) Noting that (a*)" = a*a’a*. Then
(@) ((aa®)'a*(aa")") = (a*a’a*)((aa") a* (aa®)") = (aa®)’;
((aa*)'a*(aa*))(@*)* = ((aa*)'a"(aa®)")(a* a’a*) = (aa®)';

(@) ((aa"y a*(aa"))(a*)" = (aa")'(a*a’a®) = a*a’a”;
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and
((aa*y a*(aa*)")(a*)* ((aa*) a* (aa")") = (aa®)"((aa®)'a" (aa")") = (aa")a*(aa®)".
Hence ((a*)*)* = (aa*)*a*(aa®)*;
(3) It is an immediate result of (1).

Noting that a € RE” if and only if aa* = a*a if and only if (aa*)* = aa*. Hence (4) and (5) follows from
3). O

Theorem 10.4. Let a € R* N R*. Then the following conditions are equivalent:
(1) a € RSEP;
(2) (xa*(a*)")(xa* (a*))* = a*a for some x € T,;
(3) (xa*(a®)")(xa* (a*)")* = aa* for some x € 6,.

Proof. First, we have (xa*(a*)")* = aa*a*a(aa®)*x*. Hence
(xa* (@) (xa* (a*))" = x(aa®)x*.
Next, using Theorem 10.2, we can complete the proof. [

Similar to Theorem 10.3, we can show the following theorem.

Theorem 10.5. Let a € R* N R*. Then
(1) (aa*x)* = x*(aa®)*, where x € p,;

x*aa® x €1,

2 +a ) — .
(2) (aa™) x*(aa") x € 6,

The following theorem follows from Theorem 6.1, Theorem 10.3, Theorem 10.4 and Theorem 10.5.

Theorem 10.6. Let a € R* N R*. Then the following conditions are equivalent:
(1) a € RSP,
(2) aa*a*a(aa®)'x* = x*(aa®)* for some x € p,;
(3) aa*a*a(aa®)'x* = x*aa® for some x € 7,;
(4) a*ax® = x*(aa®)* for some x € 6,,.
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