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aFaculty of Science, University of Kragujevac, Radoja Domanovića 12, Kragujevac, Serbia
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Abstract. The main objective of this paper involving neutral stochastic functional differential equations
(NSFDEs), with finite or infinite history dependence, is to prove the existence and uniqueness of their global
solutions by imposing conditions that hold for highly non-linear NSFDEs’ coefficients. For that purpose,
Yamada-Watanabe condition or the local Lipschitz condition for the drift and diffusion coefficients are
imposed, together with contractivity condition for the neutral term. Also, instead of the linear growth
condition for the drift and diffusion coefficients of the equations, generalized Khasminskii-type conditions
are applied. The proof of the existence and uniqueness of the solution also leads us to estimates of the
moments to the solution. Consequently, we discuss some asymptotic properties of the solution in terms
of the generalized Lyapunov exponent. Additionally, we consider a class of neutral stochastic differential
equations with state-dependent delay, as a special case of NSFDEs. The theoretical results are illustrated
with two examples.

1. Introduction and Preliminary Results

The functional differential equations are introduced decades ago, in order to solve a modeling problems
in many areas of science and engineering (see [16]). Adding the noise to these deterministic models makes
these problems more realistic, so the development of stochastic functional differential equations is very
significant (see [20]). The importance of neutral stochastic functional differential equations (NSFDEs), as a
generalization of stochastic functional differential equations, is recognized and they are studied by many
authors. Kolmanovskii and Nosov first introduced the term NSFDE in [17], studying the behavior of
reactors in a chemical plant and mutual interaction between the forces that occur when an elastic body
moves through a fluid and proved the existence and uniqueness of the solution (see [18]). Other authors
also investigated the existence and uniqueness problem: in [9, 20] under the global Lipschitz and linear
growth condition for drift and diffusion coefficients, while in [4, 7, 20] the global Lipschitz condition is
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27marija.milosevic@gmail.com (Marija Milošević)
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replaced with the local one. Furthermore, uniform (see [15, 22, 28]) and local (see [22]) Yamada-Watanabe
conditions are proposed. In [10] the drift and diffusion coefficients satisfy the local Lipschitz condition
with the time-varying Lipschitz coefficient. Linear growth condition is left out, which allows drift and
diffusion to be nonlinear (Lyapunov-Razumikhin technique is applied). On the other hand, in [30, 32]
the linear growth condition is replaced with more general Khasminskii-type conditions. Also, the authors
in [10, 20, 30, 32] consider NSDFEs with coefficients which depend on finite history of the state process,
while in [4, 7, 9, 15, 22, 28] history is infinite. Motivated by the papers previously mentioned, in which
neutral term satisfies the contractivity condition, and by the fact that many NSFDEs’ coefficients are growing
superlinearly, we propose Khasminskii-type conditions in order to show that NSFDEs have unique solutions
with initial conditions defined on finite or infinite interval. These conditions should prevent the explosion of
the solution in finite time. In order to assure the existence of the unique maximal local solution to NSFDE,
with previously cited papers in mind, we impose Yamada-Watanabe condition and the local Lipschitz
condition separately, depending on the boundedness of the initial condition of the equation. The question
of the moment estimates of the solutions arises throughout the proof of the existence and uniqueness of the
solution, which is used to obtain the generalized Lyapunov exponent.

Beside the idea to impose more general conditions then the linear growth condition, our work was
remarkably influenced by trying to prove the existence and uniqueness problem for special type of NSFDE
- neutral stochastic differential equations with delay that is both time and state dependent. Stochastic
differential equations with this type of delay were investigated by only few authors ([3, 14, 26]) in oppose
to numerous papers dealing with constant or time dependent delay (e. g. [11, 21, 23, 24]).

Let us consider a complete probability space (Ω,F ,P) with a filtration {Ft}t⩾0 satisfying the usual
conditions and define m-dimensional Brownian motion B(t) = (B1(t), . . . ,Bm(t))T, t ⩾ 0, on the given complete
probability space. We denote by | · | the Euclidean norm in Rd and by QT the transpose of a vector or a
matrix Q.

For the intervals I = (−∞, 0] or I = [−κ, 0], where κ ∈ (0,∞), let us introduce notation of the following
families of continuous functions:

• Cψ(I;Rd) - functions φ : I → Rd, where I = (−∞, 0], such that φ
ψ is uniformly continuous on I and

supθ∈I
|φ(θ)|
ψ(θ) < ∞, where ψ : I → [1,∞) is a continuous, non-increasing function with ψ(θ) → ∞, as

θ→ −∞ and ψ(0) = 1, with the norm ∥φ∥ = supθ∈I
|φ(θ)|
ψ(θ) ;

• BC(I;Rd) - bounded functions φ1 : I→ Rd, where I = (−∞, 0], with the norm ∥φ1∥ = supθ∈I |φ1(θ)|;

• C(I;Rd) = {φ2 |φ2 : I→ Rd
}, where I = [−κ, 0], with the norm ∥φ2∥ = supθ∈I |φ2(θ)|;

• C([0,∞);Rd) = {a | a : [0,∞)→ Rd
};

• C([0,∞); [0,∞)) = {a1 | a1 : [0,∞)→ [0,∞)};

• C(I ∪ [0,∞); [0,∞)) = {a2 | a2 : I ∪ [0,∞)→ [0,∞)};

• C(R ×Rd; [0,∞)) = {a3 | a3 : R ×Rd
→ [0,∞)};

• C1,2(I ∪ [0,∞)×Rd; [0,∞)) = {V |V : I ∪ [0,∞)×Rd
→ [0,∞)}, where V = V(t, x) are continuously once

differentiable in t and twice in x.

Also,Mp(I;Rd) is the family ofF0-measurable,Rd-valued processes ξ(t)=ξ(t, ω), t ∈ I, with E
∫

I |ξ(t)|pdt<

∞, Cψ
F0

(I;Rd) is the family ofF0-measurable Cψ(I;Rd)-valued random variables fromMp(I;Rd) and BCF0 (I;Rd)
is the family of F0-measurable BC(I;Rd)-valued random variables fromMp(I;Rd).

In this section, let W represent one of the spaces Cψ(I;Rd), BC(I;Rd) or C(I;Rd) and according to this, WF0

will denote Cψ
F0

(I;Rd), BCF0 (I;Rd) or CF0 (I;Rd). Considering Borel-measurable functionals u : [0,∞) ×W →
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Rd, f : [0,∞) × Rd
× W → Rd and 1 : [0,∞) × Rd

× W → Rd×m, we observe the d-dimensional neutral
stochastic functional differential equation

d[x(t) − u(t, xt)] = f (t, x(t), xt) dt + 1(t, x(t), xt) dB(t), t ⩾ 0, (1)

with initial condition

x0 = φ = {φ(θ) : θ ∈ I} ∈WF0 , (2)

where xt = {x(t + θ) : θ ∈ I} is W-valued stochastic process.
For V ∈ C1,2(I ∪ [0,∞) ×Rd; [0,∞)), we define an operator LV : [0,∞) ×Rd

×W → R by

LV(t, x, y) = Vt(t, x − u(t, y)) + Vx(t, x − u(t, y)) f (t, x, y) +
1
2

trace[1T(t, x, y)Vxx(t, x − u(t, y))1(t, x, y)]. (3)

Necessary assumptions for proving the existence and uniqueness of the solution of Eq. (1), that will be
introduced in the sequel, and the form of the equation itself require the application of the following lemma.
It should be emphasized that it represents a useful generalization of the Bellman-Gronwall inequality (see
[25]).

Lemma 1.1. (Dhongade-Deo) Let functions l(t), m(t) : (0,∞) → (0,∞), function n(t) : (0,∞) → (0,∞) is
monotonic non-decreasing, p(t) : (0,∞)→ [1,∞) and all functions are continuous on (0,∞). If

l(t) ⩽ n(t) + p(t)
∫ t

0
m(s)l(s)ds, t > 0, (4)

then

l(t) ⩽ n(t)p(t) exp
( ∫ t

0
m(s)p(s)ds

)
, t > 0.

The paper is organized as follows. In Section 2 the main assumptions are imposed for the existence and
uniqueness of the solution of NSFDEs to be proven and moment estimates of the solutions are established,
considering coefficients from different phase spaces. Also, the upper bound of the generalized Lyapunov
exponent is determined. In Section 3, an insight into the neutral stochastic differential equations with state
dependent delay is provided. In Section 4 two examples that illustrate the theory are given.

2. The Existence, Uniqueness and Moment Estimates of the Solution of NSFDEs

The starting point for our proof of the existence and uniqueness of the global solution to Eq. (1) is the
existence of the unique maximal local solution. Knowing that it exists, we can show that the explosion time
is not finite almost surely, which can be assured by proposing Khasminskii-type conditions.

Definition 2.1. A continuous Ft-adapted Rd-valued process x(t), t ∈ I ∪ [0, σe), with a stopping time σe, is a local
solution of Eq. (1) with initial condition (2), if for every t ⩾ 0,

x(σl ∧ t) = φ(0) + u(σl ∧ t, xσl∧t) − u(0, φ) +
∫ σl∧t

0
f (s, x(s), xs) ds +

∫ σl∧t

0
1(s, x(s), xs) dB(s)

holds for any l ⩾ 1, where {σl}l⩾1 is a non-decreasing sequence of finite stopping times, such that σl ↑ σe a.s. as l→∞.
Moreover, if lim supt→σe

|x(t)| = ∞ a.s. whenever σe < ∞, then x(t), t ∈ I ∪ [0, σe), is a maximal local solution and
σe is called the explosion time. A maximal local solution is unique if for every other maximal local solution y(t),
t ∈ I ∪ [0, σE), σe = σE a.s. and x(t) = y(t) for every t ∈ I ∪ [0, σe) a.s.
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Let us introduce the following assumptions.
P1. (Yamada-Watanabe condition) For any integer n ⩾ 1, there exists a function Kn : [0,∞) → [0,∞),

such that, for all x1, x2 ∈ R
d, y1, y2 ∈ Cψ(I;Rd) (or y1, y2 ∈ C(I;Rd)), with |x1| ∨ |x2| ∨ ∥y1∥ ∨ ∥y2∥ ⩽ n and all

t ⩾ 0,

| f (t, x1, y1) − f (t, x2, y2)|2 ∨ |1(t, x1, y1) − 1(t, x2, y2)|2 ⩽ Kn(|x1 − x2|
2 + ∥y1 − y2∥

2). (5)

Functions Kn are continuous, non-decreasing, concave, Kn(0) = 0 and
∫
∞

0+
ds

Kn(s) = ∞. Also, for every t ⩾ 0,
there exists a constant K > 0, such that

| f (t, 0, 0)|2 ∨ |1(t, 0, 0)|2 ⩽ K. (6)

P1’. (Local Lipschitz condition) For any integer n ⩾ 1, there exists a positive constant Kn, such that, for
all x1, x2 ∈ R

d, y1, y2 ∈ BC(I;Rd) (or y1, y2 ∈ C(I;Rd)), with |x1| ∨ |x2| ∨ ∥y1∥ ∨ ∥y2∥ ⩽ n and all t ⩾ 0,

| f (t, x1, y1) − f (t, x2, y2)|2 ∨ |1(t, x1, y1) − 1(t, x2, y2)|2 ⩽ Kn(|x1 − x2|
2 + ∥y1 − y2∥

2).

P2. (Khasminskii-type conditions) There exist a function V ∈ C1,2(I∪[0,∞)×Rd; [0,∞)), positive constant
C1, nonnegative constant c2 and functions C2 and h in C([0,∞); [0,∞)), such that, for every (t, x) ∈ [0,∞)×Rd

and p > 0,

C1|x|p ⩽ V(t, x) ⩽ c2h(t) + C2(t)|x|p (7)

and there exists the function D ∈ C([0,∞); [0,∞)), such that

LV(t, x, y) ⩽ D(t)
(
1 + sup

s∈I∪[0,t]
V(s, x)

)
, (8)

for every (t, x, y) ∈ [0,∞) ×Rd
×W.

P3. (Contractivity condition) There exists a constant α ∈ (0, 1), such that, for all x, y ∈W and t ⩾ 0,

|u(t, x) − u(t, y)| ⩽ α∥x − y∥.

Let us denote u(t, 0) = r(t), for every t ⩾ 0, where r ∈ C([0,∞);Rd). Then, from the last inequality we have
that |u(t, y)| ⩽ α∥y∥ + |r(t)|, for every (t, y) ∈ [0,∞) ×W.

Remark 2.2. Obviously, the condition (5) is weaker than the local Lipschitz condition. If Kn(x) ≡ Knx, for x ⩾ 0
and positive constants Kn, P1’ is satisfied. However, since the functions from Cψ(I;Rd) are not necessarily bounded,
condition (6) is required. If we consider BC(I;Rd) instead of Cψ(I;Rd), (6) is no longer needed. This is the reason we
propose both P1 and P1’, where only one of them is required, according to the equation coefficients and their domain,
for the existence of the unique maximal local solution.

Also, the condition (7) is weaker than the condition

C1|x|p ⩽ V(t, x) ⩽ C2|x|p, C1,C2 ∈ (0,∞), (9)

which is used in [30, 32]. This allows us to expand the family of the coefficients of Eq. (1) for which there are a unique
global solutions, by enlarging the number of choices for a function V for which the estimate (8) can be obtained.

Theorem 2.3. If one of the assumptions P1 and P1’ hold, together with P2, P3 and the condition

|Vx(t, x − u(t, y))1(t, x, y)| ⩽ D(t)
(
1 + sup

s∈I∪[0,t]
V(s, x)

)
, (10)

then, for any initial condition (2), there exists a unique global solution x(t), t ∈ I ∪ [0,∞), of Eq. (1). Moreover, for
every t ⩾ 0

E sup
z∈I∪[0,t]

V(z, x(z)) ⩽ A(t)B(t)eB(t)t, (11)
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where

A(t) = 2 + 2E sup
θ∈I

V(θ,φ(θ)) + 2c2 sup
z∈[0,t]

h(z) + 2 sup
z∈[0,t]

C2(z)
(
d1(p)E∥φ∥p + d2(p) sup

z∈[0,t]
|r(z)|p +

Ṽd3(p)
C1

)
,

B(t) =
d3(p)
C2

1

sup
z∈[0,t]

C2(z) sup
z∈[0,t]

D(z)
(
16 sup

z∈[0,t]
C2(s) sup

z∈[0,t]
D(z) +

C1

d3(p)

)
∨ 1,

(12)

for Ṽ = EV(0, φ(0) − u(0, φ)) and

d1(p) =


αp

1 − αp , p ∈ (0, 1],

α
1 − α

, p ∈ (1,∞),
d2(p) =


1

1 − αp , p ∈ (0, 1],

(
√
α − α)1−p

1 − α
, p ∈ (1,∞),

d3(p) =


1

1 − αp , p ∈ (0, 1],

(1 −
√
α)1−p

1 − α
, p ∈ (1,∞).

(13)

In particular, if supt⩾0 h(t) = H and supt⩾0 C2(t) = C2 in condition P2, as well as supt⩾0 |r(t)| = R in condition
P3, then

E sup
z∈I∪[0,t]

V(z, x(z)) ⩽ ÃeB̃(t)t, t ⩾ 0, (14)

where

Ã = 2 + 2E sup
θ∈I

V(θ,φ(θ)) + 2c2H + 2C2

(
d1(p)E∥φ∥p + d2(p)Rp +

Ṽd3(p)
C1

)
,

B̃(t) =
2C2d2

3(p)

C2
1

sup
z∈[0,t]

D(z)
(
16C2 sup

z∈[0,t]
D(z) +

C1

d3(p)

)
.

(15)

Proof. The existence of the unique maximal local solution x(t), t ∈ I ∪ [0, σe), of Eq. (1) is assured under the
assumptions P1 and P3 if W = Cψ(I;Rd) or W = C(I;Rd) (see [22], Corollary 3.1), or the assumptions P1’ and
P3 if W = BC(I;Rd) or W = C(I;Rd) (see [31], Theorem 3.1), for any given initial condition φ ∈ WF0 , where
σe is the explosion time.

Since φ ∈ WF0 , there exists sufficiently large l0 > 0, such that ∥φ∥ ⩽ l0. For each integer l ⩾ l0, define the
increasing sequence of the stopping times {σl}l⩾l0 , with

σl = inf{t ∈ [0, σe) : |x(t)| ⩾ l},

where inf ∅ = ∞. Let σ∞ = liml→∞ σl. Obviously, σ∞ ⩽ σe a.s.
For arbitrary ε > 0 and p > 1, using inequality

|a + b|p ⩽
(
1 + ε

1
p−1

)p−1
(
|a|p +

|b|p

ε

)
, a, b ∈ R, (16)

(see [20], Lemma 4.1) and the assumption P3, we get

|x(σl ∧ t)|p ⩽
(
1 + ε

1
p−1

)p−1
|x(σl ∧ t) − u(σl ∧ t, xσl∧t)|p + ε−1

(
1 + ε

1
p−1

)p−1
|u(σl ∧ t, xσl∧t)|p (17)

⩽
(
1 + ε

1
p−1

)p−1
|x(σl ∧ t) − u(σl ∧ t, xσl∧t)|p + ε−1

(
1 + ε

1
p−1

)2(p−1)(
ε−1αp

∥xσl∧t∥
p + sup

z∈[0,t]
|r(z)|p

)
.

As, in case of W = Cψ(I;Rd), for φ ∈ Cψ(I;Rd), ∥φ∥ = supθ∈I
|φ(θ)|
ψ(θ) ⩽ supθ∈I |φ(θ)|, we find that

sup
z∈[0,t]

|x(σl ∧ z)|p ⩽
(
1 + ε

1
p−1

)p−1
sup
z∈[0,t]

|x(σl ∧ z) − u(σl ∧ z, xσl∧z)|p + ε−2αp
(
1 + ε

1
p−1

)2(p−1)(
∥φ∥p + sup

z∈[0,t]
|x(σl ∧ z)|p

)
+ ε−1

(
1 + ε

1
p−1

)2(p−1)
sup
z∈[0,t]

|r(z)|p,
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which yields(
1−ε−2αp

(
1 + ε

1
p−1

)2(p−1)
)

sup
z∈[0,t]

|x(σl ∧ z)|p

⩽
(
1 + ε

1
p−1

)p−1
sup
z∈[0,t]

|x(σl ∧ z) − u(σl ∧ z, xσl∧z)|p + ε−1
(
1 + ε

1
p−1

)2(p−1)(
ε−1αp

∥φ∥p + sup
z∈[0,t]

|r(z)|p
)
. (18)

Choosing ε =
( √

α

1 −
√
α

)p−1

, we have 1 − ε−2αp
(
1 + ε

1
p−1

)2(p−1)
= 1 − α > 0, and (18) becomes

sup
z∈[0,t]

|x(σl ∧ z)|p ⩽
(1 −

√
α)1−p

1 − α
sup
z∈[0,t]

|x(σl ∧ z) − u(σl ∧ z, xσl∧z)|p +
α

1 − α
∥φ∥p +

(
√
α − α)1−p

1 − α
sup
z∈[0,t]

|r(z)|p. (19)

For p ∈ (0, 1], by applying inequality

|a + b|p ⩽ |a|p + |b|p,

instead of (17), we obtain

sup
z∈[0,t]

|x(σl ∧ z)|p ⩽ sup
z∈[0,t]

|x(σl ∧ z) − u(σl ∧ z, xσl∧z)|p + αp
(
∥φ∥p + sup

z∈[0,t]
|x(σl ∧ z)|p

)
+ sup

z∈[0,t]
|r(z)|p,

which gives us

sup
z∈[0,t]
|x(σl ∧ z)|p ⩽

1
1 − αp

(
sup
z∈[0,t]

|x(σl ∧ z) − u(σl ∧ z, xσl∧z)|p + αp
∥φ∥p + sup

z∈[0,t]
|r(z)|p

)
. (20)

From (19), (20), (7) and (13), we see that, for p > 0,

sup
z∈[0,t]

V(σl ∧ z, x(σl ∧ z)) ⩽ c2 sup
z∈[0,t]

h(z) + sup
z∈[0,t]

C2(z) sup
z∈[0,t]

|x(σl ∧ z)|p

⩽ c2 sup
z∈[0,t]

h(z) + sup
z∈[0,t]

C2(z)
(
d1(p)∥φ∥p + d2(p) sup

z∈[0,t]
|r(z)|p

)
+ d3(p) sup

z∈[0,t]
C2(z) sup

z∈[0,t]
|x(σl ∧ z) − u(σl ∧ z, xσl∧z)|p

⩽ c2 sup
z∈[0,t]

h(z) + sup
z∈[0,t]

C2(z)
(
d1(p)∥φ∥p + d2(p) sup

z∈[0,t]
|r(z)|p

)
+

d3(p)
C1

sup
z∈[0,t]

C2(z) sup
z∈[0,t]

V
(
σl ∧ z, x(σl ∧ z) − u(σl ∧ z, xσl∧z)

)
. (21)

If we denote V0 = V(0, φ(0) − u(0, φ)), by applying the generalized Itô formula (see [20], Theorem 6.4) and
(8), we obtain

V(t, x(t) − u(t, xt)) ⩽ V0 +

∫ t

0
D(s)

(
1 + sup

z∈I∪[0,s]
V(z, x(z))

)
ds +M(t),

where

M(t) =
∫ t

0
Vx(s, x(s) − u(s, xs)) 1(s, x(s), xs) dB(s)
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is a local martingale and M(0) = 0. Consequently, (21) yields

sup
z∈I∪[0,t]

V(σl ∧ z, x(σl ∧ z))

⩽ sup
θ∈I

V(θ,φ(θ)) + c2 sup
z∈[0,t]

h(z) + sup
z∈[0,t]

C2(z)
(
d1(p)∥φ∥p + d2(p) sup

z∈[0,t]
|r(z)|p +

V0 d3(p)
C1

)
+

d3(p)
C1

sup
z∈[0,t]

C2(z)
∫ t

0
D(s)

(
1 + sup

z∈I∪[0,s]
V(σl ∧ z, x(σl ∧ z))

)
ds +

d3(p)
C1

sup
z∈[0,t]

C2(z) sup
z∈[0,t]

M(σl ∧ z). (22)

By the Burkholder-Davis-Gundy inequality (see [20], Theorem 7.3), (10) and elementary inequality 2ab ⩽
εa2 + ε−1b2, for ε > 0, we derive

sup
z∈[0,t]

C2(z)E sup
z∈[0,t]

M(σl ∧ z)

⩽
√

32 sup
z∈[0,t]

C2(z) E
[ ∫ t

0

(
sup
z∈[0,s]

D(z)
)2(

1 + sup
z∈I∪[0,s]

V(σl ∧ z, x(σl ∧ z))
)2

ds
] 1

2

⩽
√

32 sup
z∈[0,t]

C2(z) E
[(

1 + sup
z∈I∪[0,t]

V(σl ∧ z, x(σl ∧ z))
) ∫ t

0

(
sup
z∈[0,s]

D(z)
)2(

1 + sup
z∈I∪[0,s]

V(σl ∧ z, x(σl ∧ z))
)

ds
] 1

2

⩽
ε
2

E
(
1 + sup

z∈I∪[0,t]
V(σl ∧ z, x(σl ∧ z))

)
+

16
ε

(
sup
z∈[0,t]

C2(z) sup
s∈[0,t]

D(s)
)2

E
∫ t

0

(
1 + sup

z∈I∪[0,s]
V(σl ∧ z, x(σl ∧ z))

)
ds.

Substituting the previous relation into (22), where expectation is taken on both sides, for Ṽ = EV0, we have
that

1 + E sup
z∈I∪[0,t]

V(σl ∧ z, x(σl ∧ z))

⩽ 1 + E sup
θ∈I

V(θ,φ(θ)) + c2 sup
z∈[0,t]

h(z) +
εd3(p)
2C1

E
(
1 + sup

z∈I∪[0,t]
V(σl ∧ z, x(σl ∧ z))

)
+ sup

z∈[0,t]
C2(z)

(
d1(p)E∥φ∥p + d2(p) sup

z∈[0,t]
|r(z)|p +

Ṽd3(p)
C1

)
+

d3(p)
C1

sup
z∈[0,t]

C2(z) sup
z∈[0,t]

D(z)
(
1 +

16
ε

sup
z∈[0,t]

C2(z) sup
z∈[0,t]

D(z)
) ∫ t

0

(
1 + E sup

z∈I∪[0,s]
V(σl ∧ z, x(σl ∧ z))

)
ds. (23)

Consequently, we obtain(
1 −

εd3(p)
2C1

)(
1 + E sup

z∈I∪[0,t]
V(σl ∧ z, x(σl ∧ z))

)
⩽ 1 + E sup

θ∈I
V(θ,φ(θ)) + c2 sup

z∈[0,t]
h(z) + sup

z∈[0,t]
C2(z)

(
d1(p)E∥φ∥p + d2(p)|r(z)|p +

Ṽd3(p)
C1

)
+

d3(p)
C1

sup
z∈[0,t]

C2(z) sup
z∈[0,t]

D(z)
(
1 +

16
ε

sup
z∈[0,t]

C2(z) sup
z∈[0,t]

D(z)
) ∫ t

0

(
1 + E sup

z∈I∪[0,s]
V(σl ∧ z, x(σl ∧ z))

)
ds.

Choosing ε =
C1

d3(p)
, we have

1 + E sup
z∈I∪[0,t]

V(σl ∧ z, x(σl ∧ z)) ⩽ A(t) + B(t)
∫ t

0

(
1 + E sup

z∈I∪[0,s]
V(σl ∧ z, x(σl ∧ z))

)
ds, (24)
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where the functions A(t) and B(t) are given by (12). By Lemma 1.1, we conclude that

E sup
z∈I∪[0,t]

V(σl ∧ z, x(σl ∧ z)) ⩽ A(t)B(t)eB(t)t, t > 0. (25)

Obviously, for t = 0, from (24) we conclude that

E sup
θ∈I

V(θ,φ(θ)) ⩽ A(0) − 1 ⩽ A(0)B(0). (26)

Specially, if supt⩾0 h(t) = H, supt⩾0 C2(t) = C2 and supt⩾0 |r(t)| = R, then (24) becomes

1 + E sup
z∈I∪[0,t]

V(σl ∧ z, x(σl ∧ z)) ⩽ Ã + B̃(t)
∫ t

0

(
1 + E sup

z∈I∪[0,s]
V(σl ∧ z, x(σl ∧ z))

)
ds,

where Ã and B̃(t) have the form (15). By the Gronwall type inequality (Bellman, [5]) one sees that

sup
z∈I∪[0,t]

EV(σl ∧ z, x(σl ∧ z)) ⩽ ÃeB̃(t)t, t ⩾ 0. (27)

From (25) and (7), for any t ⩾ 0, we obtain

A(t)B(t)eB(t)t ⩾ E sup
z∈I∪[0,t]

V(σl ∧ z, x(σl ∧ z)) ⩾ EV(σl ∧ t, x(σl ∧ t)) ⩾ C1E|x(σl ∧ t)|p ⩾ C1E|x(σl)|pI{σl⩽t}

⩾ C1lpEI{σl⩽t} ⩾ C1lpP{σl ⩽ t}

and then

P{σl ⩽ t} ⩽
A(t)B(t)eB(t)t

C1lp
.

Analogously, in the special case

P{σl ⩽ t} ⩽
ÃeB̃(t)t

C1lp
.

Since t ⩾ 0 is arbitrary, by letting l → ∞, in the last inequality we have P{σ∞ = ∞} = 1, i.e. there exists
unique global solution of Eq. (1). Then, from (25) and (26) the required assertion (11) follows.

In the case where supt⩾0 h(t) = H, supt⩾0 C2(t) = C2 and supt⩾0 |r(t)| = R, similar way we conclude that
(14) holds with Ã and B̃(t) defined by (15).

Remark 2.4. If the conditions of Theorem 2.3 are satisfied and r(t) ≡ 0, t ⩾ 0, under the assumption P3, for p > 1,
(17) has the form

|x(σl ∧ t)|p ⩽
(
1 + ε

1
p−1

)p−1(
|x(σl ∧ t) − u(σl ∧ t, xσl∧t)|p + ε−1αp

∥xσl∧t∥
p
)
.

Choosing ε =
( α
1 − α

)p−1
, instead of (19) we get

sup
z∈[0,t]

|x(σl ∧ z)|p ⩽
1

(1 − α)p sup
z∈[0,t]

|x(σl ∧ z) − u(σl ∧ z, xσl∧z)|p +
α

1 − α
∥φ∥p.

Moreover, for p ∈ (0, 1], we have

|x(σl ∧ t)|p ⩽ |x(σl ∧ t) − u(σl ∧ t, xσl∧t)|p + αp
∥xσl∧t∥

p,
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which gives us

sup
z∈[0,t]

|x(σl ∧ z)|p ⩽
1

1 − αp

(
sup
z∈[0,t]

|x(σl ∧ z) − u(σl ∧ z, xσl∧z)|p + αp
∥φ∥p

)
.

So, the estimate (11) holds, with

A(t) = 2 + 2E sup
θ∈I

V(θ,φ(θ)) + 2c2 sup
z∈[0,t]

h(z) + 2 sup
z∈[0,t]

C2(z)
(
d1(p)E∥φ∥p +

Ṽd4(p)
C1

)
,

B(t) =
2d2

4(p)

C2
1

sup
z∈[0,t]

C2(z) sup
z∈[0,t]

D(s)
(
16 sup

z∈[0,t]
C2(s) sup

z∈[0,t]
D(s) +

C1

d4(p)

)
∨ 1,

where d1(p) is defined in (13) and

d4(p) =


1

1 − αp , p ∈ (0, 1],

1
(1 − α)p , p ∈ (1,∞).

(28)

In the special case, (14) holds with

Ã = 2 + 2E sup
θ∈I

V(θ, x(θ)) + 2c2H + 2C2

(
d1(p)E∥φ∥p +

Ṽd4(p)
C1

)
,

B̃(t) =
2C2d2

4(p)

C2
1

sup
z∈[0,t]

D(s)
(
16C2 sup

z∈[0,t]
D(s) +

C1

d4(p)

)
. △

Furthermore, (7) leads us to pth moment estimate of the solution.

Corollary 2.5. Let the conditions of Theorem 2.3 be satisfied. Then, we have that

E sup
z∈I∪[0,t]

|x(z)|p ⩽
1

C1
A(t)B(t)eB(t)t, t ⩾ 0, (29)

where A(t) and B(t) are given by (12). If supt⩾0 h(t) = H and supt⩾0 C2(t) = C2 in condition P2, as well as
supt⩾0 |r(t)| = R in condition P3, then

E sup
z∈I∪[0,t]

|x(z)|p ⩽
Ã
C1

eB̃(t)t, t ⩾ 0, (30)

where Ã and B̃(t) are of the form (15).

By applying Corollary 2.5 we can determine the upper bound of the generalized Lyapunov exponent,
which is defined as follows.

Definition 2.6. ([8]) Let x(t) be the solution of Eq. (1) and, for sufficiently large T > 0, let µ : [T,∞] → [0,∞) be
increasing function, with µ(t)→∞, when t→∞. The number

lim sup
t→∞

ln |x(t)|
lnµ(t)

is the generalized Lyapunov exponent of x(t) with respect to µ(t).
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Theorem 2.7. Assume that the conditions of Theorem 2.3 are satisfied. Let T > 0 be sufficiently large, such that
t − 1 ⩾ T and, for every ε > 0, there exists

lim sup
t→∞

ln A(t + 1) + ln B(t + 1) + (B(t + 1) + ε)(t + 1)
p lnµ(t − 1)

= ν, (31)

with A(t) and B(t) defined in (12). Then ν is the upper bound of the generalized Lyapunov exponent with respect
to µ(t). In particular, if the conditions of Theorem 2.3 are satisfied with supt⩾0 h(t) = H, supt⩾0 C2(t) = C2 and
supt⩾0 |r(t)| = R, as well as, for every ε > 0,

lim sup
t→∞

(B̃(t + 1) + ε)(t + 1)
p lnµ(t − 1)

= ν̃,

with B̃(t) defined in (15), then ν̃ is the upper bound of the generalized Lyapunov exponent with respect to µ(t).

Proof. For each t with t − 1 ⩾ T there exists a positive integer n, such that n − 1 ⩽ t < n. From (29) we get

E sup
t∈[n−1,n)

|x(t)|p ⩽
1

C1
A(n)B(n)eB(n)n.

For arbitrary ε > 0, Markov inequality gives us

P
{

sup
t∈[n−1,n)

|x(t)|p > A(n)B(n)e(B(n)+ε)n
}
⩽

1
C1eεn .

Applying the Borel-Cantelli lemma, we have that, for almost every ω ∈ Ω, there exists positive integer n0,
such that, for every n ⩾ n0,

sup
t∈[n−1,n)

|x(t)|p ⩽ A(n)B(n)e(B(n)+ε)n,

so the assumption of the theorem yields

lim sup
t→∞

ln |x(t)|
lnµ(t)

⩽ lim sup
n→∞

ln A(n) + ln B(n) + (B(n) + ε)n
p lnµ(n − 1)

⩽ lim sup
t→∞

ln A(t + 1) + ln B(t + 1) + (B(t + 1) + ε)(t + 1)
p lnµ(t − 1)

= ν.

Similarly, for supt⩾0 h(t) = H, supt⩾0 C2(t) = C2 and supt⩾0 |r(t)| = R, using (30) we get

lim sup
t→∞

ln |x(t)|
lnµ(t)

⩽ lim sup
n→∞

(B̃(n) + ε)n
p lnµ(n − 1)

⩽ lim sup
t→∞

(B̃(t + 1) + ε)(t + 1)
p lnµ(t − 1)

= ν̃,

which completes the proof.

3. Neutral Stochastic Differential Equations with the State-dependent Delay

The topic that has actively been developed during the last decades is describing physical systems by
differential equations with delay that is not only time dependent, but also depends on current state of the
system (see [13, 19, 29]). Namely, it turned out that many phenomena, that can be modeled by differential
delay equations, in the domain of population dynamics ([1, 2, 6]), physics ([27]), human physiology ([12]),
etc., depend on some characteristic that is directly related to the state of the system itself. This fact indicates
that it is natural for delay to be both time and state dependent, in general case. As these phenomena are
subject to the random influences, the models based on stochastic differential equations are more realistic
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than those based on differential equations. There are a few papers about stochastic differential equations
with state-dependent delay, for example [3, 14, 26]. Starting from [3], the existence and uniqueness of
the global solution are proven for autonomous d-dimensional stochastic differential equation with state-
dependent delay under the global Lipschitz condition for the drift and diffusion coefficients, with the delay
function which is assumed to be Lipschitz continuous and bounded. On the other hand, our results for
NSFDEs are proved under the local Yamada-Watanabe condition or the local Lipschitz condition as well as
Khasminskii-type conditions, without imposing any additional assumptions on delay function. It should
be emphasized that in this paper the delayed argument could be unbounded from below, which is not case
in [23, 24].

As a special case of Eq. (1), we consider the d-dimensional neutral stochastic differential equation with
state-dependent delay

d[x(t) − u(t, x(t − δ(t, x(t))))] = f (t, x(t), x(t − δ(t, x(t)))) dt + 1(t, x(t), x(t − δ(t, x(t)))) dB(t), t ⩾ 0, (32)

where the equation coefficients are defined same way as in Eq. (1), but with W = Rd, satisfying initial
condition

x0 = φ = {φ(θ) : θ ∈ I} ∈WF0 . (33)

Here, WF0 is the family of F0-measurable Rd-valued random variables fromMp(I;Rd) and

• I = (−∞, 0] if sup
(t,x)∈[0,∞)×Rd

(δ(t, x) − t) = ∞;

• I = [−κ, 0] if sup
(t,x)∈[0,∞)×Rd

(δ(t, x) − t) = κ.

State-dependent delay function δ is non-negative, Borel measurable, defined on the set [0,∞) × Rd and it
can be bounded or unbounded.

For Eq. (32), assertions of Theorem 2.3 and Theorem 2.7 hold, so it has unique global solution and
generalized Lyapunov exponent can be found. Also, by Corollary 2.5, the estimate of E supz∈I∪[0,t] |x(z)|p

is obtained. Besides, replacing (8) with new condition can contribute to achieving different pth moment
estimate of the solution, so we propose following assumption.

P2’. There exist a function V ∈ C1,2(I∪ [0,∞)×Rd; [0,∞)), positive constant C1, non-negative constant c2
and functions C2 and h in C([0,∞); [0,∞)), such that, for every (t, x) ∈ [0,∞) × Rd and p > 0, (7) holds and
there exists a function D ∈ C([0,∞); [0,∞)), such that

LV(t, x, y) ⩽ D(t)
(
1 + V(t, x) + V(t − δ(t, x), y)

)
, (34)

for every (t, x, y) ∈ [0,∞) ×Rd
×Rd.

Theorem 3.1. If, for W = Rd, one of the assumptions P1 and P1’ hold, together with P2’ and P3, then, for any
initial condition (33), there exists a unique global solution x(t), t ∈ I ∪ [0,∞), of Eq. (32). Moreover, for every t ⩾ 0

sup
z∈I∪[0,t]

EV(z, x(z)) ⩽
1
2

a(t)b(t)eb(t)t, (35)

where

a(t) = 1 + 2 sup
θ∈I

EV(θ,φ(θ)) + 2c2 sup
z∈[0,t]

h(z) + 2 sup
z∈[0,t]

C2(z)
(
d1(p)E∥φ∥p + d2(p) sup

z∈[0,t]
|r(z)|p +

Ṽd3(p)
C1

)
,

b(t) =
d3(p)
C1

sup
z∈[0,t]

C2(z) sup
z∈[0,t]

D(z) ∨ 1,

(36)
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for Ṽ = EV
(
0, φ(0) − u(0, φ(−δ(0, φ(0))))

)
and d1(p), d2(p), d3(p) given by (13).

Specially, if supt⩾0 h(t) = H and supt⩾0 C2(t) = C2 in condition P2’, as well as supt⩾0 |r(t)| = R in condition P3,
then

sup
z∈I∪[0,t]

EV(z, x(z)) ⩽
ã
2

ẽb(t)t, t ⩾ 0, (37)

where

ã = 1+2 sup
θ∈I

EV(θ,φ(θ))+2c2H+2C2

(
d1(p)E∥φ∥p+d2(p)Rp+

Ṽd3(p)
C1

)
, b̃(t) =

2C2d3(p)
C1

sup
z∈[0,t]

D(z). (38)

Proof. If we define the sequence of stopping times {σl}l⩾l0 same way as in Theorem 2.3, similarly to (19) we
can prove that, for p > 1,

sup
z∈[0,t]

E|x(σl ∧ z)|p ⩽
(1 −

√
α)1−p

1 − α
sup
z∈[0,t]

E|x(σl ∧ z) − u(σl ∧ z, x(σl ∧ z − δ(σl ∧ z, x(σl ∧ z))))|p

+
α

1 − α
E∥φ∥p +

(
√
α − α)1−p

1 − α
sup
z∈[0,t]

|r(z)|p (39)

and for p ∈ (0, 1], instead of (20), we obtain

sup
z∈[0,t]

E|x(σl ∧ z)|p

⩽
1

1 − αp

(
sup
z∈[0,t]

E|x(σl ∧ z) − u(σl ∧ z, x(σl ∧ z − δ(σl ∧ z, x(σl ∧ z))))|p + αpE∥φ∥p + sup
z∈[0,t]

|r(z)|p
)
. (40)

The generalized Itô formula, (3) and (34) give us

dV
(
t, x(t) − u(t, x(t − δ(t, x(t)))

)
= LV

(
t, x(t), x(t − δ(t, x(t)))

)
dt + dM(t)

⩽ D(t)
(
1 + V(t, x(t)) + V(t − δ(t, x(t)), x(t − δ(t, x(t))))

)
dt + dM1(t), (41)

where

M1(t)=
∫ t

0
Vx(s, x(s) − u(s, x(s − δ(s, x(s))))) 1(s, x(s), x(s − δ(s, x(s)))) dB(s)

is a local martingale and M1(0) = 0. For any l ⩾ l0, integrating and taking the expectation of both sides of
(41), we obtain that, for every t ⩾ 0,

EV
(
σl ∧ t, x(σl ∧ t) − u(σl ∧ t, x(σl ∧ t − δ(σl ∧ t, x(σl ∧ t))))

)
− Ṽ

⩽

∫ t

0
sup
z∈[0,s]

D(z)
(
1+EV(σl ∧ s, x(σl ∧ s)) + EV(σl ∧ s − δ(σl ∧ s, x(σl ∧ s)), x(σl ∧ s − δ(σl ∧ s, x(σl ∧ s))))

)
ds

⩽ sup
z∈[0,t]

D(z)
∫ t

0

(
1+2 sup

z∈I∪[0,s]
EV(σl ∧ z, x(σl ∧ z))

)
ds. (42)

Hence, for p > 0, using (7), we get

sup
z∈I∪[0,t]

EV(σl ∧ z, x(σl ∧ z)) ⩽ sup
θ∈I

EV(θ,φ(θ)) + c2 sup
z∈[0,t]

h(z) + sup
z∈[0,t]

C2(z) sup
z∈[0,t]

E|x(σl ∧ z))|p,
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so, from (39), (40) and (42), we derive

sup
z∈I∪[0,t]

EV(σl ∧ z, x(σl ∧ z))

⩽ sup
θ∈I

EV(θ,φ(θ)) + c2 sup
z∈[0,t]

h(z) + sup
z∈[0,t]

C2(z)
(
d1(p)E∥φ∥p + d2(p) sup

z∈[0,t]
|r(z)|p

)
+ sup

z∈[0,t]
C2(z)d3(p) sup

z∈[0,t]
E|x(σl ∧ z) − u(σl ∧ z, x(σl ∧ z − δ(σl ∧ z, x(σl ∧ z))))|p

⩽ sup
θ∈I

EV(θ,φ(θ)) + c2 sup
z∈[0,t]

h(z) + sup
z∈[0,t]

C2(z)
(
d1(p)E∥φ∥p + d2(p) sup

z∈[0,t]
|r(z)|p +

Ṽd3(p)
C1

)
+

d3(p)
C1

sup
z∈[0,t]

C2(z) sup
z∈[0,t]

D(z)
∫ t

0

(
1 + 2 sup

z∈I∪[0,s]
EV(σl ∧ z, x(σl ∧ z))

)
ds,

where d1(p), d2(p) and d3(p) are defined in (13). Then, we have that

1 + 2 sup
z∈I∪[0,t]

EV(σl ∧ z, x(σl ∧ z)) ⩽ a(t) + b(t)
∫ t

0

(
1 + 2 sup

z∈I∪[0,s]
EV(σl ∧ z, x(σl ∧ z))

)
ds, (43)

where a(t) and b(t) are given in (36). Since (43) has the form (4), by applying Lemma 1.1, we conclude that

sup
z∈I∪[0,t]

EV(σl ∧ z, x(σl ∧ z)) ⩽
1
2

a(t)b(t)eb(t)t, t > 0. (44)

For t = 0, from (43) we conclude that

sup
θ∈I

EV(θ,φ(θ)) ⩽
a(0) − 1

2
⩽

a(0)b(0)
2

.

Specially, if supt⩾0 h(t) = H, supt⩾0 C2(t) = C2 and supt⩾0 |r(t)| = R, then (43) becomes

1 + 2 sup
z∈I∪[0,t]

EV(σl ∧ z, x(σl ∧ z)) ⩽ ã + b̃(t)
∫ t

0

(
1 + 2 sup

z∈I∪[0,s]
EV(σl ∧ z, x(σl ∧ z))

)
ds,

where ã and b̃(t) have the form (38). By the Gronwall type inequality (Bellman, [5]) one derives

sup
z∈I∪[0,t]

EV(σl ∧ z, x(σl ∧ z)) ⩽
ã
2

ẽb(t)t, t ⩾ 0.

From (44) and (7), for any t ⩾ 0, we obtain

1
2

a(t)b(t)eb(t)t ⩾ sup
z∈I∪[0,t]

EV(σl ∧ z, x(σl ∧ z)) ⩾ EV(σl ∧ t, x(σl ∧ t)) ⩾ C1E|x(σl ∧ t))|p ⩾ C1E|x(σl)|pI{σl⩽t}

⩾ C1lpEI{σl⩽t} ⩾ C1lpP{σl ⩽ t}

and then

P{σl ⩽ t} ⩽
a(t)b(t)eb(t)t

2C1lp
.

Analogously, in the special case

P{σl ⩽ t} ⩽
ãẽb(t)t

2C1lp
.

Analogously to the proof of Theorem 2.3, we conclude that (35) and (37) hold.
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Remark 3.2. Analogously to Remark 2.4, if the conditions of Theorem 3.1 are satisfied and r(t) ≡ 0, t ⩾ 0, in the
assumption P3, the assertion (35) holds with

a(t) = 1 + 2 sup
θ∈I

EV(θ,φ(θ)) + 2c2 sup
z∈[0,t]

h(z) + 2 sup
z∈[0,t]

C2(z)
(
d1(p)E∥φ∥p +

Ṽd4(p)
C1

)
,

b(t) =
2d4(p)

C1
sup
z∈[0,t]

C2(z) sup
z∈[0,t]

D(z) ∨ 1,

(45)

where d1(p) is defined in (13) and d4(p) in (28). Also, in the special case, (37) holds with

ã = 1 + 2 sup
θ∈I

EV(θ,φ(θ)) + 2c2H + 2C2

(
d1(p)E∥φ∥p +

Ṽd4(p)
C1

)
, b̃(t) =

2C2d4(p)
C1

sup
z∈[0,t]

D(z). △

Corollary 3.3. If the conditions of Theorem 3.1 are satisfied, then

sup
z∈I∪[0,t]

E|x(z)|p ⩽
1

2C1
a(t)b(t)eb(t)t, t ⩾ 0,

where a(t) and b(t) are defined by (36). If supt⩾0 h(t) = H and supt⩾0 C2(t) = C2 in condition P2’, as well as
supt⩾0 |r(t)| = R in condition P3, then

sup
z∈I∪[0,t]

E|x(z)|p ⩽
ã

2C1
ẽb(t)t, t ⩾ 0,

where ã and b̃(t) are given by (38).

4. Examples

In order to illustrate the previous theory, let us impose two examples for stochastic differential equations
with state-dependent delay. First, we consider the case where the drift and diffusion coefficients are highly
nonlinear and the conditions of Theorem 3.1, i.e. Remark 3.2 are satisfied. In the second example the
coefficients of the equation satisfy the linear growth condition and the assumptions of Theorem 2.3 hold.
Then, by Theorem 2.7, the generalized Lyapunov exponent is obtained.

Example 4.1. Let us consider one-dimensional neutral stochastic differential equation of the form (32), with

f : [0,∞) ×R ×R→ R, f (t, x, y) =
√

1 + t + x2 + y2 − (x + ay sin t)2k−1,

1 : [0,∞) ×R ×R→ R, 1(t, x, y) = t + (x + ay sin t)2 +
(x + ay sin t)2m

√
1 + t

,

where k ⩾ 2m − 1, k ∈ N, m ⩾ 1/2, a ∈ (0, 1) and

u : [0,∞) ×R→ R, u(t, y) = −ay sin t,

with the initial condition, given by φ(θ) = θ + 1, θ ∈ [−1, 0]. The delay function is defined with

δ : [0,∞) ×R→ [0,∞), δ(t, x) =
x2

1 + x2 + t.

It is clear that the drift and diffusion coefficients satisfy the condition P1’, as well as that

|u(t, y1) − u(t, y2)| = |ay2 sin t − ay1 sin t| ⩽ a|y1 − y2|, t ⩾ 0, y1, y2 ∈ R,
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so with u(t, 0) = 0, assumption P3 is satisfied. According to the drift and diffusion coefficients, to show that (34)
holds, suitable choice for the function V is

V : [−1,∞) ×R→ [0,∞), V(t, x) =
√

1 + t + x2.

It is obvious that estimates (9) can not be obtained, but we have that

|x| ⩽ V(t, x) ⩽
√

1 + t + |x|, t ⩾ 0, x ∈ R,

so, from (7), we see that p = 1, C1 = 1, c2 = 1, C2(t) ≡ 1 and h(t) =
√

1 + t, for t ⩾ 0. Also

Vt(t, x) =
1

2
√

1 + t + x2
, Vx(t, x) =

x
√

1 + t + x2
, Vxx(t, x) =

1 + t√
(1 + t + x2)3

.

For every t ⩾ 0 and x, y ∈ R, by applying some elementary inequalities, we get the next estimate for the operator LV

LV(t, x, y) =
1

2
√

1+t+(x+ay sin t)2
+

(
x+ay sin t

)(√
1+t+x2+y2 − (x+ay sin t)2k−1

)
√

1+t+(x+ay sin t)2

+
1+t

2
√

(1+t+(x+ay sin t)2)3

(
t+(x+ay sin t)2+

(x+ay sin t)2m

√
1+t

)2

⩽
1

2
√

1+t
+

√
1+t+x2+y2 −

(
x+ay sin t

)2k√
1+t+(x+ay sin t)2

+
(1+t)(1+t+(x+ay sin t)2)2√

(1+t+(x+ay sin t)2)3

+
(x+ay sin t)4m√

(1+t+(x+ay sin t)2)3

⩽
1

2
√

1+t
+

√
1+t+x2+y2+(1+t)

√
1+t+(x+ay sin t)2+

(x+ay sin t)2(2m−1)
−

(
x+ay sin t

)2k√
1+t+(x+ay sin t)2

⩽
1

2
√

1+t
+
(
1+
√

2(1+t)
)(√

1+t+x2+
√

1+t − δ(t, x)+y2
)
+

(x+ay sin t)2(2m−1)
−

(
x+ay sin t

)2k√
1+t+(x+ay sin t)2

⩽
1

2
√

1+t
+

(
1+
√

2(1+t)
)(

V(t, x)+V(t − δ(t, x), y)
)
+

K(k,m)
√

1+t
,

where K(k,m) = k−2m+1
k

(
2m − 1

k

) 2m−1
k−2m+1

. Hence,

LV(t, x, y) ⩽ D(t)
(
1 + V(t, x) + V(t − δ(t, x), y)

)
,

which means that the assumption P2’ is satisfied, with

D : [0,∞)→ [0,∞), D(t) = 1 +
√

2(1 + t).

According to Theorem 3.1, there is the unique global solution of considered equation and

sup
z∈I∪[0,t]

EV(z, x(z)) ⩽
1
2

a(t)b(t)eb(t)t, t ⩾ 0,

where, from (45),

a(t) = 1 + 2
√

2 + 2
√

1 + t +
2(a +

√
2)

1 − a
, b(t) =

2
1 − a

(
1 +
√

2(1 + t)
)
.
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Note that the coefficients given in the previous example do not satisfy the assumption (10) of Theorem 2.3.
In the next example, the conditions of that theorem are satisfied.

Example 4.2. Let the coefficients of Eq. (32) have the form:

f : [0,∞) ×R ×R→ R, f (t, x, y) = sin x +
√

1 + t + x2,

1 : [0,∞) ×R ×R→ R, 1(t, x, y) = ln
(
2 −

x2

1 + x2 + (x + ay)2
)
,

u : [0,∞) ×R→ R, u(t, y) = −t − ay

and the delay function, as well as the initial condition, are given in the previous example. It is clear that

|u(t, y1) − u(t, y2)| = |ay2 − ay1| ⩽ a|y1 − y2|, t ⩾ 0, y1, y2 ∈ R,

so with u(t, 0) = −t, assumption P3 is satisfied, as well as assumption P1’. Choosing the function V same way as in
Example 4.1, for every t ⩾ 0 and x, y ∈ R,

LV(t, x, y) =
1

2
√

1 + t + (x + t + ay)2
+

(
x + t + ay

)(
sin x +

√

1 + t + x2
)

√
1 + t + (x + t + ay)2

+

(
1 + t)

(
ln

(
2 + t − δ(t, x) + (x + ay)2

))2

2
√

(1 + t + (x + t + ay)2)3

⩽
1

2
√

1 + t
+ | sin x| + V(t, x)

+

√
2
(
1 + t)

(
1 + t − δ(t, x) + (x + t + ay)2 + t2

) 3
2√

(1 + t + (x + t + ay)2)3

√
1 + t − δ(t, x) + (x + ay)2

⩽ 1 +
1

2
√

1 + t
+ V(t, x) +

2
(
1 + t)

((
1 + t + (x + t + ay)2

) 3
2
+ t3

)
√

(1 + t + (x + t + ay)2)3

√
1 + t − δ(t, x) + (x + ay)2

⩽ 1 +
1

2
√

1 + t
+ V(t, x) + 2

√

2(1 + t)
(
1 +

t3√
(1 + t)3

)(√
1 + t − δ(t, x) + (ay)2 + |x|

)
⩽ 1 +

1

2
√

1 + t
+ V(t, x) + 2

√

2
(
1 + t +

t3

√
1 + t

)(
V(t − δ(t, x), y) + V(t, x)

)
⩽ D(t)

(
1 + sup

s∈I∪[0,t]
V(s, x)

)
,

which means that (8) is satisfied, with

D : [0,∞)→ [0,∞), D(t) = 1 + 4
√

2
(
1 + t +

t3

√
1 + t

)
.

As

|Vx(t, x − u(t, y))1(t, x, y)| ⩽

∣∣∣∣∣∣
(
x + t + ay

)
ln

(
2 + t − δ(t, x) + (x + ay)2

)
√

1 + t + (x + t + ay)2

∣∣∣∣∣∣
⩽ ln

(
2 + t − δ(t, x) + (x + ay)2

)
⩽ 2 ln

√
2 + t − δ(t, x) + (x + ay)2

⩽ 2 ln
(
1 +

√
1 + t − δ(t, x) + (x + ay)2

)
,
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we find that

|Vx(t, x − u(t, y))1(t, x, y)| ⩽ 2
√

1 + t − δ(t, x) + (x + ay)2

⩽ 2
√

2
(
V(t − δ(t, x), y) + V(t, x)

)
⩽ D(t)

(
1 + sup

s∈I∪[0,t]
V(s, x)

)
,

such that (10) holds. According to Theorem 2.3, there exists the unique global solution of considered equation, and

E sup
z∈I∪[0,t]

V(z, x(z)) ⩽ A(t)B(t)eB(t)t, t ⩾ 0,

where, from (12),

A(t) = 2

1 +
√

2 +
√

1 + t +
t + a +

√
1 + (1 − a

2 )2

1 − a

 ,
B(t) =

1
(1 − a)2

(
1 + 4

√

2
(
1 + t +

t3

√
1 + t

))(
17 − a + 64

√

2
(
1 + t +

t3

√
1 + t

))
.

Since the conditions of Theorem 2.3 are satisfied, from Theorem 2.7 the upper bound of the generalized Lyapunov
exponent with respect to µ(t) can be determined, where, for sufficiently large T > 0, µ : [T,∞]→ [0,∞) is increasing
function, with µ(t)→∞, when t→∞. As, for ε > 0,

ln A(t+1)+ln B(t+1)+(B(t+1)+ε)(1+t)

= ln 2+ln
1

(1 − a)2 +ln

1+
√

2+
√

2+t+
1+t+a+

√
1+(1 − a

2 )2

1 − a

+ln
(
1+4
√

2
(
2+t+

(1+t)3

√
2+t

))

+ln
(
17 − a+64

√

2
(
2+t+

(1+t)3

√
2+t

))
+

1+t
(1 − a)2

(
1+4
√

2
(
2+t+

(1+t)3

√
2+t

))(
17 − a+64

√

2
(
2+t+

(1+t)3

√
2+t

))
+ε(1+t),

suitable choice of function µ(t) is made by having in mind (31). It is clear that, for µ(t) = et6 and every ε > 0

lim sup
t→∞

ln A(t + 1) + ln B(t + 1) + (B(t + 1) + ε)(t + 1)
(t − 1)6 =

512
(1 − a)2 ,

so, the upper bound of the generalized Lyapunov exponent with respect to µ(t) = et6 is
512

(1 − a)2 .
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[24] M. Obradović, M. Milošević, Stability of a class of neutral stochastic differential equations with unbounded delay and Markovian

switching and the Euler-Maruyama method, J. Comput. Appl. Math. 309 (2017) 244–266.
[25] Y. Qin, Integral and Discrete Inequalities and Their Applications Volume I: Linear Inequalities, Birkhauser, Basel, 2016.
[26] L. Shaikhet, Stability of Stochastic Differential Equations with Distributed and State-Dependent Delays, J. App. Math. Comp.

4(4) (2020) 181–188.
[27] H. O. Walther, On a model for soft landing with state-dependent delay, J. Dyn. Differ. Equ. 19(3) (2007) 593–622.
[28] F. Wei, Y. Cai, Existence, uniqueness and stability of the solution to neutral stochastic functional differential equations with

infinite delay under non-Lipschitz conditions, Adv. Differ. Equ. 2013, 151 (2013).
[29] E. Winston, Uniqueness of the Zero Solution for Delay Differential Equations with State Dependence, J. Differ. Equ. 7 (1970)

395–405.
[30] F. Wu, Khasminskii-type theorems for neutral stochastic functional differential equations, Mathematica Applicata, 21(4) (2008)

794–799.
[31] F. Wu, S. Hu, C. Huang, Robustness of general decay stability of nonlinear neutral stochastic functional differential equations

with infinite delay, Systems Control Lett. 59 (2010) 195–202.
[32] M. Xue, S. Zhou, S. Hu, Stability of nonlinear neutral stochastic functional differential equations, J. Appl. Math. 2010 (2010) 1–26.


