

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Erratum: S-Zariski Topology on S-Spectrum of Modules

Eda Yıldız^a, Bayram Ali Ersoy^a, Ünsal Tekir^b

^aDepartment of Mathematics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey ^bDepartment of Mathematics, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey

Corollary 3.14 in the published version is incorrect. The condition "every *S*-prime submodule of *M* is prime" is necessary. Consider the ring $R = M = \mathbb{Z} \times \mathbb{Z}$ and the multiplicatively closed subset $S = \mathbb{Z} \times \mathbb{Z}^*$, where $\mathbb{Z}^* = \mathbb{Z} - \{0\}$. Then $Spec_S(M) = \{n\mathbb{Z} \times \{0\} : n \in \mathbb{Z}\}$. Note that $(2\mathbb{Z} \times 0 : (0,1)) = \mathbb{Z} \times 0 = (3\mathbb{Z} \times 0 : (0,1))$ and $2\mathbb{Z} \times 0, 3\mathbb{Z} \times 0 \in Spec_S(M)$. By [1, Proposition 4], $\{2\mathbb{Z} \times 0\} = \{3\mathbb{Z} \times 0\}$. As $2\mathbb{Z} \times 0 \neq 3\mathbb{Z} \times 0$, $Spec_S(M)$ is not a T_0 -space.

Thus the following is the corrected version of the mentioned result.

Corollary. Suppose that M is a multiplication module. Then $Spec_S(M)$ is a T_0 -space for both S-Zariski topology τ_S and quasi S-Zariski topology τ_S^* iff every S-prime submodule of M is prime.

Proof. First note that $\tau_S = \tau_S^*$ since M is multiplication. Assume that every S-prime submodule is prime. Suppose $V_S(P) = V_S(Q)$ for $P, Q \in Spec_S(M)$. Then $S^{-1}(P:M) = S^{-1}(Q:M)$ by [2, Lemma 3.5] . As P,Q are S-prime submodules, they are also prime by the assumption. Then (P:M) and (Q:M) are prime ideals. So $S^{-1}(P:M) = S^{-1}(Q:M)$ implies that (P:M) = (Q:M). Hence we obtain P = (P:M)M = (Q:M)M = Q since M is a multiplication module. Thus $Spec_S(M)$ is T_0 by [2, Theorem 3.13]. The rest follows from the fact that $\tau_S \leq \tau_S^*$. Now assume $Spec_S(M)$ is T_0 -space. Let $P \in Spec_S(M)$. Then there exists $s_P \in S$ such that $(P:_M s_P)$ is a prime submodule. Also by [2, Theorem 3.11], $V_S(P) = V_S((P:_M s_P))$. Since $Spec_S(M)$ is a T_0 -space, we have $P = (P:_M s_P)$ is a prime submodule. □

References

 $[1] \ E.\ Yıldız,\ B.A.\ Ersoy,\ \ddot{U}.\ Tekir\ and\ S.\ Ko\varsigma,\ On\ S-Zariski\ topology,\ Communications\ in\ Algebra\ 49(3)\ (2021)\ 1212-1224.$

2020 Mathematics Subject Classification. Primary 13A15; Secondary 13C13, 54B35 Keywords. Zariski topology, prime spectrum, S-prime spectrum, S-maximal ideal

Received: 17 April 2023; Accepted: 17 April 2023

Communicated by Dragan S. Djordjević

Email addresses: edyildiz@yildiz.edu.tr (Eda Yıldız), ersoya@yildiz.edu.tr (Bayram Ali Ersoy), utekir@marmara.edu.tr (Ünsal Tekir)

^[2] E. Yıldız, B.A. Ersoy, Ü. Tekir, S-Zariski Topology on S-Spectrum of Modules, Filomat, 36(20) (2022) 7103-7112.