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Abstract. Very recently, we have introduced the concept of τ′-distance, which is slightly weaker than
that of τ-distance. We discuss the difference between both concepts, proving some existence theorems in
complete metric spaces and giving an example of a τ′-distance which is not a τ-distance.

1. Introduction

Throughout this paper, we denote byN, Q and R the sets of all positive integers, all rational numbers
and all real numbers, respectively.

In 2001, the concept of τ-distance was introduced in order to generalize results in [1, 4, 5, 19–21] and
others.

Definition 1 ([12]). Let (X, d) be a metric space. Then a function p from X×X into [0,∞) is called a τ-distance
on X if there exists a function η from X × [0,∞) into [0,∞) and the following are satisfied:

(τd1) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X.
(τd2) η(x, 0) = 0 and η(x, t) ≥ t for any x ∈ X and t ∈ [0,∞), and η is concave and continuous in its second

variable.
(τd3) limn xn = x and limn sup

{
η
(
zn, p(zn, xm)

)
: m ≥ n

}
= 0 imply p(w, x) ≤ lim infn p(w, xn) for any w ∈ X.

(τd4) limn sup{p(xn, ym) : m ≥ n} = 0 and limn η(xn, tn) = 0 imply limn η(yn, tn) = 0.

(τd5) limn η
(
zn, p(zn, xn)

)
= 0 and limn η

(
zn, p(zn, yn)

)
= 0 imply limn d(xn, yn) = 0.

We note that the metric d is one of τ-distances on X with η =
(
(x, t) 7→ t

)
. Every w-distance is also a

τ-distance; see [8, 12]. See [8, 12–17] and references therein for many examples and theorems concerning
τ-distance. For instance, using τ-distance, Suzuki [16] gave a simple proof of Zhong’s theorem [20].

Very recently, strongly inspired by τ-function in Lin and Du [10], we introduced τ′-distance in [18].

Definition 2 ([18]). Let (X, d) be a metric space and let p be a function from X × X into [0,∞). Then p is
called a τ′-distance on X if the following hold:
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(τ′1) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X.
(τ′2) If limn sup{p(zn, zm) : m > n} = 0 and limn p(zn, xn) = 0, then limn d(zn, xn) = 0. Moreover if {xn}

converges to some x ∈ X, then p(w, x) ≤ lim infn p(w, xn) for any w ∈ X.
(τ′3) If limn p(z, xn) = 0, then limn d(xn, xn+1) = 0 holds. Moreover if {xn} converges to some x ∈ X, then

p(w, x) ≤ lim infn p(w, xn) for any w ∈ X.

The concept of τ′-distance is ‘slightly’ weaker than that of τ-distance. The word ‘slightly’ means that we
can prove τ′-distance versions of all the existence theorems in [12–16] with using the same proofs. So, we
could tell that we ‘redefine’ the definition of τ-distance. In [18], we showed that τ′-distance is more natural
than τ-distance.

In this paper, we find another merit of τ′-distance. While we cannot separate Conditions (τd1)–(τd5)
on τ-distance, we can separate Conditions (τ′1)–(τ′3) on τ′-distance. That is, we can discuss something
mathematical more finely. Also, we give an example of a τ′-distance which is not a τ-distance.

2. Lemmas

In this section, paying attention to how (τ′2) and (τ′3) work separately, we discuss some lemmas proved
in [18].

Definition 3 ([18]). Let p be a τ′-distance on a metric space (X, d). Let {xα : α ∈ D} be a net in X. Then {xα} is
said to satisfy Condition (CL) if the following hold:

(CL1) {xα} is a Cauchy net in the usual sense.
(CL2) Either of the following hold:

• {xα} does not converge.

• If {xα} converges to x, then p(w, x) ≤ lim infα p(w, xα) holds for any w ∈ X.

We first begin with (τ′3).

Lemma 4. Let (X, d) be a metric space and let p be a function from X×X into [0,∞) satisfying (τ′3). Let {xα : α ∈ D}
be a net in X satisfying limα p(z, xα) = 0 for some z ∈ X. Then the following hold:

(i) {xα} satisfies Condition (CL).
(ii) If a net {yα : α ∈ D} in X also satisfies limα p(z, yα) = 0, then limα d(xα, yα) = 0 holds.

Proof. The proof of Lemma 13 in [18] works.

As corollaries of Lemma 4, we obtain the following.

Lemma 5. Let (X, d) and p be as in Lemma 4. Let {xn} be a sequence in X satisfying limn p(z, xn) = 0 for some z ∈ X.
Then the following hold:

(i) {xn} satisfies Condition (CL).
(ii) If a sequence {yn} in X also satisfies limα p(z, yn) = 0, then limn d(xn, yn) = 0 holds.

Lemma 6. Let (X, d) and p be as in Lemma 4. If p(z, x) = p(z, y) = 0 holds, then x = y holds.

We next pay attention to how (τ′2) works.

Lemma 7. Let (X, d) be a metric space and let p be a function from X × X into [0,∞) satisfying (τ′2). Let D be
a directed set such that for any α ∈ D, there exists β ∈ D with α ≱ β. Let {zα : α ∈ D} be a net in X satisfying
limα sup{p(zα, zβ) : β > α} = 0. Then the following hold:

(i) If a net {xα : α ∈ D} in X satisfies limα p(zα, xα) = 0, then {xα} satisfies Condition (CL) and limα d(zα, xα) = 0
holds.

(ii) {zα} satisfies Condition (CL).
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Proof. We note that the assumption on D is the condition of the second case in the proof of Lemma 16 in
[18]. We note the following:

• For any α ∈ D there exists β ∈ D with β > α.

Therefore the proof of Lemma 16 (the second case) in [18] works.

As a corollary of Lemma 7, we obtain the following sequential version.

Lemma 8. Let (X, d) and p be as in Lemma 7. Let {zn} be a sequence in X satisfying limn sup{p(zn, zm) : m > n} = 0.
Then the following hold:

(i) If a sequence {xn} in X satisfies limn p(zn, xn) = 0, then {xn} satisfies Condition (CL) and limn d(zn, xn) = 0
holds.

(ii) {zn} satisfies Condition (CL).

By Lemma 8, we obtain the following, which plays a very important role in this paper. Compare Lemma
9 with Lemmas 5 and 6.

Lemma 9. Let (X, d) be a metric space and let p be a function from X × X into [0,∞) satisfying (τ′2). Let z ∈ X
satisfy p(z, z) = 0. Then the following hold:

(i) If a sequence {xn} in X satisfies limn p(z, xn) = 0, then {xn} satisfies Condition (CL) and limn d(z, xn) = 0 holds.
(ii) If x ∈ X satisfies p(z, x) = 0, then z = x holds.

Proof. Define a sequence {zn} in X by zn = z. Then limn sup{p(zn, zm) : m > n} = 0 holds. So, by Lemma 8,
we obtain the desired result.

Remark. The proof employs the method in the proof of Lemma 1.1 in [3].

3. Existence Theorems

In this section, we give proofs of four existence theorems. In Theorem 16, we need only (τ′2). In
Corollary 11, we need (τ′1) and (τ′2). In Theorem 17, we need (τ′2) and (τ′3). On the other hand, in
Theorem 13, we need (τ′1)–(τ′3). It is interesting that (τ′2) is needed in all theorems, however, (τ′1) and
(τ′3) are not always needed.

Theorem (τ′1) (τ′2) (τ′3)
Theorem 16 — ⃝ —
Corollary 11 ⃝ ⃝ —
Theorem 17 — ⃝ ⃝

Theorem 13 ⃝ ⃝ ⃝

The following is a generalization of Nadler’s fixed point theorem [11]. See also Theorem 3.7 in [13]

Theorem 10. Let (X, d) be a complete metric space and let p be a function from X × X into [0,∞) satisfying (τ′1)
and (τ′2). Let T be a set-valued mapping on X satisfying the following:

• For any x ∈ X, Tx is a nonempty closed subset of X.

• There exists r ∈ [0, 1) satisfying
Q(Tx,Ty) ≤ r p(x, y)

for all x, y ∈ X, where
Q(A,B) = sup

a∈A
inf
b∈B

p(a, b).

Then there exists z ∈ X satisfying z ∈ Tz and p(z, z) = 0.
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Proof. Replace the value of r by r := (1 + r)/2 ∈ (0, 1). We note the following:

• For any x, y ∈ X, u ∈ Tx and η > p(x, y), there exists v ∈ Ty satisfying p(u, v) < r η.

Fix u0 ∈ X and u1 ∈ Tu0. Put α = 1/(1 − r) and β = p(u0,u1) + 1. Then there exists u2 ∈ Tu1 satisfying
p(u1,u2) < r β. Then there exists u3 ∈ Tu2 satisfying p(u2,u3) < r2 β. Continuing this argument, we can
obtain a sequence {un} in X satisfying

un+1 ∈ Tun and p(un,un+1) < rn β

for n ∈N ∪ {0}. For any m,n ∈N ∪ {0}with m > n, we have by (τ′1)

p(un,um) ≤
m−1∑
k=n

p(uk,uk+1) <
m−1∑
k=n

rk β < rn α β.

By Lemma 8, {un} satisfies Condition (CL). Since X is complete, {un} converges to some z ∈ X. We have for
n ∈N ∪ {0},

p(un, z) ≤ lim inf
m→∞

p(un,um) ≤ rn α β < rn α β + rn. (1)

So, for n ∈ N, there exists vn ∈ Tz satisfying p(un, vn) < rn α β + rn. By Lemma 8 again, {vn} also satisfies
Condition (CL) and converges to z. Since Tz is closed, we obtain z ∈ Tz. Put w0 = z andγ = p(z,w0)+1. There
exists w1 ∈ Tw0 satisfying p(z,w1) < rγ. Then there exists w2 ∈ Tw1 satisfying p(z,w2) < r2 γ. Continuing
this argument, we can choose a sequence {wn} in X satisfying

wn ∈ Twn−1 and p(z,wn) < rn γ

for n ∈N. Using this and (1), we have

lim
n→∞

p(un,wn) ≤ lim
n→∞

(
p(un, z) + p(z,wn)

)
= 0.

By Lemma 8 again, {wn} also satisfies Condition (CL) and converges to z. We have

p(z, z) ≤ lim inf
n→∞

p(z,wn) ≤ lim
n→∞

rn γ = 0.

We obtain the desired result.

The following is a generalization of the Banach contraction principle [1, 2]. See also Theorem 2 in [12].

Corollary 11. Let (X, d) be a complete metric space and let p be a function from X × X into [0,∞) satisfying (τ′1)
and (τ′2). Let T be a mapping on X. Assume that there exists r ∈ [0, 1) satisfying

p(Tx,Ty) ≤ r p(x, y)

for all x, y ∈ X. Then T has a unique fixed point z. Moreover p(z, z) = 0 holds and {Tnx} converges to z for any x ∈ X.

Proof. We note that all the assumptions of Theorem 10 are satisfied. Fix u ∈ X. Then from the proof of
Theorem 10, {Tnu} converges to a fixed point z of T and p(z, z) = 0 holds. In order to show the uniqueness
of z, let w be a fixed point of T. Then we have

p(z,w) = p(Tz,Tw) ≤ r p(z,w).

and hence p(z,w) = 0. By Lemma 9, we obtain z = w. Therefore the fixed point z is unique.

Since Corollary 11 is important, we give a direct proof of Corollary 11.
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Proof. Fix u ∈ X. For m,n ∈Nwith m > n, we have

p(Tnu,Tmu) ≤
m−1∑
j=n

p(T ju,T j+1u) ≤
m−1∑
j=n

r j p(u,Tu)

≤

∞∑
j=n

r j p(u,Tu) =
rn

1 − r
p(u,Tu)

and hence
lim
n→∞

sup
m>n

p(Tnu,Tmu) ≤ lim
n→∞

rn

1 − r
p(u,Tu) = 0.

By Lemma 8, {Tnu} satisfies Condition (CL). Since X is complete, {Tnu} converges to some z ∈ X. We have

lim
n→∞

p(Tnu,Tz) ≤ lim
n→∞

r p(Tn−1u, z) ≤ lim
n→∞

lim inf
m→∞

r p(Tn−1u,Tmu)

≤ lim
n→∞

rn

1 − r
p(u,Tu) = 0.

By (τ′2), {Tnu} converges to Tz. Hence Tz = z holds. We also have

p(z, z) = lim
n→∞

p(Tnz,Tnz) ≤ lim
n→∞

rnp(z, z) = 0.

We can prove the uniqueness of the fixed point z as in the above proof.

The following example tells that we need (τ′1) in Corollary 11.

Example 12 (Example 2 in [7]). Put X =N and d(x, y) = |x − y| for x, y ∈ X. Define a function p from X × X
into [0,∞) by

p(x, y) = rmin{x,y}
|x − y|,

where r ∈ (0, 1). Define a mapping T on X by Tx = x + 1. Then the following hold:

(i) p satisfies (τ′2) and (τ′3).
(ii) p(Tx,Ty) ≤ r p(x, y) for all x, y ∈ X.

(iii) T does not have a fixed point.

Proof. In order to show (τ′2), we assume limn sup{p(zn, zm) : m > n} = 0 and limn p(zn, xn) = 0. Then there
exists x ∈ X such that zn = xn = x holds for sufficiently large n ∈ N. Thus (τ′2) holds. In order to show
(τ′3), we assume limn p(z, xn) = 0. Then xn = z holds for sufficiently large n ∈ N. Thus (τ′3) holds. (ii) and
(iii) are obvious.

The following is connected with the strong Ekeland variational principle. See [4–6].

Theorem 13 ([15]). Let X be a complete metric space and let p be a τ′-distance on X. Let f be a function from X
into (−∞,+∞] which is proper lower semicontinuous and bounded from below. Then for u ∈ X, there exists v ∈ X
satisfying the following:

(i) f (v) ≤ f (u).
(ii) f (w) > f (v) − p(v,w) for all w ∈ X \ {v}.

(iii) If a sequence {xn} in X satisfies limn

(
f (xn)+p(v, xn)

)
= f (v), then {xn} satisfies Condition (CL); and limn xn = v

and p(v, v) = limn p(v, xn) = 0 hold.

Proof. The proof of Theorem 7 in [15] works.

The following examples tell that we need (τ′1) and (τ′3) in Theorem 13.
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Example 14. Let X = [1,∞) and d(x, y) = |x − y| for x, y ∈ X. Define a function p from X × X into [0,∞) by

p(x, y) =

1/
(
x (x + 1)

)
if y = x + 1

1 otherwise.

Define a continuous function f from X into [0,∞) by f (x) = 1/x and put u = 1. Then the following hold:

(j) p satisfies (τ′2) and (τ′3).
(jj) There does not exist v ∈ X satisfying (i)–(iii) of Theorem 13.

Proof. Since the assumptions of (τ′2) and (τ′3) always do not hold, (j) holds. For any x ∈ X, we have

f (x + 1) ≤ f (x) − p(x, x + 1).

So (ii) of Theorem 13 always does not hold. Thus (jj) holds.

Example 15. Let X and d be as in Example 12. Define a function p from X × X into [0,∞) by

p(x, y) =

1/y if x = 1
1 if x , 1.

Define a continuous function f from X into [0,∞) by

f (x) =

0 if x = 1
1/x if x , 1

and put u = 1. Then the following hold:

(j) p satisfies (τ′1) and (τ′2).
(jj) There does not exist v ∈ X satisfying (i)–(iii) of Theorem 13.

Proof. We have
p(x, z) ≤ 1 ≤ p(x, y) + p(y, z)

for any x, y, z ∈ X, thus (τ′1) holds. The assumption of (τ′2) always does not hold, thus, (τ′2) holds. Let us
prove (jj). If v , 1, then v does not satisfy (i) of Theorem 13. Therefore we assume v = 1. We will show that
v does not satisfy (iii) of Theorem 13. Define a sequence {xn} in X by xn = n. Then

lim
n→∞

(
f (xn) + p(v, xn)

)
= lim

n→∞
(1/n + 1/n) = 0 = f (v)

holds but {xn} does not converge to v. Therefore v does not satisfy (iii) of Theorem 13.

The following are generalizations of Kannan’s fixed point theorem [9]. See also Theorem 3.3 in [13].

Theorem 16. Let (X, d) be a complete metric space and let p be a function from X × X into [0,∞) satisfying (τ′2).
Let T be a mapping on X. Assume that there exists α ∈ [0, 1/2) satisfying

p(Tx,Ty) ≤ α p(Tx, x) + α p(Ty, y)

for all x, y ∈ X. Then T has a unique fixed point z. Moreover p(z, z) = 0 holds and {Tnx} converges to z for any x ∈ X.

Proof. Since
p(T2x,Tx) ≤ α p(T2x,Tx) + α p(Tx, x),

we have
p(T2x,Tx) ≤ r p(Tx, x)
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for any x ∈ X, where r := α/(1 − α) ∈ [0, 1). Fix u ∈ X. We have

lim
n→∞

sup
m>n

p(Tnu,Tmu) ≤ lim
n→∞

sup
m>n

(
α p(Tnu,Tn−1u) + α p(Tmu,Tm−1u)

)
≤ lim

n→∞
sup
m>n
α (rn−1 + rm−1) p(Tu,u) = lim

n→∞
α (rn−1 + rn) p(Tu,u) = 0.

By Lemma 8, {Tnu} satisfies Condition (CL). Since X is complete, {Tnu} converges to some z ∈ X. We have

p(Tz, z) ≤ lim inf
n→∞

p(Tz,Tn+1u)

≤ lim inf
n→∞

(
α p(Tz, z) + α p(Tn+1u,Tnu)

)
= α p(Tz, z).

Since α < 1, we obtain p(Tz, z) = 0. We also have

p(Tz,Tz) ≤ 2α p(Tz, z) = 0.

So by Lemma 9, we obtain Tz = z. In order to show the uniqueness of z, let w be a fixed point of T. Then
we have

p(w,w) = p(Tw,Tw) ≤ 2α p(Tw,w) = 2α p(w,w).

Since 2α < 1, we have p(w,w) = 0. So we have

p(z,w) = p(Tz,Tw) ≤ α p(Tz, z) + α p(Tw,w) = 0.

By Lemma 9, we obtain z = w. Therefore the fixed point z is unique.

Theorem 17. Let (X, d) be a complete metric space and let p be a function from X × X into [0,∞) satisfying (τ′2)
and (τ′3). Let T be a mapping on X. Assume that there exists α ∈ [0, 1/2) satisfying

p(Tx,Ty) ≤ α p(Tx, x) + α p(y,Ty)

for all x, y ∈ X. Then T has a unique fixed point z. Moreover p(z, z) = 0 holds and {Tnx} converges to z for any x ∈ X.

Proof. Since
p(T2x,Tx) ≤ α p(T2x,Tx) + α p(x,Tx)

and
p(Tx,T2x) ≤ α p(Tx, x) + α p(Tx,T2x),

we have
p(T2x,Tx) ≤ r p(x,Tx) and p(Tx,T2x) ≤ r p(Tx, x)

for any x ∈ X, where r := α/(1 − α) ∈ [0, 1). Hence

max{p(T2x,Tx), p(Tx,T2x)} ≤ r max{p(Tx, x), p(x,Tx)}

for any x ∈ X. Fix u ∈ X. We have

lim
n→∞

sup
m>n

p(Tnu,Tmu) ≤ lim
n→∞

sup
m>n

(
α p(Tnu,Tn−1u) + α p(Tm−1u,Tmu)

)
≤ lim

n→∞
sup
m>n
α (rn−1 + rm−1) max{p(Tu,u), p(u,Tu)}

= lim
n→∞
α (rn−1 + rn) max{p(Tu,u), p(u,Tu)} = 0.

By Lemma 8, {Tnu} satisfies Condition (CL). Since X is complete, {Tnu} converges to some z ∈ X. We have

p(Tz, z) ≤ lim inf
n→∞

p(Tz,Tn+1u)

≤ lim inf
n→∞

(
α p(Tz, z) + α p(Tnu,Tn+1u)

)
= α p(Tz, z).
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Since α < 1, we obtain p(Tz, z) = 0. We also have

p(Tz,T2z) ≤ r p(Tz, z) = 0.

So by Lemma 6, we obtain T2z = z. Then we note that
{
Tnz : n ∈ N ∪ {0}

}
consists of at most two elements.

Since {Tnz} is a Cauchy sequence, we obtain Tz = z. Hence p(z, z) = 0 holds. We can prove the uniqueness
of a fixed point z as in the proof of Theorem 16.

The following example tells that we need (τ′3) in Theorem 17.

Example 18. Let α ∈ (0, 1/2) and put X =N ∪ {0}. Define a mapping S from X into [0, 1) by

Sx =

0 if x = 0
αx if x , 0

and a function d from X × X into [0,∞) by d(x, y) = |Sx − Sy|. Define a function p from X × X into [0,∞) by

p(x, y) =


0 if x is odd and y is even
αy if x is odd and y is odd
αx if x is even and y is even
αx + αy if x is even and y is odd

and a mapping T on X by Tx = x + 1. Then the following hold:
(i) p satisfies (τ′1) and (τ′2).

(ii) p(Tx,Ty) ≤ α p(Tx, x) + α p(y,Ty) for all x, y ∈ X.
(iii) T does not have a fixed point.

Proof. Let I, J,K ∈ X be odd numbers, let ι, j, κ ∈ X be even numbers and let y ∈ X. We have

p(I, κ) = 0 ≤ p(I, y) + p(y, κ),

p(I,K) = αK
≤ p(y,K) ≤ p(I, y) + p(y,K),

p(ι, κ) = αι ≤ p(ι, y) ≤ p(ι, y) + p(y, κ),

p(ι,K) = αι + αK
≤ αι + αJ + αK = p(ι, J) + p(J,K),

p(ι,K) = αι + αK
≤ αι + α j + αK = p(ι, j) + p( j,K).

Thus (τ′1) holds. In order to show (τ′2), we assume limn sup{p(zn, zm) : m > n} = 0 and limn p(zn, xn) = 0.
Then it is obvious that limn zn = limn xn = ∞ holds. Thus, {zn} and {xn} converge to 0 in (X, d). So
limn d(zn, xn) = 0 holds. We have

p(I, 0) = 0 ≤ lim inf
n→∞

p(I, xn),

p(ι, 0) = αι ≤ lim inf
n→∞

p(ι, xn).

Thus (τ′2) holds. We have

p(ι + 1, J + 1) = 0 = α p(ι + 1, ι) + α p(J, J + 1),

p(ι + 1, j + 1) = α j+1
≤ α (α j + α j+1)

= α p(ι + 1, ι) + α p( j, j + 1),

p(I + 1, J + 1) = αI+1
≤ α (αI+1 + αI)

= α p(I + 1, I) + α p(J, J + 1),

p(I + 1, j + 1) = αI+1 + α j+1
≤ α (αI+1 + αI + α j + α j+1)

= α p(I + 1, I) + α p( j, j + 1).

Thus (ii) holds. (iii) is obvious.
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4. Example

In this section, we give an example of a τ′-distance which is not a τ-distance.

Lemma 19. Let A, B and C be subsets of [0, 1] defined by

A =
{ ∞∑

j=1

a j 10− j : a j ∈ {0, 1}
}
,

B = A ∩Q and C = A \Q.

For a ∈ A, we write a j for [a 10 j] mod 10, where [x] is the maximum integer not exceeding x. That is, a =
∑
∞

j=1 a j 10− j

holds for any a ∈ A. Then the following hold:

(i) For c ∈ C, ε > 0 and k ∈N, there exists b ∈ B satisfying the following:

• |b − c| < ε.

• b j = c j for j ∈ {1, · · · , k}.

(ii) For b ∈ B, ε > 0 and k, ℓ ∈N, there exist c ∈ C and n ∈N satisfying the following:

• |b − c| < ε.

• b j = c j for j ∈ {1, · · · , k}.

• For any i, j ∈ {1, · · · , ℓ}, there exists h ∈N such that i + j h ≤ n and ci , ci+ j h.

Proof. We first show (i). Fix c ∈ C, ε > 0 and k ∈N. Then we can choose ℓ ∈N satisfying 10−ℓ < ε and ℓ ≥ k.
Then define a sequence {b j} in {0, 1} by

• b j = c j for j ∈Nwith j ≤ ℓ and

• b j = 0 for j ∈Nwith j > ℓ.

Then

b :=
∞∑
j=1

b j 10− j
∈ B and |b − c| < 2 · 10−ℓ−1 < 10−ℓ < ε

hold. We next show (ii). Fix b ∈ B, ε > 0 and k, ℓ ∈ N. Then we can choose c ∈ C satisfying |b − c| < ε and
b j = c j for j ∈ {1, · · · , k}. It is obvious that for sufficiently large n ∈ N, n satisfies the conclusion because c is
irrational.

From now on, we write b(c, ε, k) for b in (i) of Lemma 19. Also we write c(b, ε, k, ℓ) for c and n(b, ε, k, ℓ)
for n in (ii) of Lemma 19, respectively. Though b(c, ε, k), c(b, ε, k, ℓ) and n(b, ε, k, ℓ) above are not functions,
we will use these notations in making examples. because there is no room for ambiguity.

Lemma 20. Let A, B and C be as in Lemma 19. Define sequences {b(n)
} in B, {c(n)

} in C, {s(n)
} and {t(n)

} in (0,∞) and
{ν(n)
} inN as follows:

(Step 1) n = 1, b(1)
∈ B and s(1) > 0.

(Step 2) c(1) = c(b(1), s(1), 1, 1), ν(1) = n(b(1), s(1), 1, 1) and t(1) > 0.
(Step 3) n := n + 1, b(n) = b(c(n−1), t(n−1), ν(n−1)) and s(n) > 0.
(Step 4) c(n) = c(b(n), s(n), ν(n−1),n), ν(n) = max{ν(n−1),n(b(n), s(n), ν(n−1),n)} and t(n) > 0.
(Step 5) goto (Step 3).

Then {b(n)
} and {c(n)

} converge to a same number γ, which belongs to C.

Remark. We can choose s(n), depending on b(k) (k ≤ n) and others. On the other hand, we cannot choose s(n),
depending on b(k) (k > n) and others. Similarly for t(n).
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Proof. As in Lemma 19, for a ∈ A, we write a j for [a 10 j] mod 10. Since ν(b, ε, k, ℓ) ≥ 2 ℓ holds, we first note
limn ν(n) = ∞. We next note that {ν(n)

} is nondecreasing. Hence

c(n)
j = b(n+1)

j = c(n+1)
j = · · · provided j ≤ ν(n).

Therefore {b(n)
} and {c(n)

} converge to a same number γ. Arguing by contradiction, we assume that γ is
rational. Then there exist i, j ∈N such that γr = γr+ j for any r ≥ i. Put n = max{i, j}. Then there exists h ∈N
such that i + j h ≤ ν(n) and

γi = c(n)
i , c(n)

i+ j h = γi+ j h = γi,

which is a contradiction. Therefore γ is irrational.

Example 21. Let X be a subset of R2 defined by

X =
(
{−1} × ([0, 1] ∩Q)

)
∪

(
{0} × [0, 1]

)
∪

(
(0, 1] × ([0, 1] \Q)

)
.

Define functions d and p from X × X into [0,∞) by

d
(
(x1, x2), (y1, y2)

)
=

0 if (x1, x2) = (y1, y2)
|x1| + |y1| + |x2 − y2| otherwise

and

p
(
(x1, x2), (y1, y2)

)
=


d
(
(0, x2), (y1, y2)

)
if x1 = −1, y1 = 0, y2 ∈ Q

d
(
(0, x2), (y1, y2)

)
if x1 = −1, y1 > 0

3 otherwise

for any (x1, x2), (y1, y2) ∈ X. Then the following hold:

(i) (X, d) is a complete metric space.
(ii) p is a τ′-distance on X.

(iii) p is not a τ-distance on X.

Proof. For any x ∈ X, we write x1 for the first element of x and we write x2 for the second element of x. That
is, x = (x1, x2) holds. (i) is obvious. We note max{d(x, y) : x, y ∈ X} = 3. So we have

p(x, z) ≤ 3 ≤ p(x, y) + p(y, z)

for any x, y, z. We have shown (τ′1). From the definition of p, there does not exist a sequence {z(n)
} satisfying

limn sup{p(z(n), z(m)) : m > n} = 0. Thus, (τ′2) holds. In order to show (τ′3), we let z ∈ X and a sequence {x(n)
}

satisfy limn p(z, x(n)) = 0. From the definition of p, z1 = −1 obviously holds. From the definition of X, z2 ∈ Q
holds. For sufficiently large n ∈N, either of the following holds:

• x(n)
1 = 0 and x(n)

2 ∈ Q.

• x(n)
1 > 0.

So
p(z, x(n)) = d

(
(0, z2), (x(n)

1 , x
(n)
2 )
)
= |x(n)

1 | + |z2 − x(n)
2 |

holds. Hence we have
lim
n→∞

x(n)
1 = 0 and lim

n→∞
x(n)

2 = z2.

Therefore we obtain
lim
n→∞

d(x(n), x(n+1)) = lim
n→∞

(|x(n)
1 | + |x

(n+1)
1 | + |x(n)

2 − x(n+1)
2 |) = 0.
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So {x(n)
} converges to x := (0, z2). Fix w ∈ X. Then in the case where w1 = −1, we have

p(w, x) = d
(
(0,w2), x

)
= lim

n→∞
d
(
(0,w2), x(n)

)
= lim

n→∞
p(w, x(n)).

In the other case, where w1 , −1, we have p(w, y) = 3 for any y ∈ X. So in both cases, we obtain
p(w, x) ≤ lim infn p(w, x(n)). We have shown (τ′3). Let us prove (iii). Arguing by contradiction, we assume
that p is a τ-distance with η. Let A, B and C be as in Lemma 19. Define sequences {z(n)

} and {x(n)
} in X, {b(n)

}

in B, {c(n)
} in C, {s(n)

} and {t(n)
} in (0,∞) and {ν(n)

} inN as follows:

(Step 1) n = 1, b(1)
∈ B and z(1) = (−1, b(1)).

(Step 2) Choose s(1) satisfying η(z(1), s(1)) < 2−1.
(Step 3) c(1) = c(b(1), s(1), 1, 1) and ν(1) = n(b(1), s(1), 1, 1).
(Step 4) Choose t(1) satisfying t(1) + |b(1)

− c(1)
| < s(1) and put x(1) = (t(1), c(1)).

(Step 5) n := n + 1, b(n) = b(c(n−1), t(n−1), ν(n−1)) and z(n) = (−1, b(n)).
(Step 6) Choose s(n) satisfying η(z(n), s(n)) < 2−n and s(n) + |b(n)

− c(n−1)
| < t(n−1).

(Step 7) c(n) = c(b(n), s(n), ν(n−1),n) and ν(n) = max{ν(n−1),n(b(n), s(n), ν(n−1),n)}.
(Step 8) Choose t(n) satisfying t(n) + |b(n)

− c(n)
| < s(n) and put x(n) = (t(n), c(n)).

(Step 9) goto (Step 5).

Then we have

p(z(n), x(m)) = d
(
(0, b(n)), (t(m), c(m))

)
≤ d
(
(0, b(n)), (0, b(m))

)
+ d
(
(0, b(m)), (t(m), c(m))

)
= |b(n)

− b(m)
| + t(m) + |b(m)

− c(m)
|

< |b(n)
− b(m)

| + s(m)

≤

m−1∑
k=n

(
|b(k)
− c(k)

| + |b(k+1)
− c(k)

|

)
+ s(m)

<
m−1∑
k=n

(s(k)
− t(k) + t(k)

− s(k+1)) + s(m)

= s(n)

for m,n ∈Nwith m ≥ n and hence

lim
n→∞

sup
m≥n
η
(
z(n), p(z(n), x(m))

)
≤ lim

n→∞
η(z(n), s(n)) ≤ lim

n→∞
2−n = 0.

By Lemma 20, {c(n)
} converges to some irrational number γ. Also since t(n) < s(n) < 2−n holds by (τd2), {t(n)

}

converges to 0. So {x(n)
} converges to (0, γ) ∈ X. We have

p
(
(−1, 0), (0, γ)

)
= 3 > γ = lim

n→∞
d
(
(0, 0), x(n)

)
= lim

n→∞
p
(
(−1, 0), x(n)

)
,

which contradicts (τd3). Therefore p is not a τ-distance.
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