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Fixed point theorem for a new S#-G#-contraction mappings in metric
space with supportive applications

Abdellah Taqbibt*", Mohamed Chaib?, M’hamed Elomari?, Said Melliani®

*Laboratory of Applied Mathematics and Scientific Calculus, Sultan Moulay Slimane University, PO Box 523, FST, Beni Mellal, 23000, Morocco

Abstract. This manuscript has for goal to present a new type of contraction, namely S#-G#-contraction,
based on the simulation function and the Geraghty function. Some existence and uniqueness results of
fixed point in complete metric spaces have been shown with this contraction. Our results generalize and
unify several existing results in the literature. Moreover, we illustrated these results with some examples
and applications.

1. Introduction

In recent years, fixed point theory has become one of the most important tools for solving certain prob-
lems in various fields like in nonlinear analysis, physics, biology and game theory. Banach provided the
first fixed point theorem in complete metric spaces, which was generalized in different fields, and one of
these generalizations was given by Berinde [1], where he introduced the concept of quasicontraction as a
generalization of the weak contraction, in the sense of Berinde. Subsequently, several results were obtained,
for example, see [2, 2-5, 18, 22, 24]. Recently, Babu et al.[6] introduced a contractive condition, namely
”condition (B)”, and they proved important results of a fixed point for this contractive condition mappings,
similarly, Ciri¢ et al.[7] introduced the concept of generalized quasi-contraction condition and shown some
results of existence of fixed point in ordered metric spaces. Samet et al. [10] introduced a class of functions,
namely a-admissible and they proved some results of existence of fixed point for a-ip-contractive maps.
We refer the reader to [11-13] for more results about this class of functions. In 2016, by combining the ideas
of [25] and [14], Karapinar [8] introduced the concept of a-admissible Z-contraction to obtain certain fixed
point results in metric spaces.

Motivated by the above works, we present a new type of contraction, namely type S¢-G#-contraction.
In addition, we show some results concerning the existence and uniqueness of fixed points for this S¢-G#-
contraction mappings, Our results unify several well-known type of contractions and generalize several
existing results in the literature. Moreover, we can describe these results with some exemples and applic-
tions. In 2012, B. Samet and Erdal Karapinar [23] originated the concept of a-admissibility presented in
[14].
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Definition 1.1. [14] Let o : . X X — R* be a function and Q : © — ¥ be a self-mapping. We say that Q is a
a-admissible if

ad,n)=1= a(Q3,Qn) = 1forall 9,ne L. 1)

Example 1.2. [14] Let £ = R},. DefineQ : L — Zand a : LX X — R*, as follows Q9 = In(9) for all § € L and

_J 0 ifd<n,

Let 9,n € R* such that a(8,n) > 1, then 8 > n and thus In(9) > In(n), implies that QS > @Qn. So,
(@S, Qn) =2 > 1. Then, Q is a-admissible.
Example 1.3. [14] We define

Q R" — R*

8- Q=8

and

a:R2 — R*
90 if 9<n,

e’ if 9=

&) r—a®,n = {

Let 9,1 € R such that a(8,n) > 1, then § > n and thus V9 > \1, implies that P8 > Pn. So, a(PI,Pn) =
e > 1. Then, P is a-admissible.

Definition 1.4. [15] Let @ : ¥ X £ — R* be a function and Q : ¥ — ¥ be a mapping. We say that Q is an
extended-a-admissible if

a(nQn) > 1= a(@n,@n) > 1.
Definition 1.5. [16] An a-admissible map Q is called triangular a-admissible if a(9, 0) > 1 and a(o, 1) > 1 implies
a®,n) =1, forall $,n,0 €Y.
A new concept of contractions with the simulation functions has been introduced by Khojasteh et al[25].

Definition 1.6. [25] The function ¥V : R* X R* — R is said to be a simulation function, if the following conditions
hold

(W1) ¥Y(7,0) =0ifandonlyift =0 =0;

(W2) W(r,0)<O0—1 forallt,0>0;

(W3) if {04}, {T,) two real positive sequences such that lim t, = lim 6, > 0,
n—oo n—o0

then lim sup W(t,, 0,) < 0.
For more details the reader can see [19, 25]. We denote by S the set of all simulation functions.
Definition 1.7. [21] Let p : R* —]0, 1] such that
for every {by,} ¢ R* and lim B(by,) =1, implies lim b, = 0"
m— o0 m—oo
such a function is said a Geraghty function.
The set of all Geraghty functions will be denoted by G#.

Definition 1.8. [25] Let Q : ©. — ¥ be a self-mapping over a metric space (L, 6) and let W € Sg. We say that Q is
a Sg-contraction with respect to W, if the following condition holds

W((Qn,Q0),6(1,0) 20  foralln,6 € X. @)
Theorem 1.9. [25] Let (X, 8) be a complete metric space and Q : &. — ¥ be a Sg-contraction with respect to W € S¢.

Then Q has a unique fixed point in L. and for every oy € L the Picard sequence {c,,}, where 6, = Qo1 foralln € N,
converges to the fixed point of Q.
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2. Main results
In this section we present our main results, to do this we start with the following definition.

Definition 2.1. Let (X,6) be a metric space and o : ¥ X L. — R* be a function. We say that Q : £ — X isa
S#-Gy-contraction if there are V € S, B € G and L > 0 such that

a(n, 0) 2 1= W(6(Qn, QO), B(M(n, 0))M(n, 6) + LN(n, 0)) = 0, ®3)
where

N(1, 6) = min{5(n, Qn), 5(0, QO), (1, Q6), 6(y, Q)};
501, Q) +5(6,Q0) 5(n,Q0) +5(6,Qn),
2 ’ 2

M(n, 6) = max{5(n, 0),
foralln, 0 € L.

According to this definition, we have

Theorem 2.2. Let (X, 6) be a complete metric space and let Q : & — L be a S¢-G#-contraction. In addition we
assume that the following conditions

(C1) Qs a triangular a-admissible;
(C2) there is o¢ € ¥ with a(og, Qog) > 1;
(C3) Qs continuous;

hold. Then there is y € ¥ with Qy = .

Proof. Condition (C2) ensure the existence of op € X, with a(cy, Qop) = 1. Now let {0,} be an iterative
sequence in X given by

On+1 = Qoy, for all n € N.

If there is m € IN such that 0, = Qo,, the proof is obvious. Assume that 0,41 # 0, for all n € IN. Combine
both conditions (C1) and (C2), we have

a(oo,01) = (oo, Qop) > 1 implies that a(Qoo, Qo1) = a(o1,02) > 1,
and so on by recurrence, we find
a(oy,0441) =1, forall n € N. 4)

From (3) and (4) with p = ¢, and g = 0,,—1, we obtain

0 < W(6(Qoy, Qoy-1), f(M(01, 04-1))M(04, 04-1) + LN(0p, 01-1))
= \I](é(orﬁ—lr ‘jn)r ﬁ(M(Gm Gn—l))M(Gnr Gn—l) + LN(On/ Gn—l))
< M(0oy,04-1) + LN(0p, 0p—1) = (00, Ons1), (5)

where

N(Gm O'n—l) = min{é(an/ Qan)/ 6(Gn—l/ Qan—l)/ 6(Gn/ Qan—l)/ 6(Gn—1/ Qan)}
= min{é(an—ll Gn)/ 6(Gn/ Un+1)/ 6(‘771—1/ On+1, 6(01’1/ On))}
=0 (6)
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and

6(011/ an) + 5(011—1/ an—l)

M(0y-1,0,) = max{6(c,, 0,-1),

2
0(0,, Qoy1) + 6(on_1,Qon)}
2
_ max{é(an, Gn_l), (3((7;1/ Gn+1) ;‘ 5((711—1/ Gn) ) (5(0'"_12, Gn+1) }
6 nr¥n 6 n-1,0n
< max{(an, 0r1), (01, On+1) ;‘ (op-1,0 )}
<max{6(c,,0,-1), 5(0n, 0ps1)}- )

By (5), (4), (6) and (7), we get

6(‘771/ Gn+1) < max{é(on, Gn—l)/ 6(071/ Gn+1)}

foralln > 1.
Now, if max{6(0y, 0n-1), 0(0n, 0n+1)} = 6(0n, Ons1) for some n > 1. Then from the above inequality, we get

6(011/ 0n+1) < 6(Gnr O_n+1)/

which constitutes a contradiction. Therefore

max{6(0y-1,04),0(0n, 0n41)} = 6(0, 04-1) forall n > 1. (8)
Hence
(0, 0441) < 0(0,,0,-1) forall n > 1. )

Consequently, we conclude that {6(c,,, 0,-1)} is a decreasing sequence of positive real numbers. Thus, there
is r > 0 such that lim 6(o,,, 0,,—1) = r > 0. We claim that
n—00

lim 8(ay, 01) = 0. (10)
On contrary if r > 0. From (9) it follows that

’}1_{1;10 0(0y,0p41) = 1. (11)

Now, if we take the sequences {5, = (04, 0441)} and {1, = 0(0s,04-1)} and considering (11), then

lim 6, = lim 7, = r therefore by (W3), we get that

n—oo

0 < lim sup W(6(0n, 0n+1), 0(04, 0n—1)) <0 (12)
n—00
which constitutes a contradiction, we conclude that r = 0.

In the next step, let us prove that {o,,} is a Cauchy sequence in . On contrary, assume that {0,} is not
a Cauchy sequence. So, there exists € > 0, for every N € IN, there are n,m € IN such that N < m < n and
0(om, 0,) > €. In account of (10), there exists 1y € IN with

0(0n, 0n+1) < € for every n > ny. (13)
We can find subsequences {0, } and {o,,} of {0} such that my > ny > ny and

O0(om, 0n,) > €, forall k. (14)
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where my is the smallest integer that satisfies the formula (14). Then
0(Omy_,,0n,) < € for every k,

Now, using (14), (15) and the triangular inequality, we obtain

€< 6(0mk1 Oﬂk) S 6(0mk1 Gmk—l) + 6(0mk—1/ O'nk)
< (0, Om—1) + €

Letting k — oo and using Equation (10), we derive that

lim 6(oy,, 0n,) = €.

Again, by the triangular inequality, we have

8Os ) < Gy Gmgs1) + O(Gmgst, o) + (1, O for all k.
Also, we have

8(Gm+1, T 1) < O(Gms1, Oy) + (G Tay) + 8T, Os1) for all k.
By passing to the limit as k — oo in (19), (18) and (10) we conclude that

1 6(011, 0, 1) = €.

Based on the same reasoning as above, we can write

lim 5(Gmkr0'nk+l) = lim 6(amk+ll Gnk) =€
n—oo n—oo

As Q is a triangular a-admissible, we have

a(om, 0n) = 1.

As well, since Q is a Sy-G#-contraction, we get

0 S \Il(é(agmk/ Qank)/ ,B(M(Umk/ Onk ))M(Gmk/ Gﬂk) + LN(Gmk/ Unk))
= ‘I](é((jmk.H, CT”k+1)/ ﬁ(M(omk’ ank))M(amk’ Onk) + LN(Gmk’ O”k))
< .B(M(O_mk/ Onk))M(Umkr O_‘rlk) + LN(Umk/ O_‘rlk) - 6((7mk+1/ Unk+1)-

Hence

O < 5(Gmk+1/ G?lk+1) < ﬁ(M(O'mk/ Gnk))M(amk/ Unk) + LN(Gmk/ G?’lk)
< M(0m,,0n,) + LN(Oy, On,)-

for all k > n;. Where

6(O"lk' Qomk) + 6(ank1 Qank)
2 7
6(Gmkf Qank) + 6(O'nkr Qﬁmk)
> }
6(Gmk/ Gmk+1) + 6(0nk1 c711;(+1)
2 7
6(Omk’ Onk+1) + 6(0nk1 Omk+1) }
2

M(Omkr Onk) = max{é(amk, Onk)/

= max{6(ow,, On,),

7959

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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and

N(om,,0n,)
= min{é(amk/ Qamk)! 6(Gnk1 Qank )I 6(0-7111(/ Qo'nk)/ 6(Gnk1 Qamk)}

= min{é(amk/ O‘mk+1)r 6(Gnk/ onk+1)r 6(Gmk/ Gnk+1)/ 6(0nk1 Umk+1)} (26)

Taking the limit as k tends to +co in (26) and (25), by (17), (10), (21) and (20) we get

I}im M(oy,, 0n,) =€ (27)
and
%im N(ow,,04) = 0. (28)

From (28), (24) and (27), we derive that
Un, = O(Om41,0ns1) and v, = M(0p,, 0n,) + LN(Op,, 01,), We have ]}im Uny = %im vy, = €. Therefore by

(W3), we get

0< ]}1_{?0 sup \p((s((jmk+lr U}’lk+1)l M(Omkr Unk) + LN(Umk/ O'nk) < O/

which gives a contradiction. So {0,} is a Cauchy sequence in (X, ). Therefore, there is y € ¥ satisfies

lim 6(o,, ) =0, (29)

the continuity of Q implies that

Jim O(0p41, Q) = lim 6(Qo,, Qy) = 0. (30)

By using (30), (29), we conclude that Qy = y.
[

Theorem 2.3. Let (¥, 06) be a complete metric space and let Q : . — L be a Sy-Gg-contraction mappings verifies
the following assumptions

C1) Qs a triangular a-admissible;
(C2) there exists oy € L. with a(og, Qog) = 1;
(C3) if {04} is a sequence in T with

a(0n, 0ns1) 2 1 for every nand limo, =p € L,
n—oo

then there is a subsequence {0,} of {04} such that a(o,p), p) = 1 for every k.

Then, Q posses a fixed point.

Proof. We adopt the same reasoning as in the proof of the previous theorem, we can show that g,+1 = Qo,
for all n > 0 is a Cauchy sequence in X.. Since (X, ) is complete, there is y € X satisfies lim 0, = y. By
n—oo

(4) and the assumption (C3), there is a subsequence {o,x} of {0,,} such that a(o,x),)) = 1 for every k € IN.
According to the contration given in (3), we obtain

0 < W((Qou), QY), BM(Ongry, ¥))M(O iy, ) + LN (0w, 7))
= W(O(Ong+1, QY), BM(O gy, ¥))M(Oniiy, ) + LN(04ge), 7))
< BM(0uy, Y))M(0n(ky, ¥) + LN (), ) = 6(0ny+1, QY)-
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Hence

(O nwy+1, QY) < BM(0uw), ¥))M(On), ¥) + LN(0n@), y)
< M(0uky, y) + LN(0u), Y) (31)

where

(Onky, Ongo+1) + 0(y, Q)

0
M(ou), ) = max{(6(on@m, V),

2 7
O(Tn@y, QY) + 0(y, Ougy+1) }
2

N(0u@y, y) = min{(6(0n(k), Oniy+1), OV, QY), 6(Oniiy, QY), O(V, Oniy+1)}-

By passing to the limite as k — oo, we get

. o(z,Qy)
%1_{2 M(On(k)r )/) = 2 ! (32)
I}im N(ouw,y) = 0. (33)

Suppose that 6(y, Qy) > 0. By (31), it yields
O(Tn+1, QY) < M(0n@y, ) + LN(0nry, y)
Now, by passing to the limite as k — oo, thank’s to (33) and (32), we obtain
o0, Q)

6(7// QV) < T

a contradiction and hence 6(y,Qy) = 0, thatisy = Qy. O

To ensure the uniqueness we need in addition to the following condition
(C) a(n, 0) = 1 for every 1, 0 € Fix(Q), where Fix(Q) denotes the set of all fixed points of Q.

Theorem 2.4. Suppose that the assumptions of Theorem 2.2 (resp. Theorem 2.3) satisfied, if in addition (C) holds,
then Q posses a unique fixed point.

Proof. Assume that there are two distinct points y,y* € X with y = Qy and y* = Qy*. According to (C), we
can write

a(y,y) > 1.

And thus, from (3) and (W?2), it follows that

0 < W@y, Q") BM(y, y )My, ") + LN(y, "))
=Wy, v, My, Yy )My, ") + LN(y, v")
<BMCy, Y )DM(y,y") + LN(y, v") = 6(y, v")
<M(y,y") +LN(y,y") = 6(y, ") (34)



A. Taqbibt et al. / Filomat 37:23 (2023), 7955-7971 7962

Where
oy, Qy) +0(y", Qy") o(y,Qy") +0(y", Q
MGy, ") = max(6(,7"), (. Q) . 07, Q) oy 7/)2 0,
o(y,y) +6(v*,v*) o(y,v*) +o6(v%,
= max{5(,7), .7 s o) (7/7/)2 0y,
=0(y,7") (35)
and

N(y,y") = min{6(y, Qy), ()", Q"), 6(y, Q"), 6(y", Qy)}
=min{o(y, y), 6", v"), (v, v"), 6(¢", )}
=0 (36)
From (34), (36) and (35) we deduce that

0<06(y,y)—06(y,v")-
So,

oy, y") <o(y,y")

which is a contradiction. Hence y = y~.
|

Example 2.5. Let ¥ = [0, i] endowed with the metric induced by absolute value. Consider W1 : [0, 00)X[0, 00) — R
be defined by Wi(t,s) = § — 1, and let B : R* — [0,1), B(r) = ==, VY7 > 0,(0) = 3 and L be a positive real
number.

We define the mappings Q : £ — Land o : £ X X — [0, 00), as follows

Qn = u for every n € L,

3
and
sy ={ § ¥ 1oLl
We have
\Pl(é(Qn, Q0), B(M(n, O)M(1,6) + LN, 9))
_ BM(n, 6)M(n, 0) + LN(1, 0)
~ 5(Q,Q0) ’

M(n, 6) N LN(n, 6)
2(1 + M(n, 9)) 2
—- 5(Qn, Q).

Let p,q € X, we have
5(Qn, QO)

|Qn—-Q0 |
6(n,Qn) +06(6,Q0) (7, QO) + 6(6, Qn)

2 ’ 2 }

% max{5(n, 0),
1
= gM(n, 0).

IA
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Then,

w1(6(@n, Q6), B(M(n, 6)M(n, 6) + LN (1, 0))
B(M(n, 0))M(n, 0) + LN(n, 0)

2
— 6(Qn, QO)
S M(n, 0) N LN(n, 0)
2(1 + M(n, 0)) 2
1
- gM(n/ 6)

_ M(n,6) - 2M?(1, 0)
— 6(1+ M(n,0))
LN(n, 0)

>

+

On the other hand, we have V1,0 € £, M(n,0) € [0, i]. So
M(n, 6) = 2M?(1, 0) = 0.
Finally

w1(6(@n, Q6), MG, 0)M(r, ©) + LN(, 6)) > .

Example 2.6. Let & = [0, 3] endowed with the metric induced by absolute value. We define the mapping g : ¥ — L

by
gn=12+3, VnexL
and the simulation function defined by
T+2
W =§— — > 0.
2(T,8) =5 T+1T, Vs, >0

Define the mapping a : ©. X £ — [0, c0) by

_J1 ifn=#6,
a(n, 6) = { 0 otherwise.

Let n, 0 € X with n # 0, we have

w2(5(g1, 96), B(M(, 0)M(1, 6) + LN, 0))

= B(M(n, 6))M(n, 6) + LN(1, 0)
o(gn, 90) + 2
- o(gm, 96)—6(917,!]9) .

_ M(@»,0)

= Temeg0) TN O

~ o(gn, g0) +2
2090 g, g0+ 1
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and
o(gn,g0) = lgn—g0|
5(n, g0) + 5(6,g6) 5(n, g0) + 6(0, g
< Lomaxto(, 0), (n,99) +5(0,96) 5(n,96) + (0, 99),
7 2 2
1
Then,

w2(5(g1, 96), BM(, 0)M(1, 6) + LN, 0))

= B(M(n, 6))M(n, 6) + LN(n, 6)
o(gn, 90) + 2
— o(gm, 99)—6(917,!]9) .

M(n, 6)

1
- ;M(TL 6)

M(n, 6)

> W(T],Q) + LN(U, 9)
1
- ?M(T]r 0)

_ 6M(n,0) - M*(n, )
~ 7(1+ M(n, 0))

+LN(1,0).

On the other hand, we have V1,0 € X, M(n, 0) € [0,3]. So

Finally

w2(6(gm,96), BM(1, )M, 6) + LN(n, ) > 0.

3. Consequences
In this section, several classical fixed point results can be easily deduced using our main results.

Corollary 3.1. (See E. Karapinar and V. M. L. Hima Bindu[26]) Let (X, 6) be a complete metric space, Q : ¥ — L

be a mapping and
a: XX —[0,00)

be an admissible function. Assume that there exist ¥V € S¢, p € G and a constant L > 0 such that
a(n, 0) > 1= ¥(6(Qn,QO),(6(n,0))6(n,0) + LN(n,0)) >0, Vn,0€X,

where
N(n, 6) = min{6(n, Qn), (6, QO), 6(n, QO), 5(0, Qn)}.

Furthermore, we suppose that

(1) Qs a triangular a-admissible;
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(ii) thereis og € L with a(og, Qog) = 1;
(iii) either, Q is continuous, or
(iii)" if {on} is a sequence in X with a(o,, 0441) 2 1 for every n and

limo,=p€l,

n—o0

then is a subsequence {0} of {0} such that a(o,w,n) > 1 for every k;
(iv) V1, 0 € Fix(Q) we have a(n, 0) = 1.

Then there exists y € X such that Qy = y.
Proof. We choose the mapping M(n, 0) = 6(1, 0) in Theorems 2.2, 2.3 and 2.4. [

Corollary 3.2. We define over the complete metric space (X, 0) a self-mapping Q. Assume that there are ¥ € Sg,
B € G, such that
W(6(Qn, QO), B(M(n, 0))M(n, 0) + LN(n, 0)) >0, foreveryn,0 € L,
where
N(n, 8) = min{o(n, Qn), 6(6, Q6), 6(1, Q6), (y, QY)};
o(n,Qn) + 6(6,Q0) o(n, QO) + (6, Qr])}

M(n, 0) = max(5(1, 0), . : ;

Then there is y € = with Qy = y.

Proof. Let us consider the mapping o : £ X X — [0, 00) with a(n, 6) = 1, for every 1, 0 € L in Theorems 2.2,
23and 24. O

Corollary 3.3. Let Q : ¥ — X be a given mapping over a complete metric space. Assume that there are W € Sg,
B € G such that

W (6(Qn, QY), B(M(n, 6))M(n, 0))) =0, foreveryn, 6 € X,

where

o(n,Qn) +6(0,Q0) o(n,QO) +6(0,Q
M(n, 6) = max{s(n, 6), (. Qn 5 (6,Q6) 5(n )2 n,
Then there is y € ¥ with Qy = y.
Proof. Taking a(n, 0) =1, for every 1,6 € £ and L = 0 in Theorems 2.2,2.3 and 2.4. O
Theorem 3.4. Let Q be a self-mapping defined on a complete metric space (2, 0). Assume that there is ¢ : R* — R*
be an upper semi-continuous mapping with
Y(t)<t, if 1>0;
{ Y1) =0, if =0, 57)
and B € Gy , such that
5(Qn, QO) < Y(K(n,0)), foreveryn,o € XL. (38)
where
K(n, 0) = pM(n, 0))M(n, 0) + LN(n, 0);
N(n, 6) = min{5(n, Qn), 6(6, QO), 6(n, QO), 6(y, Qx)};
o(n,Qn) +06(6,Q0) 6(n,QO) + 6(6,Qn)
2 ’ 2

M(n, 0) = max{6(n, 0), }.
Then there is y € L with Qy = y.
Proof. Taking a(n, 0) = 1, for every 1,0 € L, and let

W(t,s) =Y(s) -1, V1,5 > 0.

Itis clear ¥ € S#. What needed to be shown from Theorems 2.2, 2.3 and 2.4. O
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4. Applications

I) We consider the Caputo-Fabrizio fractional differential equation

{ (FOpx) = f(T,x(T)/ (CFZ)Sx)(T)); te]=][0,T], (39)
x(0) = o ,

where T > 0,f : ] x R xR — R is a given continuous function, “*9 is the Caputo-Fabrizio fractional
derivative at order r € (0, 1), and uy € R.

Lemma 4.1. [27]The porblem (39) is equivalent to the following equation

x(t) = 0 + nh(T) + 6, fT h(s)ds,
0

where h € C(]) with h(t) = f(t, x(t), h(t)) and

0 = oo+nh0),
B 21 —-r
= 2= Mo
s = %
T My

Consider the complete metric space (C(]), 0), such that 6 is given by

6o:C(HxC() — Ry
(xy) — Ozy) =suplz(t)—y(7)|.

€]

Let © denote the class of all continuous and increasing functions ¢ : R* — [0, 1) satisfying
@(b1) <bp(t) forb>1landrt >0.

The following hypotheses will be used in the sequel.
(A1) There exist ¢ € ® and a function v : C(J) X C(J) = R and uy € C(J) with

,0+nh Oy h(s)ds) >0,
{0+ nh+o. [ hows) =
h € C(J), with h(t) = f(z, up(7), h(7)).
(Ay) There exist 9 : C(J) X C(J) =10, 00[ and y : | — (0, 1) such that for each z,y,01, 1 € C(J) and 7 € |

| f(t,z,y) = f(t,or,y) ISz ) | z=o1 | +yO) [y —y1 |,

with

3z, ) ft 3(z,v) 1
1+2n, + 0, o< = Z =Y |leo),
I Ty, Ty, lleo< (1 2 = ¥ ll)

where y, = sup | y(7) |.

€]
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(A3) Foreacht € Jand z,y € C(J), we have

v(z(’c) , ]/(T)) >0=

o6, + g+, fo " g()ds, O, + h(@) + 5, fo T HE)ds) > 0,
where h, g € C(]), with h(t) = f(7, y(1), h(1), 9(1) = f(7,2(7), h(7))) and O, = yo+1,h(0), O, = 0 +1,9(0).

(Ag) If (pu)nen C C(J) such that r}g& pn = p and v(py, pu+1) = 0, then v(p,, p) > 0.
(As) If u, v two fiexd solutions of problem (39), either

v(u,v) 20 or v(v,u)=0.
Theorem 4.2. Under assumptions (A1)-(As), the problem (39) has a unique solution.

Proof. Consider the maping Q : C(J) — C(J) with

Q:C()) - <)
x = Qx(t) =0+ nhd) + 6, f h(s)ds,
0

where h € C(]), such that h(t) = f(7, x(7), k(7)) and 6 = 5¢ + 1,h(0).
Using Lemma 4.1, it is therefore sufficient to show that Q has a fixed point.
Let a function a : C(J) X C(J) — [0, c0) defined by

1 if vz(r),y(r) =0 T€]
a(z, y) = { 0 otherwise.

We have to prove that Q is a S-G#-contraction
Lets z,y € C(J) and 7 € ], we have

t
| Q2(1) — Qy(©) <] O, — Oy | +11, | 9(x) — h(D) | +5, fo | 9() — h(s) | ds,

where i, g € C(]), such that h(1) = f(7, y(7), h(7)), 9(1) = f(7,2(7), 9(7)) and 6, = 50 +1,9(0), O = yo +1,(0).
By (A1), we get

| g(7) = (1) |

| f(7, x(7), 9(7)) = f(T, y(7), h(7)) |
3z, y) | 2(1) = y(7) [ +p(0) | 9(7) = W(T) | -

IA

Thus,

3z, v)
lg—"hlle< Ty, lz=ylle -

s
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Next, let us write

(1, 0)
1-vys

“ 3z )
+5f Iz~ ¥ lle ds
' o 1-vs Y

e £ 3(n, 0
<Nzl [1+2nr1(fyy)+5,f ﬁy)ds]
s 0 s

| Qz(7) — Qu(7) | <l 2 = ¥ lloo +271 lz=ylle

<lz=y le 30012y )
< 700 PG, 1),
Then
(@2, Q) <50 PO V).

And thus

A

a(e, YO0 - Qy(D) < e, 1) 10 VPO, 1)

IA

%LM(Z, YeM(z,y)) + LN(z,y), where L > 0.
Hence
‘I’(é(Qz(T) - Qy(T)), M(z, y)p(M(z, y)) + LN(z, y)) >0 whereL >0,

where W(1,5) = § — T and (1) = ¢(1).
So, Q is Sy-Gy-contraction.
Lets z, y € C(]) such that a(a, Qy) > 1. Thus, for each 7 € |, we get

v(a(t), Qy(t)) > 0.

By (As3), this implies that
1(@Qz(1), @y(1) > 0,

then
a(Qz, Q) > 1.

Hence, Q is an extended-a-admissible.
From A,, ther exists ug € C(J) such that
a(ug, Qug) = 1.
Finally, if (p,)nen € C(J) such that r}g{}o Pn = p and a(py, pn+1) = 1, then by(Ag), we have a(p,,, p) > 1.
So, from Theorem 2.3, we conclude that Q has a fixed point in C(J) which is a solution of problem (39).

From (As), if v and u two fixed points of Q, then either v(1,v) > 0 or v(v,u) > 0. This implies that either
a(u,v) 2 1or a(v,u) > 1. So, by Theorem 2.4, the problem (39) has the uniqueness solution. [
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IT) Consider the folllowing integral equation

1
u(t) = g(t) + fo h(z,s)f(A, u(A))dA  forall T € [0,1]. (40)

Let W denote the set of all non-decreasing functions ¢ : R* — [0, 1) satisfying
@(bt) < bte(r) forallb>1 and7>0.

To evaluate the intergal equation (40) we will take into consideration the following assumptions

(H1) g:[0,1] = R is a continuous function.
(Hz) f:[0,1] xR — Ris a continuous function, f(7, 1) > 0 and there exists ¢ € W such that
| f(T,u) - f(7,0) |< %(p(l u—uv|), with lim ¢(t,) =1= lim 7, =0.
n—oo n—-oo

(H3) h:[0,1]*> — Ris a continuous function, k(t,s) > 0 and
1
f h(t,s)ds < 1.
0

o(u,v) = sup |u(t) —ov(z)| foreveryu,veE.
7€[0,1]

Let E = C([0, 1]), with the usual metric given by

Next, we define
1
o(u,v) = EQ(H, v) foreveryu,veE.

We know that p is a usual metric on E and that (E, p) is a complete space. Since 0 = %Q, therefore (E, ) is a
complete metric space.

Theorem 4.3. Under assumptions (H1)-(H3), equation (40) has a unique solution in E.

Proof. Consider the maping P : E — E defined by

1
Pu(t) = g(7) + f h(t, A)f(A, u(A)dA  forall T € [0,1]
0
It is clair P is well defined (this means that if u € E, then Pu € E). Also, for u,v € E, we have

| Pu(t) = Po() |

1
() + fo Iz, A)F, u()A — g(2)

1
h
o Ry
1
= | fo [h(T, A)f (A, u(A)) = h(t, A) f(A, v(A))]ds |
1
< f h(t, A) | f(A, u(A)) = f(A,0(A)) | ds
0
1
1
< fo h(T,/\)g(p(lu()\)—v(/\)l)ds.
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Since ¢ is non-decreasing, we obtain

(1) =0 1) < o sup [u(d) =o(A)|)

Ae[0,1]

= ¢(o(u, v)).
Therefore,
| Pu(e) ~ Po(o) I 3(0lu, ).
On the other hand, we have

0(Pu, Pv)

%Q(Pu, Po)

1
= = sup | Pu(s) — Po(s) |
2 te[0,1]

11
s 5 g(P(Q(%U))

11
= 3 5@(25(”/0))

IA

3004,2)p(o(w, )

IA

%[M(u, v)p(M(u,v)) + LN(M,U)] where L > 0.

Then
\I/(é(Pu, Po), B(M(u, 0))M(u, v) + LN(u, v)) >0,

where (1) = ¢(t) and W(t,s) = 5 — 7. By corollary 3.2, equation (40) has a solution in E and the proof is
finished. O
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