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The weak group-star matrix
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Abstract. In this paper, we introduce one type of matrix, called the weak group-star matrix. We investigate
the characterizations, representations, and properties of the matrix. A variant of the successive matrix
squaring computational iterative scheme is given for calculating the weak group-star matrix. Moreover,
the Cramer’s rule for the solution of a singular equation (A†)∗x = b is presented. Then, the perturbation is
also given for the weak group-star matrix. In the final, the weak group-star matrix being used in solving
appropriate systems of linear equations is established.

1. Introduction

Throughout this paper, we denote the set of all m × n complex matrices by Cm×n. For A ∈ Cn×n, the
symbols A∗, rank(A),N(A), and R(A) stand for the conjugate transpose, the rank, the null space and the
range space of A, respectively. Moreover, In will refer to the n×n identity matrix. Let A ∈ Cn×n, the smallest
positive integer k for which rank(Ak) = rank(Ak+1) is called the index of A and is denoted by Ind(A). Then
Cn×n

k represents all n × n complex matrices sets with index k. PE,F represents the projector on the subspace
E along the subspace F. For A ∈ Cn×n, PA stands for the orthogonal projection onto R(A). The symbol CCM

n
represents the subset of all n × n complex matrices sets with index 1.

Next, let’s review the definitions of some generalized inverses. For A ∈ Cm×n, the Moore-Penrose inverse
A† of A is the unique matrix X ∈ Cn×m satisfying the following four Penrose equations [1]:

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

The Moore-Penrose inverse can be used to represent orthogonal projectors PA := AA† onto R(A) and
QA := A†A onto R(A∗), respectively. A matrix X ∈ Cn×m that satisfies the equality AXA = A is called an inner
inverse or {1}-inverse of A, and a matrix X ∈ Cn×m that satisfies the equality XAX = X is called an outer
inverse or {2}-inverse of A.

The Drazin inverse is a kind of outer inverse defined for square matrices. For A ∈ Cn×n and Ind(A) = k,
the Drazin inverse AD of A is the unique matrix X ∈ Cn×n satisfying the following three equations [13]:

Ak+1X = Ak, XAX = X, AX = XA.
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In particular, if Ind(A) = 1, AD = A# is the group inverse of A.
For A ∈ Cn×n with Ind(A) = k, the core-EP inverse A †O of A is the unique matrix X ∈ Cn×n satisfying the

following conditions [12]:
XAX = X, R(Ak) = R(X) = R(X∗).

Obviously, the core-EP inverse is an outer inverse of A. Recall that, by [6], the core-EP inverse can be
expressed as A †O = ADAk(Ak)†.

The weak group inverse is proposed by Wang and Chen [15] for square matrices of an arbitrary index
as an extension of the group inverse. For A ∈ Cm×n, the weak group inverse AwO o f A is the uniquely
determined matrix that satisfying:

AX2 = X, AX = A †OA.

Notice that, by [15], we haveAwO = (A †O)2A. Two new generalized inverses have emerged by combining
Moore-Penrose inverse and the weak group inverse, which are the weak core inverse (WCI) AwO,† and the
dual weak core inverse (d-WCI) A†,wO, respectively [2]. Precisely, the weak core inverse of A ∈ Cn×n presents
a unique solution to the matrix system [2]:

XAX = X, AX = CA†, XA = ADC,

where C is the weak core part of A with C = AAwOA. Notice that AwO,† = AwOAA† and A†,wO = A†AAwO.
In [2], let A∈Cn×n and Ind(A) = k. The weak core part C of A satisfies the following equations:

CAk = Ak+1, C = A †OA2, (I − AAD)C = 0, (1)

(I − AA †O)C = (I − AAwO)C = 0, C(I −QA) = 0. (2)

The DMP-inverse of A ∈ Cn×n
k , written by AD,†, was defined in [8] as the unique matrix X ∈ Cn×n

k
satisfying

XAX = X, XA = ADA, AkX = AkA†.

Moreover, it was proved that AD,† = ADAA†.Also, the dual DMP-inverse of A was introduced in [8], namely
A†,D = A†AAD.

D. Mosić in [9] introduced the Drazin-Star and the Star-Drazin matrices of a square matrix. Let A ∈ Cn×n

with Ind(A) = k. The Drazin-Star matrix of A (or Drazin-Star inverse of (A†)∗ ) is

AD,∗ = ADAA∗

which is the unique solution of the following equations:

X(A†)∗X = X, AkX = AkA∗, X(A†)∗ = ADA.

Recall that the Star-Drazin matrix of A (or Star-Drazin inverse of (A†)∗) is also defined in [9] as A∗,D = A∗AAD.
Inspired by this types of matrices, we will introduce the weak group-star matrix in this article.

First of all, let us review the core-EP decomposition. Wang gave the core-EP decomposition in the
document [14]. Let A∈Cn×n with Ind(A) = k, rank(Ak) = p. Then, one has A = A1 + A2, A1∈CCM

n , where
Ak

2 = 0, A∗1A2 = A2A1 = 0. Furthermore, there exists an unitary matrix U ∈ Cn×n such that

A = U
(
T S
0 N

)
U∗, A1 = U

(
T S
0 0

)
U∗, A2 = U

(
0 0
0 N

)
U∗, (3)

where T∈Cp×p is nonsingular and S∈Cp×(n−p), N∈C(n−p)×(n−p) is nilpotent of index k, i.e., Nk = 0.

Lemma 1.1. [4, 14, 16] Let A∈Cn×n
k as in (3). Then
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(i) A† = U
(

T∗△ −T∗ △ SN†

(In−p −N†N)S∗△ N† − (In−p −N†N)S∗ △ SN†

)
U∗,

(ii) A †O = U
(
T−1 0

0 0

)
U∗,

(iii) AwO = (A †O)2A = U
(
T−1 T−2S

0 0

)
U∗,

(iv) AA† = U
(
Ip 0
0 NN†

)
U∗,

(v) A†A =
(

T∗ △ T T∗ △ S(I −NN†)
(I −NN†)S∗ △ T (I −NN†)S∗ △ S(I −NN†) +N†N

)
,

where △ = [TT∗ + S(In−p −N†N)S∗]−1.

Lemma 1.2. [7] Let A∈Cn×n with rank r > 0. Then there exists a unitary matrix U∈Cn×n such that

A = U
(
ΣK ΣL
0 0

)
U∗, (4)

where Σ = dia1(σ1Ir1, σ2Ir2, . . . , σtIrt) is the diagonal matrix of singular values of A, σ1 > σ2 > . . . , > σt >
0, r1 + r2 + . . . + rt = r, and K∈Cn×n, L∈Cn×(n−r) satisfy KK∗ + LL∗ = Ir.

Lemma 1.3. Let A∈Cn×n be a matrix written as in (4). Then,

(i)[3] the core-EP inverse of A is

A †O = U
(
(ΣK) †O 0

0 0

)
U∗.

(ii)[2] the weak group inverse of A is

AwO = U
(
((ΣK) †O)2ΣK ((ΣK) †O)2ΣL

0 0

)
U∗ = U

(
(ΣK)wO ((ΣK) †O)2ΣL

0 0

)
U∗.

The main structure of this paper is as follows. In Sect. 2, we introduce the weak group-star matrix.
Then, we give some representations and characterizations of this type of the matrix. In Sect. 3, we develop
the SMS method for finding the weak group-star matrix. In Sect. 4, the Cramer’s rule for the solution of
a singular equation (A†)∗x = b is presented. In Sect. 5, we study the perturbation of the weak group-star
matrix. In Sect. 6, we give the application of the weak group-star matrix in solving linear equations.
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2. Definition, characterizations and representations of the weak group-star Matrix

Theorem 2.1. Let A∈Cn×n with Ind(A) = k, C is the weak core part of A. Then, the system of equations

X(A†)∗X = X, AX = CA∗, X(A†)∗ = ADC (5)

is consistent and its unique solution is X = ADCA∗.

Proof. For X = ADCA∗. In fact, (1) implies AX = AADCA∗ = CA∗. On the other hand, (2) implies
X(A†)∗ = ADCA∗(A†)∗ = ADCA†A = ADC. Finally,

X(A†)∗X = ADCX = ADAAwOCA∗ = ADCA∗ = X,

where the last equality follows by (2). Hence, X = ADCA∗ satisfies the system of (5).
In order to show that system (5) has a unique solution, assume that both two matrices X1 and X2 satisfy

(5), then
AX1 = CA∗ = AX2, X1(A†)∗ = ADC = X2(A†)∗.

Thus, we can obtain

X2 = X2(A†)∗X2 = ADCX2 = ADAAwOAX2

= ADAAwOAX1 = ADCX1 = X1(A†)∗X1 = X1,

which implies that system (5) has the unique solution. □

Definition 2.2. Let A∈Cn×n with Ind(A) = k, and C be the weak core part of A. The weak group-star matrix of A
(or the weak group-star inverse of (A†)∗) denoted as AwO,∗, is defined to be the solution of the system (5).

Theorem 2.3. Let A∈Cn×n and Ind(A) = k. Then,

AwO,∗ = AwOAA∗.

Proof. Since R(AwO) = R(Ak), then AwO = AkZ, for some Z∈Cn×n. Thus, we have

AwO,∗ = ADCA∗ = ADAAwOAA∗ = ADAAkZAA∗ = AkZAA∗ = AwOAA∗.

□

Remark 2.4. Obviously, the weak group-star matrix is named based on the expressions whom are defined. In general,
the weak group-star matrix are not generalized inverses of a given matrix A, but they are outer inverses of (A†)∗.

We observe that the weak group-star matrix provide new classes of square matrices by the following
example, because they are different from each of the Moore-Penrose inverse, the weak group inverse, the
weak core inverse and the dual weak core inverse.

Example 2.5. Let

A =


1 0 1 −1
0 1 1 0
0 0 0 1
0 0 0 0

 .
Then,

A† =


2/3 −1/3 2/3 0
−1/3 2/3 −1/3 0
1/3 1/3 1/3 0
0 0 1 0

 , AwO =


1 0 1 −1
0 1 1 0
0 0 0 0
0 0 0 0

 ,

AwO,† =


1 0 1 0
0 1 1 0
0 0 0 0
0 0 0 0

 , A†,wO =


2/3 −1/3 1/3 −2/3
−1/3 2/3 1/3 1/3
1/3 1/3 2/3 −1/3
0 0 0 0

 , AwO,∗ =


2 2 0 0
0 2 1 0
0 0 0 0
0 0 0 0

 .
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In the next example, we show that the weak group-star inverse of (A†)∗ is different from each of the
Moore-Penrose inverse, the weak group inverse, the weak core inverse and the dual weak core inverse of
(A†)∗. Note that the weak group-star inverse present new classes of generalized inverse.

Example 2.6. Let

A =


1 0 1 0
0 1 0 1
0 0 0 1
0 0 0 0

 .
It is easy to check that Ind(A) = 2. We can obtain that the Moore-Penrose inverse, the Weak group inverse and the
core EP inverse are

A† =


1/2 0 0 0
0 1 −1 0

1/2 0 0 0
0 0 1 0

 , AwO =


1 0 1 0
0 1 1 0
0 0 0 0
0 0 0 0

 , A †O =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .
We also have

(A†)∗ =


1/2 0 1/2 0
0 1 0 0
0 −1 0 1
0 0 0 0

 , [(A†)∗]† = A∗ =


1 0 0 0
0 1 0 0
1 0 0 0
0 1 1 0

 ,

[(A†)∗]wO =


2 0 2 0
0 0 0 0
0 0 0 0
0 0 0 0

 , [(A†)∗] †O =


2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

[(A†)∗]wO,† =


2 0 2 0
0 0 0 0
0 0 0 0
0 0 0 0

 , [(A†)∗]†,wO =


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

 , [(A†)∗]wO,∗ =


1 −2 2 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
Theorem 2.7. Let A∈Cn×n be a matrix written as in (3). Then

AwO,∗ = U
(
T∗ + (T−1S + T−2SN)S∗ (T−1S + T−2SN)N∗

0 0

)
U∗. (6)

Proof. From Lemma 1.1, we can obtain

AwO,∗ = AwOAA∗ = U
(
T−1 T−2S

0 0

) (
T S
0 N

) (
T∗ 0
S∗ N∗

)
U∗

= U
(
T∗ + (T−1S + T−2SN)S∗ (T−1S + T−2SN)N∗

0 0

)
U∗.

□

Corollary 2.8. Let A∈Cn×n be a matrix written as in (3). Then

AAwO,∗ = U
(
F1 F2
0 0

)
U∗, (7)

where F1 = TT∗ + (S + T−1SN)S∗, F2 = (S + T−1SN)N∗. Besides,

AwO,∗A = U
(
F3 F4
0 0

)
U∗,

where F3 = T∗T + (T−1S + T−2SN)S∗T, F4 = T∗S + (T−1S + T−2SN)S∗S + (T−1S + T−2SN)N∗N.
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Remark 2.9. Let A∈Cn×n as in (3) and with Ind(A) = k. We can obtain AwO = A# if and only if A ∈ CCM
n , i.e.,

N = 0.

Lemma 2.10. If A∈Cn×n with Ind(A) = k. Then R(AwO,∗) = R(Ak).

Proof. In fact, according to Theorem 2.1, we have

R(AwO,∗) ⊆ R(AwO,∗(A†)∗) = R(ADC) ⊆ R(AD) = R(Ak).

On the other hand, R(Ak) ⊆ R(AwO,∗). By Theorem 2.1, we can see

R(Ak) ⊆ R(AD) ⊆ R(ADC) = R(AwO,∗(A†)∗) ⊆ R(AwO,∗).

Hence, R(Ak) = R(AwO,∗). □

Lemma 2.11. [5] Let A∈Cn×n. Then, the following statements hold.

(i) AAwO = PR(Ak),N((Ak)∗A),

(ii) AwOA = PR(Ak),N((Ak)∗A2).

According Theorem 2.1 and Lemma 2.10, we can obtain Lemma 2.12.

Lemma 2.12. [11] Let A∈Cn×n be such that Ind(A) = k. Then

(i) AwO,∗ = [(A†)∗](2)
R(Ak),N(Ak)∗

,

(ii) (A†)∗)AwO,∗ is a projector on R((A†)∗)AwO) along N((Ak)∗A2A∗),

(iii) AwO,∗(A†)∗ is a projector on R(Ak) along N((Ak)∗A2).

Corollary 2.13. Let A∈Cn×n with Ind(A) = k. For l ≥ k,

AwO,∗ = Al(Al+2)†A2A∗. (8)

Proof. According to [10], it follows AwO = Al(Al+2)†A. By the corresponding Theorem 2.3, we get the
equality (8).

Theorem 2.14. Let A∈Cn×n be a matrix written as in (4). Then

AwO,∗ = U
(
(ΣK)wOΣΣ∗ 0

0 0

)
U∗.

Proof. From Lemma 1.3, we can obtain

AwO,∗ = AwOAA∗ = (A †O)2A2A∗ = U
(
(ΣK)wOΣKK∗Σ∗ + (ΣK)wOΣLL∗Σ∗ 0

0 0

)
U∗

= U
(
(ΣK)wOΣ(KK∗ + LL∗)Σ∗ 0

0 0

)
U∗.

□

Theorem 2.15. Let A∈Cn×n with Ind(A) = k and C is the weak core part of A. Then, the following statements are
equivalent:

(i) X∈Cn×n is the weak group-star matrix of A.
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(ii) X satisfies equations
X(A†)∗X = X, AX = CA∗, X(A†)∗ = ADC.

(iii) X satisfies equations
AwOAX = X, AX = CA∗.

(iv) X satisfies equations

AX(A†)∗ = C, AwOAXAA† = X, (A†)∗X(A†)∗ = (A†)∗AwOA.

(v) X satisfies equations

XAA† = X, X(A†)∗ = AwOA, X(A†)∗A† = AwO,†, XA = AwOAA∗A.

(vi) X satisfies equations

X(A†)∗AwOAA∗ = X, X(A†)∗AwOAX = X, (A†)∗AwOAX = (A†)∗AwOAA∗.

(vii) X satisfies equations

(A†)∗AwOAX(A†)∗AwOA = (A†)∗AwOA, X(A†)∗AwOA = AwOA.

Proof. (i)⇒ (ii): By Theorem 2.1, the proof is clear.
(ii)⇒ (iii): Using AX = CA∗, we can obtain

AwOAX = ACA∗ = X.

(iii)⇒ (i): The hypothesis AwOAX = X, AX = CA∗ imply

X = AwOAX = AwOCA∗ = AwOAAwOAA∗ = AwOAA∗ = X.

(i)⇒ (iv): Since X = AwOAA∗ and by (2), it follows that

AX(A†)∗ = AAwOAA∗(A†)∗ = CAA† = C,

AwOAXAA† = (AwOAAwO)A(A∗AA†) = AwOAA∗ = X,

and
(A†)∗X(A†)∗ = (A†)∗AwOAA∗(A†)∗ = (A†)∗AwOA(A†A)∗ = (A†)∗AwOAA†A = (A†)∗AwOA.

(iv)⇒ (i): By AwOAXAA† = X,AX = AAwOAA∗,we have

X = AwOAXAA† = AwOAAwOAA∗AA† = AwOAA∗AA† = AwOAA∗ = X.

The rest can be proved similarly according to the above method. □
By Lemma 2.12 and AwO,∗ = AwOAA∗, we obtain

(A†)∗AwO,∗ = PR((A†)∗AwO,N((Ak)∗A2A∗), R(AwO,∗) ⊆ R(AwO) = R(Ak).

Then we can get Theorem 2.16.

Theorem 2.16. [11] Let A∈Cn×n with Ind(A) = k. Then, the matrix equation

(A†)∗X = PR((A†)∗AwO),N((Ak)∗A2A∗), R(X) ⊆ R(Ak) (9)

is consistent and it has the unique solution X = AwO,∗.
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Lemma 2.17 can be checked by using the same method of [11]. Therefore, we omit the proof.

Lemma 2.17. [11] Let A∈Cn×n with Ind(A) = k. Then,

(i) (A†)∗AwO,∗(A†)∗ = (A†)∗ ⇔ A†AAwOA = A†A⇔ AAwOA = A⇔ AAwOAA† = AA†;

(ii) AkAwO,∗Ak = Ak
⇔ AkA∗Ak = Ak;

(iii) AAwO,∗ = AAwO
⇔ AwO,∗ = AwO;

(iv) AwO,∗A = AAwO
⇔ AwO,∗ = AwO,†;

(v) AwO,∗A = A†A⇔ AwO,∗ = A†;

(vi) AAwO,∗ = AA† ⇔ AAwO,∗A = A;

(vii) AwO,∗ = A∗ ⇔ AwO,† = A†.

Let A∈Cn×n with ind(A) = k, then

AwO,∗ = AwOAA∗ = U
(
G1 G2
0 0

)
U∗,

where G1 = T∗ + (T−1S + T−2SN)S∗, G2 = (T−1S + T−2SN)N∗.

Theorem 2.18. Let A∈Cn×n be a matrix with Ind(A) = k written as in (3). Then

(i) AwO,∗A = A∗A⇔ A is a symmetrical and EP matrix.

(ii) AAwO,∗ = AA∗,wO ⇔ S + T−1SN = (TT∗ + SS∗)T−1S, NS∗ = 0.

Proof.
(i)

AwO,∗A = A∗A⇔
(
G1T G1S + G2N

0 0

)
=

(
T∗T T∗S
S∗T S∗S +N∗N

)
⇔ T∗T + (T−1S + T−2SN)S∗T = T∗T,

T∗S + (T−1S + T−2SN)S∗S + (T−1S + T−2SN)N∗N = T∗S, S∗T = 0, S∗S +N∗N = 0.
⇔ S = 0, N = 0.
⇔ A is a symmetrical and EP matrix.

(ii)

AAwO,∗ = AA∗,wO ⇔
(
TG1 TG2

0 0

)
=

(
TT∗ + SS∗ TT∗T−1S + SS∗T−1S

NS∗ NS∗T−1S

)
⇔ TT∗ + (S + T−1SN)S∗ = TT∗ + SS∗, NS∗ = 0, T(T−1S + T−2SN) = TT∗T−1S + SS∗T−1S.

⇔ S + T−1SN = (TT∗ + SS∗)T−1S, NS∗ = 0. □

Theorem 2.19. Let A∈Cn×n be a matrix with Ind(A) = k written as in (3). Then

(i) AwO,∗ = A⇔ A is a symmetrical and EP matrix.

(ii) AwO,∗ = A∗ ⇔ A is an EP matrix.

(iii) AwO,∗ = AA† ⇔ TT∗ + SS∗ = T, N = 0.

(iv) AwO,∗ = A∗,wO ⇔ S = 0.
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Proof.
(i)

AwO,∗ = A⇔
(
G1 G2
0 0

)
=

(
T S
0 N

)
⇔ T∗ + (T−1S + T−2SN)S∗ = T, (T−1S + T−2SN)N∗ = S and N = 0.
⇔ T = T∗, S = 0, N = 0.
⇔ A is a symmetrical and EP matrix.

(ii)

AwO,∗ = A∗ ⇔
(
G1 G2
0 0

)
=

(
T∗ 0
S∗ N∗

)
⇔ T∗ + (T−1S + T−2SN)S∗ = T∗, (T−1S + T−2SN)N∗ = 0, S∗ = 0 and N∗ = 0.
⇔ S = 0, N = 0.
⇔ A is an EP matrix.

(iii)

AwO,∗ = AA† ⇔
(
G1 G2
0 0

)
=

(
I 0
0 NN†

)
⇔ T∗ + (T−1S + T−2SN)S∗ = I, (T−1S + T−2SN)N∗ = 0 and NN† = 0.
⇔ TT∗ + SS∗ = T, N = 0.

(iv)

AwO,∗ = A∗,wO ⇔
(
G1 G2
0 0

)
=

(
T∗ T∗T−1S
S∗ S∗T−1S

)
⇔ T∗ + (T−1S + T−2SN)S∗ = T∗, (T−1S + T−2SN)N∗ = T∗T−1S, S∗ = 0, and S∗T−1S = 0.
⇔ S = 0. □

Theorem 2.20. Let A∈Cn×n with Ind(A) = 1. Then, the following statements are equivalent:

(i) A is a partial isometry and A is an EP matrix.

(ii) AAwO,∗ = AA†.

(iii) AwO,∗A = AA†.

(iv) AAwO,∗ = A†A.

(v) AwO,∗A = A†A.

Proof.
(i)⇔ (ii)

AAwO,∗ = AA† ⇔
(
TG1 TG2

0 0

)
=

(
I 0
0 NN†

)
⇔ TT∗ + (S + T−1SN)S∗ = I, (S + T−1SN)N∗ = S and NN† = 0.

⇔ TT∗ = I, N = 0, (S + T−1SN)N∗ = S = 0.
⇔ TT∗ = I, S = 0, N = 0. (10)
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(i)⇔ (iii)

AwO,∗A = AA† ⇔
(
G1T G1S + G2N

0 0

)
=

(
I 0
0 NN†

)
⇔ T∗T + (T−1S + T−2SN)S∗T = I, T∗S + (T−1S + T−2SN)S∗S + (T−1S + T−2SN)N∗N = 0 and NN† = 0.
⇔ N = 0, (TT∗ + SS∗)S = 0 and (TT∗ + SS∗)T = T.
⇔ TT∗ = I, S = 0, N = 0.

(i)⇔ (iv)

AAwO,∗ = A†A⇔
(
TG1 TG2

0 0

)
=

(
T∗ △ T T∗ △ S(I −NN†)

(I −NN†)S∗ △ T (I −NN†)S∗ △ S(I −NN†) +N†N

)
.

⇔ T∗ △ T = TT∗ + (S + T−1SN)S∗, T∗ △ S(I −NN†) = (S + T−1SN)N∗, S = SNN†, N†N = 0.
⇔ T∗ △ T = TT∗, S = 0, and N = 0.
⇔ TT∗ = I, S = 0 and N = 0.

(i)⇔ (v)

AwO,∗A = A†A⇔
(
G1T G1S + G2N

0 0

)
=

(
T∗ △ T T∗ △ S(I −NN†)

(I −NN†)S∗ △ T (I −NN†)S∗ △ S(I −NN†) +N†N

)
⇔ T∗ △ T = T∗T + (T−1S + T−2SN)S∗T, S = SNN†, N†N = 0,

T∗ △ S(I −NN†) = T∗S + (T−1S + T−2SN)S∗S + (T−1S + T−2SN)N∗N.

⇔ T∗ △ T = T∗T, N = 0 and S = SNN† = 0.
⇔ T∗T = I, S = 0 and N = 0.

Therefore, the above conditions are equivalent. □

Definition 2.21. Let A,B∈Cn×n with Ind(A) = k. We call A is below B under the relation ⩽wO,∗ if

AAwO,∗ = BAwO,∗ and AwO,∗A = AwO,∗B.

Naturally, we will consider whether this binary relationship can become a partial order. The answer to
this question is No. A binary relation is called a partial order if it is reflexive, transitive, and anti-symmetric
on a non-empty set. Next, we give a concrete example to prove that this relationship is not satisfied
antisymmetry.

Example 2.22. Consider the matrices

A =


1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,B =

1 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

 .
Since

AwO =


1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , BwO =


1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,
we can get

AwO,∗A =


2 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0

 , AwO,∗B =


2 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0

 ,
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AAwO,∗ =


2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , BAwO,∗ =


2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

BBwO,∗ =


2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , ABwO,∗ =


2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

BwO,∗B =


2 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0

 , BwO,∗A =


2 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0

 .
Thus,

AAwO,∗ = BAwO,∗,AwO,∗A = AwO,∗B,

ABwO,∗ = BBwO,∗,BwO,∗B = BwO,∗A.

Clearly, A ⩽wO,∗ B and B ⩽wO,∗ A hold, but A , B. Hence, the weak group-star relation can not be a partial order.

3. Successive matrix squaring algorithm for the weak group-star matrix

In this section, we give successive matrix squaring algorithms for computing the weak group-star matrix.
The development of the SMS iterations start from the transformations.

Since

(Ak+2)†A(AAwO,∗) = (Ak+2)†A2Ak(Ak+2)†A2A∗

= (Ak+2)†Ak+2(Ak+2)†A2A∗ = (Ak+2)†A2A∗,

we have

AwO,∗ = AwO,∗
− β((Ak+2)†A(AAwO,∗) − (Ak+2)†A2A∗)

= (I − β(Ak+2)†A2)AwO,∗ + β(Ak+2)†A2A∗.

Observe the following matrices

P = I − β(Ak+2)†A2, Q = β(Ak+2)†A2A∗, β > 0.

It is obvious that AwO,∗ is the unique solution of X = PX+Q. Then an iterative procedure for computing
the weak group-star matrix AwO,∗ can be defined as follows

X1 = Q, Xm+1 = PXm +Q. (11)

This algorithm can be implemented in parallel by considering the block matrix

T =
(
P Q
0 I

)
, Tm =

(
Pm Σm−1

i=0 PiQ
0 I

)
.

The top right block of Tm is Xm, the mth approximation to AwO,∗. The matrix power Tm can be computed
by the successive squaring, i.e.

T0 = T, Ti+1 = T2
i , i = 0, 1, . . . , j,

where the integer j is such that 2 j
≥ m. The following theorem gives the sufficient condition for the

convergence of the iterative process (11).
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Theorem 3.1. Let A∈Cn×n with Ind(A) = k and rank(Ak) = r. Then the approximation

X2m =

2m
−1∑

i=0

(I − β(Ak+2)†A2)iβ(Ak+2)†A2A∗,

defined by the iterative process (11) converges to the weak group-star matrix AwO,∗ if the spectral radiusρ(I−X1(A†)∗) ≤
1.Moreover, the following error estimation holds:∥∥∥AwO,∗

− X2m

∥∥∥ ≤ ∥∥∥(I − X1(A†)∗)2m∥∥∥ .
As a result,

lim
m→∞

sup 2m
√∥∥∥AwO,∗ − X2m

∥∥∥ ≤ (I − X1(A†)∗).

Proof. We know that
AwO,∗(A†)∗AwO,∗ = AwO,∗, X2m (A†)∗AwO,∗ = X2m .

By the mathematical induction, we can get

I − X2m (A†)∗ = (I − X1(A†)∗)2m
.

Therefore,∥∥∥AwO,∗
− X2m

∥∥∥ =
∥∥∥AwO,∗

− X2m (A†)∗AwO,∗∥∥∥
=

∥∥∥(I − X2m (A†)∗)AwO,∗∥∥∥
≤

∥∥∥AwO,∗∥∥∥ ∥∥∥I − X2m (A†)∗
∥∥∥

=
∥∥∥AwO,∗∥∥∥ ∥∥∥(I − X1(A†)∗)2m∥∥∥ ,

and

lim
m→∞

sup 2m
√∥∥∥AwO,∗ − X2m

∥∥∥ ≤ lim
m→∞

sup 2m
√∥∥∥AwO,∗

∥∥∥ ∥∥∥(I − X1(A†)∗)2m
∥∥∥

= ρ(I − X1(A†)∗).

In the last equality, we use the fact that limm→∞ ∥Bn
∥

1/n = ρ(B), for any square matrix B.
If β is a real parameter such that max

1≤i≤t

∣∣∣1 − βλi

∣∣∣ < 1, where λi (i = 1, 2, . . . , s) are the nonzero eigenvalues

of (Ak+2)†A2A∗, then
ρ(I − X1(A†)∗) = ρ(I − β(Ak+2)†A2) ≤ 1.

It completes the proof. □

Example 3.2. Consider the following matrix:

A =

 0 4/3 −1/3
−1/3 1 −1/3
−2/3 −2/3 0

 , Ind(A) = 2.

Let
P = I − β(A4)†A2, Q = β(A4)†A2A∗, β = 0.6.

The eigenvalues λi of QA are included in the set {0, 0, 0.5}. The nonzero eigenvalues λi satisfy

max
i
|1 − λi| = |1 − 0.5| = 0.5 < 1.
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Then we obtain the satisfactory approximation for AwO,∗ after the 6th iteration of the successive matrix squaring
algorithm.

(T2)6
≈



0.982 0.130 −0.037 −0.185 −0.148 0.074
0.130 0.093 0.026 1.300 1.037 −0.519
−0.031 0.218 0.938 −0.311 −0.249 0.125

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


.

The upper right corner of (T2)6 is an approximation of the weak group-star matrix, that is

AwO,∗ =

−0.185 −0.148 0.074
1.300 1.037 −0.519
−0.311 −0.249 0.125

 .
4. The Cramer’s rule for the solution of a singular equation (A†)∗x = b

Since R(AwO,∗) = R(Ak) ⊆ N(V), we obtain VAwO,∗ = 0. By R(I − AAwO,∗) ⊆ R(U) = R(UU†) = N(I −UU†),
we can obtain I − AAwO,∗ = UU†(I − AAwO,∗). Then, we get Theorem 4.1.

Theorem 4.1. [11] Let A∈Cn×n with Ind(A) = k. Suppose U∈Cn×r and V∗∈Cn×r having full column rank such that

R(I − AAwO,∗) ⊆ R(U) ⊆ N(AwO,∗), and R(Ak) ⊆ N(V).

Then, the bordered matrix

X =
(
A U
V 0

)
is nonsingular and

X−1 =

(
AwO,∗ (I − AwO,∗A)V†

U†(I − AAwO,∗) −U†(A − AAwO,∗A)V†

)
. (12)

Similarly, we can get the following result.

Theorem 4.2. Let A∈Cn×n with Ind(A) = k. Suppose U∈Cn×r and V∗∈Cn×r having full column rank such that

R(Ak) = N(V), R(U) = N(Ak)∗.

Then the bordered matrix

X =
(
(A†)∗ U

V 0

)
is nonsingular and

X−1 =

(
AwO,∗ (I − AwOA)V†

U†(I − (A†)∗AwO,∗) −U†((A†)∗ − (A†)∗AwOA)V†

)
. (13)

Since B ∈ R((A†)∗AwO),we have B = (A†)∗AwOZ, for some Z∈Cn×n. If X = AwO,∗B,we obtain

(A†)∗X = (A†)∗AwO,∗B = (A†)∗AwOAA∗(A†)∗AwOZ = (A†)∗AwOZ = B.

Then we can get the following theorem.
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Theorem 4.3. [11] Let A∈Cn×n with Ind(A) = k, and B ∈ R((A†)∗AwO). Then

(A†)∗X = B (14)

in R(Ak) has the unique solution X = AwO,∗B.

Similar to the Theorem 4.3, we can prove the following theorem.

Theorem 4.4. Let A∈Cn×n with Ind(A) = k and B ∈ R(AAwO). Then A∗B is the unique solution in R(A∗(Ak)∗A2) of
(A†)∗X = B.

Using the relationship between the weak group-star inverse of (A†)∗ and a nonsingular bordered matrix,
we give the Cramer’s rule for solving a singular linear equation (A†)∗x = B. (A†)∗(i j→ b j) denotes the matrix
obtained by replacing ith column of (A†)∗ with b j, where b j is the jth column of B.

Theorem 4.5. Let A,B∈Cn×n with Ind(A) = k. Suppose U∈Cn×r and V∗∈Cn×r having full column rank such that

R(AwO,∗) = R(Ak) = N(V), and R(U) = N(AwO,∗).

If R(B) ⊆ R((A†)∗AwO), then the unique solution X = AwO,∗B of the singular linear equation (14) is given by

xi j =

det
(
(A†)∗(i→ b j) U

V(i→ 0) 0

)
det

(
(A†)∗ U

V 0

) , i = 1, 2, . . .n, j = 1, 2, . . .n. (15)

Proof. Since X = AwO,∗B ∈ R(Ak) = N(V) and B ∈ R((A†)∗AwO) = AR(Ak), we have

VX = 0, (I − AAwO,∗)B = 0. (16)

It follows from (16) that the solution of (A†)∗X = B satisfies(
(A†)∗ U

V 0

) (
X
0

)
=

(
B
0

)
. (17)

By Theorem 4.2, the coefficient matrix of (17) is nonsingular. Using (13) and (16), we can obtain(
X
0

)
=

(
AwO,∗ (I − AwOA)V†

U†(I − (A†)∗AwO) −U†((A†)∗ − (A†)∗AwOA)V†

) (
B
0

)
=

(
AwO,∗B

0

)
.

Therefore, x = AwO,∗B and (15) follows from the classical Cramer’s rule [13]. □

5. Perturbations of the weak group-star matrix

Using the form of the core-EP decomposition of AwO,∗, we can calculate the perturbation of AwO,∗.

Theorem 5.1. Let A∈Cn×n with Ind(A) = k, B = A + E ∈Cn×n. If

EAAwO = E,AAwOE = E, and ∥ AwOE ∥< 1,

then
BwO,∗ = (In + AwOE)−1AwO(A + E)(A + E)∗ = AwO(In + EAwO)−1(A + E)(A + E)∗.
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Proof. Let A have the form of (3), and E = U
(
E1 E2
E3 E4

)
U∗,where E1∈Cr×r. Since AAwOE = E, we get

AAwOE = U
(
T S
0 N

) (
T−1 T−2S

0 0

) (
E1 E2
E3 E4

)
U∗

= U
(
E1 + T−1SE3 E2 + T−1SE4

0 0

)
U∗

= U
(
E1 E2
E3 E4

)
U∗. (18)

Thus, we can get E3 = 0,E4 = 0. And applying EAAwO = E, we have

EAAwO = U
(
E1 E2
0 0

) (
T S
0 N

) (
T−1 T−2S

0 0

)
U∗

= U
(
E1 E1T−1S
0 0

)
U∗ = U

(
E1 E2
0 0

)
U∗.

Hence, E2 = E1T−1S.
Owing to ρ(EAwO) = ρ(AwOE) ≤∥ AwOE ∥< 1,we can get I +AwOE is reversible and T +E1 is nonsingular.

Furthermore, notice that

E = U
(
E1 E2
0 0

)
U∗, B = A + E = U

(
T + E1 S + E2

0 N

)
U∗,

we can get

BwO = U
(
(T + E1)−1 (T + E1)−2(S + E2)

0 0

)
U∗.

Therefore,

BwO,∗ = U
(
(T + E1)∗ + △1(S + E2)∗ △1N∗

0 0

)
U∗,

where △1 = [(T + E1)−1(S + E2) + (T + E1)−2(S + E2)N]. Thus,

BwO,∗ = (In + AwOE)−1AwO(A + E)(A + E)∗ = AwO(In + EAwO)−1(A + E)(A + E)∗. □

Furthermore, we have the following result.

Theorem 5.2. Let A∈Cn×n with Ind(A) = k, B = A + E∈Cn×n. If

AAwO,∗E = E, and ∥ AwOE ∥< 1,

then

BwO,∗ = ((In + AwOE)−1AwO)2AA †O(A + E)2(A + E)∗

= (In + AwOE)−1AwO(In + AwOE)−1A †O(A + E)2(A + E)∗.

6. Applications

In this section, we will give the application of the weak group-star matrix in solving linear equations.
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Theorem 6.1. Let A∈Cn×n and Ind(A) = k, the equation

(Ak+2)∗A2x = (Ak+2)∗A2A∗b, b∈Cn, (19)

is consistent and its general solution is

x = AwO,∗b + (In − AwOA)y, (20)

for arbitrary y∈Cm.

Proof. Suppose that x has the form (20). Applying AwO,∗ = Ak(Ak+2)†A2A∗,we have

(Ak+2)∗A2AwO,∗ = (Ak+2)∗A2Ak(Ak+2)†A2A∗

= (Ak+2)∗Ak+2(Ak+2)†A2A∗

= (Ak+2)∗A2A∗.

Therefore (Ak+2)∗A2AwO,∗b = (Ak+2)∗A2A∗b,which implies that (19) holds for x.
For a solution x to (19), we obtain

AwO,∗b = Ak(Ak+2)†A2A∗b
= Ak(Ak+2)†((Ak+2)†)∗(Ak+2)∗A2A∗b
= Ak(Ak+2)†((Ak+2)†)∗(Ak+2)∗A2x
= AwOAx.

Now, we get
x = AwO,∗b + x − AwO,∗Ax = AwO,∗b + (In − AwOA)x.

i.e., x possesses the form (20). □
Since AwOAX = AwOAAwO,∗b = AwO,∗b, we have AwOAX = AwOAAwO,∗b = AwO,∗b. Then we can obtain

Theorem 6.2.

Theorem 6.2. [11] Let A∈Cn×n with Ind(A) = k, then the equation

AwOAX = AwO,∗b (21)

is consistent and its general solution is

x = AwO,∗b + (I − AwOA)y, (22)

for arbitrary y∈Cn×n.

Similarly, the following theorem can be proved.

Theorem 6.3. Let A∈Cn×n with Ind(A) = k. Then the equation

(A†)∗x = AAwOb

is consistent and its general solution is
x = A∗,wOb + (I − A†A)y,

for arbitrary y∈Cn×n.

Now, we can get the following consequence by the result of Theorem 6.3 in the case that b ∈ R(Ak).

Corollary 6.4. Let A∈Cn×n with Ind(A) = k. Then the equation

(A†)∗x = b, b ∈ R(Ak)

is consistent and its general solution is
x = A∗b + (I − A†A)y,

for arbitrary y∈Cn×n.
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7. Conclusion

In this paper, the definition and characterizations of the weak group-star matrix are given. The equiv-
alence between various matrices and the weak group-star matrix are established. For Cramer’s rule and
the perturbation, we also give relevant theorems. Moreover, the weak group-star matrix can be applied to
solving equations.

Moreover, dual weak group-star matrix can be called star-weak group matrix. Let A∈Cn×n and Ind(A) =
k, C is the weak core part of A. Then

X(A†)∗X = X, (A†)∗X = CAD, XA = A∗C,

is consistent and its unique solution is X = A∗CAD. The matrix satisfying the above equations is defined as
A∗,wO = A∗AAwO and named the star-weak group matrix.

The star-weak group matrix also possesses similar properties of the weak group-star matrix.
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