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Abstract. In this study, we introduce a β-Dirac system. Some spectral properties of this system are studied
in detail.

1. Introduction

Nowadays, quantum calculus plays an important role in many areas of mathematics such as the calculus
of variations, quantum mechanics, economical problems with a dynamic nature, orthogonal polynomials,
and the theory of scale relativity ([8]). In 2015, Hamza et al. ([11]) defined the general quantum difference
operator Dβ by the formula

Dβz (x) =
z
(
β (x)

)
− z (x)

β (x) − x
. (1)

This operator generalizes two important operators. If we take β (x) = qx, then we obtain the quantum
difference operator ([14]) defined as

Dqz (x) :=
z
(
qx

)
− z (x)(

qx
)
− x

, x , 0.

If we take β (x) = qx + ω, then we obtain the Hahn quantum difference operator ([13]) defined as

Dω,qy (x) =
y
(
ω + qx

)
− y (x)

ω +
(
q − 1

)
x
.

In [12], Hamza and Shehata have studied some inequalities based on a general quantum difference operator.
In [7], Cardoso has studied the β-integral. Later, a β-Sturm–Liouville eigenvalue problem was studied in
[6]. The Dirac system defined as(

0 −1
1 0

) (
z′1
z′2

)
+

(
q (x) 0

0 w (x)

) (
z1
z2

)
= λ

(
z1
z2

)
, a ≤ x ≤ b, (2)
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is important in physics because its equation gives a description of the electron spin and predicts the existence
of antimatter. These systems have interesting spectral properties (see [1, 4, 5, 9, 10, 16, 17, 25, 26] and the
references therein). On the other hand, if the differential operator is replaced with Dβ in Eq. (2), then we
obtain a β-Dirac system. In this paper, we introduce the β-Dirac system(

0 −Dββ−1Dβ−1

Dβ 0

) (
z1
z2

)
+

(
q (x) 0

0 w (x)

) (
z1
z2

)
= λ

(
z1
z2

)
(3)

where λ ∈ C, z =
(

z1
z2

)
, and s0 ≤ x ≤ b < ∞.We shall study some spectral properties of this system. The

authors [2, 3] have studied Eq. (3) when β (x) = qx and β (x) = qx + ω. Similar problems was investigated
for various classes of differential equations in [1, 4, 5, 9, 10, 16–26]. Now, we state a few definitions which
are basic to β-calculus. Let I ⊆ R be an interval and β : I → I a strictly increasing and continuous function
with a unique fixed point s0 ∈ I that satisfies

(s0 − x)
(
β (x) − x

)
≥ 0

for all x ∈ I, where the equality holds only when x = s0. For z : I → C, the general difference operator Dβ is
defined as

Dβz (x) =

 z(β(x))−z(x)
β(x)−x if x , s0,

z′ (s0) if x = s0,

provided that z′ (s0) exists ([11]). Now, we present some properties of the β-derivative ([11]). Let f , 1 be β−
differentiable at x ∈ I, then

Dβ
(
a f + b1

)
(x) = aDβ f (x) + bDβ1 (x) , a, b ∈ I,

Dβ
(

f1
)

(x) = Dβ
(

f (x)
)
1 (x) + f

(
β (x)

)
Dβ1 (x)

= Dβ
(

f (x)
)
1
(
β (x)

)
+ f (x) Dβ1 (x) ,

Dβ

(
f
1

)
(x) =

Dβ
(

f (x)
)
1 (x) − f (x) Dβ1 (x)

1 (x) 1
(
β (x)

) ,

where 1 (x) 1
(
β (x)

)
, 0, x ∈ I. The β-integration ([11]), with a, b ∈ I is given by∫ b

a
z (x) dβx =

∫ b

s0

z (x) dβx −
∫ a

s0

z (x) dβx,

where∫ x

s0

z (t) dβt =
∞∑

n=0

(
βn (x) − βn+1 (x)

)
z
(
βn (x)

)
.

The fundamental theorem of β-calculus given in ([11]) states that if z : I→ C is continuous at s0, and

Z (x) =
∫ x

s0

z (t) dβt, x ∈ I,

then Z is continuous at s0, DβZ (x) exists for all x ∈ I and DβZ (x) = z (x) . Let L2
β[s0, b] be the space of all

complex-valued functions on [s0, b] such that

∥z∥ :=
(∫ b

s0

|z|2 dβx
)1/2

< ∞.
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The space L2
β[s0, b] is a Hilbert space with the inner product

⟨z, y⟩ :=
∫ b

s0

zydβx,

where z, y ∈ L2
β[s0, b] ([7]).

Lemma 1.1 ([6]). Let z, y ∈ L2
β[s0, b] be both continuous at s0. Then we have

⟨−Dββ−1Dβ−1 z, y⟩ − ⟨z,Dβy⟩ = z (s0) y (s0) − z
(
β−1 (b)

)
y (b).

2. Self-adjoint system

In this part, we introduce a self-adjoint β-Dirac system. Now, we can construct the Hilbert space
L2
β([s0, b];C2) with the inner product

(
f , 1

)
:=

∫ b

s0

( f , 1)C2 dβx.

Consider the following β-Dirac system

Υz = λz, (4)

with boundary conditions

S1(z) := s11z1 (s0) + s12z2

(
β−1 (s0)

)
= 0, (5)

S2(z) := s21z1 (b) + s22z2

(
β−1 (b)

)
= 0, (6)

where

λ ∈ C, z =
(

z1
z2

)
, s0 ≤ x ≤ b < ∞,

Υz :=
{
−Dββ−1Dβ−1 z2 + q (x) z1

Dβz1 + w (x) z2,
(7)

q (.) and w (.) are real-valued continuous functions on [s0, b], q (.) ,w (.) ∈ L1
β[s0, b] and

{
si j

}
i, j=1,2

are arbitrary

real numbers such that the rank of the matrix
(
si j

)
is 2.

Theorem 2.1. The β-Dirac system defined as (4)-(6) is formally self-adjoint on L2
β([s0, b];C2).
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Proof. Let z (.) , y (.) ∈ L2
β([s0, b];C2). Then, we see that

(
Υz, y

)
−

(
z,Υy

)
=

∫ b

s0

(
−Dββ−1Dβ−1 z2 + q (x) z1

)
y1dβx

+

∫ b

s0

(
Dβz1 + w (x) z2

)
y2dβx

−

∫ b

s0

z1

(
−Dββ−1Dβ−1 y2 + q (x) y1

)
dβx

−

∫ b

s0

z2

(
Dβy1 + w (x) y2

)
dβx

= −

∫ b

s0

[(
Dββ−1Dβ−1 z2

)
y1 + z2

(
Dβy1

)]
dβx

+

∫ b

s0

[(
Dβz1

)
y2 + z1

(
Dββ−1Dβ−1 y2

)]
dβx

From Lemma 1.1, we see that∫ b

s0

[(
−Dββ−1Dβ−1 z2

)
y1 − z2

(
Dβy1

)]
dβx

= y1 (s0)z2

(
β−1 (s0)

)
− y1 (b)z2

(
β−1 (b)

)
and ∫ b

s0

[(
Dβz1

)
y2 + z1

(
Dββ−1Dβ−1 y2

)]
dβx

= z1 (b) y2
(
β−1 (b)

)
− z1 (s0) y2

(
β−1 (s0)

)
.

Thus we obtain(
Υz, y

)
−

(
z,Υy

)
=

[
z, y

]
b −

[
z, y

]
s0
, (8)

where[
z, y

]
x := z1 (x) y2

(
β−1 (x)

)
− y1 (x)z2

(
β−1 (x)

)
.

It follows from (5) and (6) that(
Υz, y

)
=

(
z,Υy

)
. (9)

From Theorem 2.1, we obtain the following corollary.

Corollary 2.2. All eigenvalues of the problem defined by (4)-(6) are real and simple. Eigenfunctions corresponding
to distinct eigenvalues are orthogonal.
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3. Green’s function

Consider a solution of the following system

−Dββ−1Dβ−1 z2 +
{
−λ + q (x)

}
z1 = h1 (x) , (10)

Dβz1 + {−λ + w (x)} z2 = h2 (x) , (11)

with the boundary conditions

s11z1 (s0) + s12z2

(
β−1 (s0)

)
= 0, (12)

s21z1 (b) + s22z2

(
β−1 (b)

)
= 0, (13)

where s0 ≤ x ≤ b < ∞, and

h (.) =
(

h1 (.)
h2 (.)

)
∈ L2
β([s0, b];C2).

Denote by

Φ1 (x, λ) =
(
Φ11 (x, λ)
Φ12 (x, λ)

)
,

and

Φ2 (x, λ) =
(
Φ21 (x, λ)
Φ22 (x, λ)

)
,

two basic solutions of the system (4)-(6) which satisfy the following initial conditions

Φ11 (b, λ) = s12, Φ12

(
β−1(b), λ

)
= −s11

and

Φ21 (s0, λ) = s22, Φ22

(
β−1(s0), λ

)
= −s21.

Let

z (x) =
(

z1 (x)
z2 (x)

)
, y (x) =

(
y1 (x)
y2 (x)

)
and z, y ∈ L2

β([s0, b];C2). Then, the β-Wronskian of y (x) and z (x) is defined by the formula

Wβ
(
z, y

)
(x) = z1 (x) y2

(
β−1 (x)

)
− y1 (x) z2

(
β−1 (x)

)
.

It is clear that the Wronskian of any solution of Eq. (4) is independent of x. In fact, from (8), we see that(
Υz, y

)
−

(
z,Υy

)
=

[
z, y

]
b −

[
z, y

]
s0
,

where z (x) and y (x) are two solutions of Eq. (4). Since Υz = λz and Υy = λy, we get(
λz, y

)
−

(
z, λy

)
=

[
z, y

]
b −

[
z, y

]
s0
,

(
λ − λ

) (
z, y

)
=

[
z, y

]
b −

[
z, y

]
s0
.

Then we obtain
[
z, y

]
b =

[
z, y

]
s0
=Wβ

(
z, y

)
(s0) because λ ∈ R. The function D (λ) :=Wβ (Φ1,Φ2) is called the

characteristic function associated with the boundary-value problem (4)-(6). The zeros of D (λ) are exactly
the eigenvalues of the problem. Then we have the following theorem.
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Theorem 3.1. If D (λ) , 0, then the non-homogeneous boundary value problem (10)-(13) has a unique solution
z (t, λ) defined as

z (x, λ) =
(
G(x, ., λ), h(.)

)
, x ∈ [s0, b], (14)

where

G (x, t, λ) =
1

D (λ)

{
Φ2 (x, λ)ΦT

1 (t, λ) , s0 ≤ t ≤ x
Φ1 (x, λ)ΦT

2 (t, λ) , x < t ≤ b. (15)

Proof. From (14) and (15), we obtain

z1 (x, λ) =
1

D (λ)
Φ21 (x, λ)

∫ x

s0

(
Φ11 (t, λ) h1 (t)
+Φ12 (t, λ) h2 (t)

)
dβt

+
1

D (λ)
Φ11 (x, λ)

∫ b

x

(
Φ21 (t, λ) h1 (t)
+Φ22 (t, λ) h2 (t)

)
dβt, (16)

z2 (x, λ) =
1

D (λ)
Φ22 (x, λ)

∫ x

s0

(
Φ11 (t, λ) h1 (t)
+Φ12 (t, λ) h2 (t)

)
dβt

+
1

D (λ)
Φ12 (x, λ)

∫ b

x

(
Φ21 (t, λ) h1 (t)
+Φ22 (t, λ) h2 (t)

)
dβt. (17)

By (16), we see that

Dβz1 (x, λ) =
1

D (λ)
DβΦ21 (x, λ)

∫ x

s0

(
Φ11 (t, λ) h1 (t)
+Φ12 (t, λ) h2 (t)

)
dβt

+
1

D (λ)
DβΦ11 (x, λ)

∫ b

x

(
Φ21 (t, λ) h1 (t)
+Φ22 (t, λ) h2 (t)

)
dβt

+
1

D (λ)
Wβ (Φ1,Φ2) h2 (x)

= −
1

D (λ)
{−λ + w (x)}Φ22 (x, λ)

∫ x

s0

(
Φ11 (t, λ) h1 (t)
+Φ12 (t, λ) h2 (t)

)
dβt

−
1

D (λ)
{−λ + w (x)}Φ12 (x, λ)

∫ b

x

(
Φ21 (t, λ) h1 (t)
+Φ22 (t, λ) h2 (t)

)
dβt + h2 (x)

= − {−λ + w (x)}
1

D (λ)
Φ22 (x, λ)

∫ x

s0

(
Φ11 (t, λ) h1 (t)
+Φ12 (t, λ) h2 (t)

)
dβt

−{−λ + w (x)}
1

D (λ)
Φ12 (x, λ)

∫ b

x

(
Φ21 (t, λ) h1 (t)
+Φ22 (t, λ) h2 (t)

)
dβt

+h2 (x) = − {−λ + w (x)} z2 (x, λ) + h2 (x) .

The validity of (10) is proved similarly. One proves that (14) satisfies the conditions (12)-(13).
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4. Eigenfunction Expansions

In this section, we will obtain an eigenfunction expansion. Firstly, we will give the following definition
and theorem.

Definition 4.1. A function M (x, t) of two variables with s0 < x and t < b is called a β-Hilbert–Schmidt kernel if∫ b

s0

∫ b

s0

|M (x, t)|2 dβxdβt < +∞.

Theorem 4.2 ([23]). The operator A defined by the formula

A {xi} =
{
yi
}
,

where

yi =

∞∑
k=1

aikxk (i ∈N := {1, 2, 3, ...}) (18)

is compact in l2, if

∞∑
i,k=1

|aik|
2 < +∞. (19)

Let us define the operator L by the formula

Ly = Υy, y ∈ DL,

where Υ is defined by (7) and

DL =

{
z ∈ L2

β[s0, b] :
Dβz and Dβ−1 z are continuous

on [s0, b], and S1 (z) = 0, S2 (z) = 0.

}
.

Without loss of generality, we can assume that λ = 0 is not an eigenvalue. Then, ker L = {0} . Thus the
solution of the problem

(Lz) (x) = h (x) , h (.) ∈ L2
β([s0, b];C2)

is given by

z (x) =
(
G(x, .), h(.)

)
,

where

G (x, t) = G (x, t, 0) = −
1

Wβ (Φ1,Φ2)

{
Φ2 (x)ΦT

1 (t) , s0 ≤ t ≤ x
Φ1 (x)ΦT

2 (t) , x < t ≤ b. (20)

Theorem 4.3. G (x, t) defined by (20) is a Hilbert-Schmidt kernel.

Proof. It follows from (20) that∫ b

s0

dβx
∫ x

s0

∥G (x, t)∥2 dβt < +∞,
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and ∫ b

s0

dβx
∫ b

x
∥G (x, t)∥2 dβt < +∞

since Φ1i (x)Φ2 j (t) (i, j = 1, 2) belong to L2
β([s0, b];C) × L2

β([s0, b];C) because each of the factors belongs to
L2
β([s0, b];C). Hence,

∫ b

a

∫ b

a
∥G (x, t)∥2 dβxdβt < +∞. (21)

Theorem 4.4. The operator K defined as

(Kh) (x) =
(
G(x, .), h(.)

)
is compact and self-adjoint.

Proof. Let Φi = Φi (t) (i ∈ N) be a complete, orthonormal basis of L2
β([s0, b];C2). By Theorem 4.2, one can

define

xi = (h,Φi) =
∫ b

a
(h (t) ,Φi (t))C2 dβt,

yi =
(

f ,Φi
)
=

∫ b

a

(
f (t) ,Φi (t)

)
C2 dβt,

aik =

∫ b

a

∫ b

a
(G (x, t)Φi (x) ,Φk (t))C2 dβxdβt (i, k ∈N).

Therefore, L2
β([s0, b];C2) is mapped isometrically to l2. Consequently, our β-integral operator K transforms

into the operator A defined by the formula (18) in the space l2 by the operator A, and the condition (21) is
translated into the condition (19). By Theorem 4.2, this operator is compact. Therefore, the original operator
is compact. Let ς, τ ∈ L2

β([s0, b];C2). As G (x, t) = GT (t, x) and G (x, t) is a real matrix-valued function defined
on [s0, b] × [s0, b],we have

(Kς, τ) =
∫ b

s0

((Kς) (x) , τ (x))C2 dβx

=

∫ b

s0

(∫ b

s0

G (x, t) ς (t) dβt, τ (x)
)
C2

dβx

=

∫ b

s0

(
ς (t) ,

∫ b

s0

G (t, x) τ (x) dβx
)
C2

dβt = (ς,Kτ) ,

i.e., K is self-adjoint.
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Theorem 4.5. The eigenvalues of the operator L form an infinite sequence {λn}
∞

n=1 of real numbers which can be
ordered so that

|λ1| < |λ2| < ... < |λn| < ..., |λn| → ∞

as n→∞. The set of all normalized eigenfunctions of L forms an orthonormal basis for L2
β[s0, b] and for z ∈ L2

β[s0, b],
Kz = h, Lh = z, LΦn = λnΦn (n ∈N) the eigenfunction expansion formula

Lh =
∞∑

n=1

λn(h,Φn)Φn

is valid.

Proof. By the Hilbert–Schmidt theorem [15] and Theorem 4.4, K has an infinite sequence of non-zero real
eigenvalues {ξn}

∞

n=1 with

lim
n→∞
ξn = 0.

Then,

|λn| =
1
|ξn|
→ ∞

as n → ∞. Furthermore, let {Φn}
∞

n=1 denote an orthonormal set of eigenfunctions corresponding to {ξn}
∞

n=1 .
Then, for z ∈ H,we have Kz = h, Lh = z, LΦn = λnΦn (n ∈N) and

Lh = z =
∞∑

n=1

(z,Φn)Φn =

∞∑
n=1

(Lh,Φn)Φn

=

∞∑
n=1

(h,LΦn)Φn =

∞∑
n=1

(z, λnΦn)Φn =

∞∑
n=1

λn (z,Φn)Φn.
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