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Abstract. The aim of this paper is to present an extension of the generalized n-strong Drazin inverse
for Banach algebra elements using a g–Drazin invertible element rather than a quasinilpotent element in
the definition of the generalized n-strong Drazin inverse. Thus, we introduce a new class of generalized
inverses which is a wider class than the classes of the generalized n-strong Drazin inverse and the extended
generalized strong Drazin inverses. We prove a number of characterizations for this new inverse and some
of them are based on idempotents and tripotents. Several generalizations of Cline’s formula are investigated
for the extension of the generalized n-strong Drazin inverse.

1. Introduction

In this paper,A represents a complex Banach algebra with unit 1. For a ∈ A, the symbols σ(a), r(a) and
acc σ(a), respectively, will denote the spectrum of a, the spectral radius of a and the set of all accumulation
points of σ(a). The sets of all invertible, nilpotent and quasinilpotent elements of A, respectively, are
denoted byA−1,Anil andAqnil, respectively. Recall that a ∈ Aqnil if σ(a) = {0}. We use σB(a) for the spectrum
of a ∈ B with respect to B, where B is a subalgebra of A, and also a−1

B
will be the inverse of a in B. It is

known that a ∈ A is tripotent (or idempotent) if a3 = a (or a2 = a).
Koliha [9] presented the definition of the g–Drazin inverse for elements of Banach algebras, extending

the notion of the Drazin inverse [7]. An element a ∈ A is g–Drazin invertible if there exists an element
x ∈ Awhich satisfies

xax = x, ax = xa and a − axa ∈ Aqnil.

In this case, x is called the g–Drazin inverse of a (or Koliha–Drazin inverse of a) [9]. The g–Drazin inverse
of a is unique, if it exists, and denoted by ad. Recall that ad exists if and only if 0 < acc σ(a). The g–Drazin
inverse of a doubly commutes with a, that is, ad commutes with every element ofA that commutes with a
(that is, ab = ba implies adb = bad) [9]. We useAd to denote the set of all g–Drazin invertible elements ofA.
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Since the g–Drazin inverse of a quasinilpotent element is equal to zero, we have thatAqnil
⊆ A

d. For a ∈ Ad,
aπ = 1 − aad is the spectral idempotent of a corresponding to the set {0}. More properties of the g–Drazin
inverse were given in [4–6].

When a− axa ∈ Anil in the definition of the g–Drazin inverse, then ad = aD is the Drazin inverse of a. The
group inverse of a, denoted by a#, is a special case of the Drazin inverse for which a = axa is satisfied. The
sets of all Drazin invertible and group invertible elements ofA are denoted byAD andA#, respectively.

One significant property of the Drazin inverse was presented by Cline [2] as: if ab ∈ AD, then ba ∈ AD

and (ba)D = b((ab)D)2a. This so-called Cline’s formula was generalized to many generalized inverses under
different assumptions [10, 20].

The concept of a strong Drazin inverse was introduced by Wang [19]. As a generalization of the strong
Drazin inverse, a generalized strong Drazin inverse was defined in [12] for Banach algebra elements. For
n ∈ N, the generalized n-strong Drazin inverse was presented in [13] for elements of rings as a new class
of generalized inverses which extends the generalized strong Drazin inverse from [12] and the generalized
Hirano inverse presented in [18].

Let n ∈N. An element a ∈ A is called generalized n-strongly Drazin invertible (or gns–Drazin invertible)
if there exists an element x ∈ A such that

xax = x, ax = xa and an
− ax ∈ Aqnil.

The gns–Drazin inverse x of a is unique if it exists [13]. If an
− ax ∈ Anil in the above definition, then

x is the n-strong Drazin inverse (or ns–Drazin inverse) of a. For n = 1, the gns–Drazin inverse becomes
the generalized strong Drazin inverse [12]. In the case that n = 2, the gns–Drazin inverse reduces to
the generalized Hirano inverse [18]. Some interesting results about (generalized) strong Drazin inverse,
(generalized) Hirano inverse and (generalized) n-strongly Drazin inverse can be found in [1, 8, 17, 21, 22].

Using an adequate g–Drazin invertible element rather than a quasinilpotent element in the definition
of g–Drazin inverse, the concept of the g–Drazin inverse was extended in [11]. An element a ∈ A is called
extended g–Drazin invertible (or eg–Drazin invertible) if there exists an element x ∈ A such that

xax = x, xa = ax and a − axa ∈ Ad.

In this case, x is an extended g–Drazin inverse (or eg–Drazin inverse) of a and it is not uniquely determined.
Notice that a is extended g–Drazin invertible if and only if a is g–Drazin invertible [11]. Replacing a−axa ∈ Ad

with a−axa ∈ AD in the definition of eg–Drazin inverse, x is an extended Drazin inverse (or e–Drazin inverse)
of a. The sets of all eg–Drazin invertible and e–Drazin invertible elements ofA will be denoted byAed and
A

eD, respectively.
The notion of the generalized strong Drazin inverse was generalized in [16] using the condition a− ax ∈

A
d instead of a − ax ∈ Aqnil in its definition. An element a ∈ A is called extended gs–Drazin invertible (or

egs–Drazin invertible) if there exists an element x ∈ A such that

xax = x, xa = ax and a − ax ∈ Ad.

In this case, x is an extended gs–Drazin inverse (or egs–Drazin inverse) of a. If a− ax ∈ AD in this definition,
x is an extended s–Drazin inverse (or es–Drazin inverse) of a. The symbols Aesd and AesD, respectively,
represent the sets of all egs–Drazin invertible and es–Drazin invertible elements ofA.

Motivated by previous research papers about g–Drazin inverse, generalized strong Drazin inverse and
their extensions, our aim is to present a wider class of the gns–Drazin inverse and egs–Drazin inverse.
Precisely, we introduce an extended gns–Drazin inverse replacing the condition an

− ax ∈ Aqnil in the
definition of the gns–Drazin inverse with an

− ax ∈ Ad. In this way, we define a new class of generalized
inverses for elements of Banach algebra. We present different kinds of equivalent conditions for an element
to be extended gns–Drazin invertible. Some of these characterizations contain idempotent, and some of
them involve tripotents. We prove that an element a ∈ A is extended gns–Drazin invertible if and only if
a is eg–Drazin invertible if and only if a is g–Drazin invertible. Several extensions of Cline’s formula for
extended gns–Drazin inverse are proposed. Applying these results, we can get new characterizations for eg–
Drazin invertible and g–Drazin invertible elements. At the end, we define weighted extended gns–Drazin
invertible and weighted extended ns–Drazin invertible Banach algebra elements.
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2. Extended gns–Drazin inverse

The new class of generalized inverses in a Banach algebra is defined in this section by replacing the
condition an

− ax ∈ Aqnil in the definition of gns–Drazin inverse with an
− ax ∈ Ad. In this way, we propose

an extension of gns–Drazin inverse, i.e. a wider class of generalized inverses.

Definition 2.1. For n ∈ N, an element a ∈ A is called extended gns–Drazin invertible (or egns–Drazin invertible)
if there exists an element x ∈ A such that

xax = x, xa = ax and an
− ax ∈ Ad.

In this case, x is an extended gns–Drazin inverse (or egns–Drazin inverse) of a.

Obviously, for n = 1, the egns–Drazin inverse reduces to the egs–Drazin inverse.
In particular, when an

− ax ∈ AD, an extended gns–Drazin inverse becomes an extended ns–Drazin
inverse.

Definition 2.2. For n ∈ N, an element a ∈ A is called extended ns–Drazin invertible (or ens–Drazin invertible) if
there exists an element x ∈ A such that

xax = x, xa = ax and an
− ax ∈ AD.

In this case, x is an extended ns–Drazin inverse (or ens–Drazin inverse) of a.

Denote byAn,esd (resp. An,esD) the set of all egns–Drazin (resp. ens–Drazin) invertible elements ofA.

Lemma 2.3. If a ∈ An,esd, then a ∈ Aed. Furthermore, an egns–Drazin inverse of a is an eg–Drazin inverse of a.

Proof. Assume that x is an egns–Drazin inverse of a. Then 1 − ax is an idempotent and so 1 − ax ∈ A#
⊆ A

d.
Notice that an

− ax ∈ Ad and, applying [9, Theorem 5.5], (a − a2x)n = an(1 − ax) = (an
− ax)(1 − ax) ∈ Ad. By

[10, Corollary 2.2], we deduce that a − a2x ∈ Ad and x is an eg–Drazin inverse of a.

Using Lemma 2.3, we can note that the similar result holds for ens–Drazin invertible elements.

Corollary 2.4. If a ∈ An,esD, then a ∈ AeD. Furthermore, an ens–Drazin inverse of a is an e–Drazin inverse of a.

According to Lemma 2.3 and [11, Theorem 2.2], we conclude that An,esd
⊆ A

ed = Ad. In the following
theorem, we show that An,esd = Aed = Ad and give more characterizations of egns–Drazin invertible
elements.

Theorem 2.5. Let a ∈ A and n,m ∈N. The following statements are equivalent:

(i) a is egns–Drazin invertible;

(ii) a is eg–Drazin invertible;

(iii) a is g–Drazin invertible;

(iv) there exists an idempotent p ∈ A commuting with a such that ap ∈ (pAp)−1 and an
− p ∈ Ad;

(v) there exists an idempotent p ∈ A commuting with a such that ap + 1 − p ∈ A−1 and an
− p ∈ Ad;

(vi) there exists an idempotent p ∈ A commuting with a such that ap ∈ (pAp)−1 and a − amp ∈ Ad.

In this case, we have that 0 and (ap)−1
pAp = (ap + 1 − p)−1p are egns–Drazin inverses of a.
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Proof. (i)⇒ (ii): It follows by Lemma 2.3.
(ii)⇔ (iii): Using [11, Theorem 2], this equivalence is evident.
(iii)⇒ (i): If a ∈ Ad, by [10, Corollary 2.2], notice that an

∈ A
d and so 0 is an egns–Drazin inverse of a.

(i) ⇒ (iv) ∧ (v): For an egns–Drazin inverse x of a and p = ax, we observe that p2 = p, pa = ap and
an
− p = an

− ax ∈ Ad. Applying apx = a2x2 = ax = p = xap, we deduce that ap is invertible in the Banach
algebra pAp and x = (ap)−1

pAp. Similarly, we get (ap + 1 − p)−1 = (ap)−1
pAp + 1 − p.

(iv)⇒ (i): Let (iv) hold and x = (ap)−1
pAp. Then x = xp = px gives xa = xpa = (ap)−1

pApap = p = ap(ap)−1
pAp = ax,

xax = xp = x and an
− ax = an

− p ∈ Ad, i.e. x is an egns–Drazin inverse of a.
(v)⇒ (i): Set x = (ap + 1 − p)−1p. The equality (ap + 1 − p)p = ap yields p = (ap + 1 − p)−1ap = xa = ax.

Now, xax = px = x and an
− ax = an

− p ∈ Ad, that is, x is an egns–Drazin inverse of a.
(i)⇒ (vi): Case 1. m ≥ 2: By the hypotheses and the proof of (i)⇒ (iv), there exists an idempotent p ∈ A

commuting with a such that ap ∈ (pAp)−1 and am−1
− p ∈ Ad. Hence, (a − ap)m−1 = (am−1

− p)(1 − p) ∈ Ad,
which implies a − ap ∈ Ad. Note that ap ∈ Ad. So, a − amp = (a − ap) − (am−1

− p)ap ∈ Ad.
Case 2: m = 1. This is clear by the implication of (i)⇒ (iv).
(vi)⇒ (ii). Suppose that (vi) holds. Then, a − ap = (a − amp)(1 − p) ∈ Ad. By [11, Theorem 1], we get that

(ii) holds.

By Theorem 2.5, we observe that the egns–Drazin inverse is not unique in general. The symbols an,esd and
an,esD stand for an egns–Drazin inverse and ens–Drazin inverse of a, respectively. The set of all egns–Drazin
(or ens–Drazin) inverses of a will be denoted by a{n, esd} (or a{n, esD}).

Applying Theorem 2.5, new characterizations for ens–Drazin invertible elements can be given.

Corollary 2.6. Let a ∈ A and n,m ∈N. The following statements are equivalent:

(i) a is ens–Drazin invertible;

(ii) a is e–Drazin invertible;

(iii) a is Drazin invertible;

(iv) there exists an idempotent p ∈ A commuting with a such that ap ∈ (pAp)−1 and an
− p ∈ AD;

(v) there exists an idempotent p ∈ A commuting with a such that ap + 1 − p ∈ A−1 and an
− p ∈ AD;

(iv) there exists an idempotent p ∈ A commuting with a such that ap ∈ (pAp)−1 and a − amp ∈ AD.

In this case, we have that 0 and (ap)−1
pAp = (ap + 1 − p)−1p are ens–Drazin inverses of a.

We now establish some characterizations of egns–Drazin invertible elements by means of tripotents.

Theorem 2.7. Let a ∈ A and n ∈N. The following statements are equivalent:

(i) a is egns–Drazin invertible;

(ii) there exists a tripotent p ∈ A commuting with a such that ap ∈ (p2
Ap2)−1 and an

− p2
∈ A

d;

(iii) there exists a tripotent p ∈ A commuting with a such that ap + 1 − p2
∈ A

−1 and an
− p2

∈ A
d.

In this case, we have that (ap)−1
p2Ap2 p = (ap + 1 − p2)−1p is the egns–Drazin inverse of a.

Proof. (i) ⇒ (ii): According to Theorem 2.5(iv), there exists p2 = p ∈ A commuting with a such that
ap ∈ (p2

Ap2)−1 and an
− p2

∈ A
d. Hence, p3 = p.

(ii)⇒ (i): Let p ∈ A be a tripotent commuting with a, ap ∈ (p2
Ap2)−1 and an

− p2
∈ A

d. For x = (ap)−1
p2Ap2 p,

we have xa = (ap)−1
p2Ap2 ap = p2 and ax = ap(ap)−1

p2Ap2 = p2. Thus, ax = xa, xax = p2x = x and an
−ax = an

−p2
∈ A

d,
i.e. x is an egns–Drazin inverse of a.
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(i)⇒ (iii): This implication follows similarly as (i)⇒ (ii) by Theorem 2.5(v).
(iii) ⇒ (ii): Suppose that there exists p3 = p ∈ A, pa = ap, ap + 1 − p2

∈ A
−1 and an

− p2
∈ A

d. Since
(ap + 1 − p2)p2 = ap, we obtain p2 = (ap + 1 − p2)−1ap = ap(ap + 1 − p2)−1, which implies ap ∈ (p2

Ap2)−1 and
(ap)−1

pAp = (ap + 1 − p2)−1.

According to Theorem 2.7, we characterize ens–Drazin invertible elements by tripotents.

Corollary 2.8. Let a ∈ A and n ∈N. The following statements are equivalent:

(i) a is ens–Drazin invertible;

(ii) there exists a tripotent p ∈ A commuting with a such that ap ∈ (p2
Ap2)−1 and an

− p2
∈ A

D;

(iii) there exists a tripotent p ∈ A commuting with a such that ap + 1 − p2
∈ A

−1 and an
− p2

∈ A
D.

In this case, we have that (ap)−1
pApp = (ap + 1 − p2)−1p is the ens–Drazin inverse of a.

Applying Theorem 2.5, notice that statements (ii) and (iii) of Theorem 2.7 present new characterizations
of eg–Drazin and g–Drazin invertible elements. Also, for n = 1 in Theorem 2.7, we recover [16, Theorem
2.2] for egs–Drazin invertible elements.

Basic properties of egns–Drazin invertible elements are developed too.

Lemma 2.9. If a ∈ An,esd, then, for arbitrary an,esd
∈ a{n, esd},

(i) an,esd
∈ A

# and (an,esd)# = a2an,esd;

(ii) an,esd
∈ A

n,esd and a2an,esd
∈ an,esd

{n, esd}.

Proof. (i) It is clear that an,esd commutes with a2an,esd. Further, from (a2an,esd)an,esd(a2an,esd) = a2an,esd and
an,esd(a2an,esd)an,esd = an,esd, we observe that an,esd

∈ A
# and (an,esd)# = a2an,esd.

(ii) We know that an
− aan,esd

∈ A
d and an,esd commutes with an

− aan,esd. Since an,esd
∈ A

# by part (i), then
(an,esd)n

∈ A
#. Applying [9, Theorem 5.5], we have that

(an,esd)n
− an,esd(a2an,esd) = (an,esd)n

− aan,esd

= −(an,esd)n(an
− aan,esd) ∈ Ad.

Lemma 2.9 yields the next properties of a ens–Drazin inverse.

Corollary 2.10. If a ∈ An,esD, then, for arbitrary an,esD
∈ a{n, esD},

(i) an,esD
∈ A

# and (an,esD)# = a2an,esD;

(ii) an,esD
∈ A

n,esD and a2an,esD
∈ an,esD

{n, esD}.

Recall that an arbitrary element a ∈ A can be represented by the following matrix form relative to an
idempotent p ∈ A:

a =
[

a11 a12
a21 a22

]
p
,

where a11 = pap, a12 = pa(1 − p), a21 = (1 − p)ap, a22 = (1 − p)a(1 − p). The matrix form of an egns–Drazin
inverse of a ∈ Ad can be developed relative to idempotent aad.

Lemma 2.11. If a ∈ Ad, then

a =
[

a1 0
0 a2

]
aad

and an,esd =

[
x1 0
0 x2

]
aad

,

where a1 ∈ (aad
Aaad)−1, a2 ∈ (aπAaπ)qnil and xi ∈ ai{n, esd} for i = 1, 2.
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Proof. We have the next representation of a ∈ Ad:

a =
[

a1 0
0 a2

]
p
,

where p = aad, a1 ∈ (pAp)−1 and a2 ∈ ((1 − p)A(1 − p))qnil. Also,

ad =

[
a−1

1 0
0 0

]
p
.

Let x ∈ a{n, esd}. Since ad double commutes with a, then x commutes with p and so

x =
[

x1 0
0 x2

]
p
.

The equalities ax = xa and xax = x imply aixi = xiai and xiaixi = xi, for i = 1, 2. Because

an
− ax =

[
an

1 − a1x1 0
0 an

2 − a2x2

]
p
∈ A

d

and σ(an
− ax) = σpAp(an

1 − a1x1) ∪ σ(1−p)A(1−p)(an
2 − a2x2), we deduce that an

1 − a1x1 ∈ (pAp)d and an
2 − a2x2 ∈

((1 − p)A(1 − p))d. Therefore, xi ∈ ai{n, esd}, for i = 1, 2.

Lemma 2.11 gives the next matrix form of an ens–Drazin inverse of a ∈ AD.

Corollary 2.12. If a ∈ AD, then

a =
[

a1 0
0 a2

]
aaD

and an,esD =

[
x1 0
0 x2

]
aaD

,

where a1 ∈ (aaD
AaaD)−1, a2 ∈ (aπAaπ)nil and xi ∈ ai{n, esD} for i = 1, 2.

New equivalent conditions for an element to be egns–Drazin invertible are proposed now.

Theorem 2.13. Let a ∈ A and n, k ∈N. The following statements are equivalent:

(i) a is egns–Drazin invertible;

(ii) there exists an element y ∈ A such that yaky = y, ya = ay and an
− aky ∈ Ad;

(iii) ak is egns–Drazin invertible;

In this case, ak−1y ∈ a{n, esd}.

Proof. (i)⇒ (ii): For x ∈ a{n, esd}, set y = xk. Then ya = xka = axk = ay, yaky = xkakxk = (xax)k = xk = y and
an
− aky = an

− akxk = an
− ax ∈ Ad.

(ii)⇒ (i): Assume that there exists an element y ∈ A such that yaky = y, ya = ay and an
− aky ∈ Ad. Set

x = ak−1y. Because ax = aky = ak−1ya = xa, xax = ak−1(yaky) = ak−1y = x and an
− ax = an

− aky ∈ Ad, we
deduce that x ∈ a{n, esd}.

(i)⇔ (iii): Using Theorem 2.5 and [10, Corollary 2.2], a ∈ An,esd if and only if a ∈ Ad if and only if ak
∈ A

d

if and only if ak
∈ A

n,esd.

Using Theorem 2.13, we obtain the next result.

Corollary 2.14. Let a ∈ A and n, k ∈N. The following statements are equivalent:

(i) a is ens–Drazin invertible;

(ii) there exists an element y ∈ A such that yaky = y, ya = ay and an
− aky ∈ AD;

(iii) ak is ens–Drazin invertible;

In this case, ak−1y ∈ a{n, esD}.
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3. Cline’s formula for the egns–Drazin inverse

In this section, a generalization of Cline’s formula is considered for the egns–Drazin inverse. The next
useful result for elements of an associative ring R with the unit 1, was proposed in [20].

Lemma 3.1. [20, Theorem 2.7] Let a, b, c, d ∈ R satisfy acd = dbd and dba = aca. Then bd ∈ Rd
⇔ ac ∈ Rd. In this

case, (bd)d = b((ac)d)2d and (ac)d = d((bd)d)3bac.

Under the restrictions acd = dbd and dba = aca, an extension of Cline’s formula is proved for egns–Drazin
inverse.

Theorem 3.2. Let a, b, c, d ∈ A satisfy acd = dbd and dba = aca. Then

bd ∈ An,esd
⇔ ac ∈ An,esd.

In this case, for arbitrary (bd)n,esd and (ac)n,esd, we have b((ac)n,esd)2d ∈ (bd){n, esd} and d((bd)n,esd)3bac ∈ (ac){n, esd}.

Proof. ⇒: Let bd ∈ An,esd. For arbitrary (bd)n,esd
∈ (bd){n, esd}, x = d((bd)n,esd)3bac satisfies

acx = acd((bd)n,esd)3bac = dbd((bd)n,esd)3bac = d((bd)n,esd)3bdbac
= d((bd)n,esd)3bacac = xac

and

xacx = d((bd)n,esd)2bacx = d((bd)n,esd)2bacd((bd)n,esd)3bac
= d((bd)n,esd)2bdbd((bd)n,esd)3bac = d((bd)n,esd)3bac = x.

In order to check that

(ac)n
− acx = (ac)n

− d((bd)n,esd)2bac = ((db)n−1
− d((bd)n,esd)2b)ac ∈ Ad,

set u = ((db)n−1
− d((bd)n,esd)2b)a and v = ((bd)n−1

− (bd)n,esd)b. We observe that vd = (bd)n
− (bd)n,esdbd ∈ Ad,

ucd = ((db)n−1
− d((bd)n,esd)2b)acd = ((db)n−1

− d((bd)n,esd)2b)dbd
= d((bd)n−1

− (bd)n,esd)bd = dvd

and

dvu = d((bd)n−1
− (bd)n,esd)b((db)n−1

− d((bd)n,esd)2b)a
= (d(bd)n−1

− d((bd)n,esd)2bd)(b(db)n−1
− bd((bd)n,esd)2b)a

= ((db)n−1
− d((bd)n,esd)2b)d(b(db)n−1

− bd((bd)n,esd)2b)a
= ((db)n−1

− d((bd)n,esd)2b)(db(db)n−1a − dbd((bd)n,esd)2ba)
= ((db)n−1

− d((bd)n,esd)2b)ac((db)n−1
− d((bd)n,esd)2b)a

= ucu.

Applying Lemma 3.1, we deduce that ((db)n−1
−d((bd)n,esd)2b)ac = uc ∈ Ad. So, ac ∈ An,esd and d((bd)n,esd)3bac ∈

(ac){n, esd}.
⇐: Analogously, this implication can be verified.

Consequently, Theorem 3.2 implies the next extension of Cline’s formula for the ens–Drazin inverse.

Corollary 3.3. Let a, b, c, d ∈ A satisfy acd = dbd and dba = aca. Then

bd ∈ An,esD
⇔ ac ∈ An,esD.

In this case, for arbitrary (bd)n,esD and (ac)n,esD, we have b((ac)n,esD)2d ∈ (bd){n, esD} and d((bd)n,esD)3bac ∈
(ac){n, esD}.
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In the case that d = a in Theorem 3.2, we obtain a generalization of Cline’s formula for the egns–Drazin
inverse under the assumption aca = aba.

Corollary 3.4. Let a, b, c ∈ A satisfy aca = aba. Then

ba ∈ An,esd
⇔ ac ∈ An,esd.

In this case, for arbitrary (ba)n,esd and (ac)n,esd, b((ac)n,esd)2a ∈ (ba){n, esd} and a((ba)n,esd)2c ∈ (ac){n, esd}.

When c = b in Corollary 3.4, we get Cline’s formula for the egns–Drazin inverse.

Corollary 3.5. Let a, b ∈ A. Then ba ∈ An,esd
⇔ ab ∈ An,esd. In this case, for arbitrary (ab)n,esd, b((ab)n,esd)2a ∈

(ba){n, esd}.

Applying Corollary 3.4 and Corollary 3.5, we get the following Cline’s formula for the ens–Drazin
inverse as consequences.

Corollary 3.6. Let a, b, c ∈ A satisfy aca = aba. Then

ba ∈ An,esD
⇔ ac ∈ An,esD.

In this case, for arbitrary (ba)n,esD and (ac)n,esD, b((ac)n,esD)2a ∈ (ba){n, esD} and a((ba)n,esD)2c ∈ (ac){n, esD}.

Corollary 3.7. Let a, b ∈ A. Then ba ∈ An,esD
⇔ ab ∈ An,esD. In addition, for arbitrary (ab)n,esD, b((ab)esD)2a ∈

(ba){n, esD}.

4. Weighted egns–Drazin inverse

For w ∈ A\{0}, let Aw be the complex Banach algebra A equipped with the w-product a ∗ b = awb and
the w-norm ∥a∥w = ∥a∥∥w∥, where a, b ∈ A. Also, we denote by a∗n = a ∗ a ∗ · · · ∗ a (n factors), for n ∈ N and
a ∈ A.

Lemma 4.1. [3, 14] Let A be a complex Banach algebra, and let w ∈ A\{0}. For a ∈ A, a ∈ Ad
w if and only if

aw ∈ Ad if and only if wa ∈ Ad.

We define weighted extended gns–Drazin invertible and weighted extended ns–Drazin invertible Banach
algebra elements.

Definition 4.2. Let w ∈ A\{0} and n ∈N. An element a ∈ A is called:
(i) w-weighted extended gns–Drazin invertible (or w-egns–Drazin invertible), if there exists a w-egns-Drazin

inverse an,esd,w = x ∈ A such that

x ∗ a ∗ x = x, x ∗ a = a ∗ x and a∗n − a ∗ x ∈ Ad
w.

(ii) w-weighted extended ns–Drazin invertible (or w-ens–Drazin invertible), if there exists a w-ens-Drazin inverse
an,esD,w = x ∈ A such that

x ∗ a ∗ x = x, x ∗ a = a ∗ x and a∗n − a ∗ x ∈ AD
w .

We useAn,esd,w andAn,esD,w to denote the sets of all w-egns–Drazin invertible and w-ens–Drazin invertible
elements of A, respectively. Notice that a ∈ An,esd,w if a is generalized n-strongly Drazin invertible in the
algebraAw. When w = 1, a w-egns-Drazin inverse reduces to egns-Drazin inverse.

Some characterizations of w-egns-Drazin invertible elements are proved now.

Theorem 4.3. Let w ∈ A\{0}. Then, for a ∈ A, the following statements are equivalent:

(i) a ∈ An,esd,w;
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(ii) aw ∈ An,esd;

(iii) wa ∈ An,esd.

In this case, for arbitrary (aw)n,esd and (wa)n,esd, we have that ((aw)n,esd)2a and a((wa)n,esd)2 are w-egns-Drazin inverses
of a.

Proof. (i)⇒ (ii): For x = an,esd,w, then x ∗ a ∗ x = x, x ∗ a = a ∗ x, and a∗n − a ∗ x ∈ Ad
w which is equivalent to

xwawx = x, xwa = awx and (aw)n−1a − awx ∈ Ad
w. Hence, xw(aw)xw = xw and xw(aw) = (aw)xw. Applying

Lemma 4.1, we have (aw)n
− (aw)xw ∈ Ad and so aw ∈ An,esd with (aw)n,esd = xw.

(ii)⇒ (i): Assume that z = (aw)n,esd and x = z2a. Since z(aw)z = z and (aw)z = z(aw), then a ∗ x = awz2a =
z2awa = x ∗ a and x ∗ a ∗ x = (z2aw)(awz2)a = z2a = x. From ((aw)n−1a − za)w = (aw)n

− z(aw) ∈ Ad and Lemma
4.1, one can see a∗n − a ∗ x = (aw)n−1a − awz2a = (aw)n−1a − za ∈ Ad

w. Thus, a ∈ An,esd,w and an,esd,w = x = z2a.
The equivalence (i)⇔ (iii) can be verified analogously.

As a consequence of Theorem 4.3, we characterize w-ens-Drazin invertible elements.

Corollary 4.4. Let w ∈ A\{0}. Then, for a ∈ A, the following statements are equivalent:

(i) a ∈ An,esD,w;

(ii) aw ∈ An,esD;

(iii) wa ∈ An,esD.

In this case, for arbitrary (aw)n,esD and (wa)n,esD, we have that ((aw)n,esD)2a and a((wa)n,esD)2 are w-ens-Drazin
inverses of a.

By Theorem 2.5, Theorem 4.3 and Lemma 4.1, we obtain the following result.

Corollary 4.5. Let w ∈ A\{0}. Then, for a ∈ A, the following statements are equivalent:

(i) a ∈ An,esd,w;

(ii) aw ∈ An,esd;

(iii) wa ∈ An,esd;

(iv) aw ∈ Ad;

(v) wa ∈ Ad;

(v) a ∈ Ad
w.

More characterizations of w-egns-Drazin invertible elements can be found using results proved in [15, 16].
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