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Judgement of two Weyl type theorems for bounded linear operators
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Abstract. Let H be an infinite dimensional separable complex Hilbert space and B(H) the algebra of all
bounded linear operators on H. T € B(H) is said to satisfy property (UWr) if 0,(T)\0e(T) = TI(T), where
04(T) and 0,,(T) denote the approximate point spectrum and the essential approximate point spectrum of T
respectively, I1(T) denotes the set of all poles of T. T € B(H) satisfies a-Weyl’s theorem if 5,(T)\0..(T) = 73, (T),
where (. (T) = {A € is00,(T) : 0 < n(T — Al) < oo}. In this paper, we give necessary and sufficient conditions
for abounded linear operator and its function calculus to satisfy both property (UWr) and a-Weyl’s theorem
by topological uniform descent. In addition, the property (UWy) and a-Weyl’s theorem under perturbations
are also discussed.

1. Introduction and preliminaries

Throughout this paper, C and IN denote the set of complex numbers and the set of nonnegative integers.
The unit closed disk and unit circle on the complex plane C are denoted by ID and I', respectively. Let H be a
complex separable infinite dimensional Hilbert space and B(H) the algebra of all bounded linear operators
on H. Let T € B(H). We denote by n(T) the dimension of the kernel N(T) and by d(T) the codimension of the
range R(T). If R(T) is closed and n(T) < oo, then T is called an upper semi-Fredholm operator. T is said to
be a lower semi-Fredholm operator if d(T) < co. An operator T is said to be Fredholm operator if it is both
lower and upper semi-Fredholm. Especially, if T is an upper semi-Fredholm operator and n(T) = 0, then T
is called a bounded below operator. The index of T is defined by ind(T) = n(T) —d(T). An operator T is said
to be an upper semi-Weyl operator if it is an upper semi-Fredholm operator with ind(T) < 0. If T is an upper
semi-Fredholm operator and ind(T) = 0, then T is called Weyl operator. The spectrum of T, the approximate
point spectrum o,(T), the essential approximate point spectrum o.,(T), the upper semi-Fredholm spectrum
osr, (T) are defined by

o(T) = {A € C: T — Al is not invertible},

04(T) ={A € C: T — Al is not a bounded below operator},
0e(T) = {A € C: T — Al is not an upper semi-Weyl operator},
osr,(T) = {A € C: T — Al is not an upper semi-Fredholm operator}.

The ascent and descent of T are defined by asc(T) = inf{n € N : N(T") = N(T"*!)} and des(T) = inf{n €
N : R(T") = R(T"!)}. If the infimum does not exist, then we write asc(T) = oo(resp.des(T) = o). If
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asc(T) = des(T) < oo, then T is Drazin invertible. T is called a Browder operator if T is both Fredholm
operator and Drazin invertible. The Drazin spectrum op(T), the left Browder spectrum o,(T) and the
Browder spectrum o(T) are defined by

op(T) ={A € C: T — Al is not Drazin invertible},

oap(T) = {A € C: T — Al is not upper semi-Fredholm or asc(T — AI) = oo},
0p(T) ={A € C: T — Al is not a Browder operator}.

Let p(T) = C\o(T), pa(T) = C\ou(T), pp(T) = C\op(T). We denote by 0o(T) the set of all normal eigenvalues
of T, thus 0o(T) = o(T)\os(T). For a set E C C, we write isoE, accE and JE as the set of isolated points,
accumulation points and boundary points of E.

For a Cauchy domain Q, if all the curves of dQ are regular analytic Jordan curves, we say that Q is an
analytic Cauchy domain. For T € B(H), if 0 is a clopen subset of o(T), then there exists an analytic Cauchy
domain Q such that ¢ € Q and [o(T) \ 6] N Q = 0, where Q is the closure of Q. We denote by E(o; T) the
Riesz idempotent of T corresponding to o, i.e.,

1
E(o;T) = 5 f (AI-=T)74dA,
r

where I' = JQ) is positively oriented with respect to Q in the sense of complex variable theory. In this case,
we have H(o; T) = R(E(; T)). Clearly, if A € isoo(T), then {A} is a clopen subset of o(T). We write H(A; T)
instead of H({A}; T); if in addition, dim H(A; T) < oo, then A € go(T).

Spectral theory of operators is an important part of operator theory. Weyl’s theorem, as an important
conclusion in spectral theory, is discovered by H.Weyl in 1909 ([16]) when he studied the spectral set of
self-adjoint operators on Hilbert spaces. As one of the research focuses of spectral theory in recent years,
scholars have made various modifications to it.

The variation of Weyl’s theorem, namely, a-Weyl’s theorem ([13, 14]) were given by Rakocevic. We say
that the a-Weyl’s theorem holds for T if

0a(T)\0ea(T) = ngo(T)/

where 75 (T) = {A € i500,(T) : 0 < n(T — AI) < co}.

Property (UWr), as well as a-Weyl's theorem, is also a variant of Weyl’s theorem. In [6], Berkani and
Kachad introduced the definition of property (UWr). T € B(H) satisfies property (UWr) and denoted by
T € (UWn), if

0a(T)\0ea(T) = II(T),
where II(T) = o(T)\op(T). If A € II(T), then A is a pole of T.

The concept of topological uniform descent was first proposed by Sandy Grabiner ([9]). The introduction
of this concept provides a new tool for the study of operator theory, and many scholars have achieved
corresponding research results by using topological uniform descent ([8, 11, 15]). If T € B(H), then for each
nonnegative integer 7, T induces a linear transformation

Ty : R(T")/R(T™Y) — R(T™)/R(T™?),

we will let k,(T) be the dimension of the null space of the induced map and let k(T) = Y., k.(T). The
operator range topology on R(T") is defined by the norm || v ||,= inf{|| x ||,x € H,y = T"x}. If there is a
nonnegative integer d for which k,(T) = 0 for n > d and R(T") is closed in the operator range topology of
R(T?) for n > d, then we say that T has topological uniform descent.

It can be shown that if T is semi-Fredholm, then T has topological uniform descent. If T — Al has
topological uniform descent and A € do(T), then A € TI(T)([9, Corollary 4.9]). The topological uniform
descent spectrum of T is defined by

0.(T) = {A € C: T — Al has not topological uniform descent},
and p.(T) = C\o(T).



T. Zhang, X. Cao / Filomat 37:23 (2023), 7771-7780 7773

Example 1.1. (i) It is easy to see that if T € (UWn), then 0,(T)\oe(T) C 710,(T). But property (UWr) does not
imply a-Weyl's theorem. Let A, B € B(€?) be defined by
X X
Alxr,xg,+0) = (0,31,32,0), By, 2, ) = (0,0, 7, 3, +).
— A O — — — — a —
PutT = 0 B/ Then we have o(T) = ID, I(T) = 0, 04(T) = 0e(T) = {0} UT, 7((T) = {0}. It follows that
T € (UWn), but the a-Weyl'’s theorem does not hold for T.
(ii) A-Weyl'’s theorem does not imply property (UWr). Let A, B € B({?) be defined by

Alx1,x2,-++) = (0,x1,x2, ), B(x1,x2,+++) = (0, x2,x3, - *).

A
PutT = ( 0 g ) Then we have o(T) = ID, T(T) = 0, 0,(T) = {0} U T, 06(T) = T 1§, (T) = {0}. It follows that T
satisfies a-Weyl's theorem, but T ¢ (UWry).

(iii) There exists T € B(H) such that neither property (UWry) nor a-Weyl's theorem holds for T. Let A, B € B(£?)
be defined by

X2 X
A(xy,x2,-++) = (0,x2,0,x4,-++), B(xy,x2,--+) = (0,0, ?2, 33,"')-
A 0
PutT = 0 B—1 | Then we have o(T) = {-1,0,1}, T(T) = {0, 1}, 0,(T) = 0e(T) = {-1,0,1}, 7{,(T) = {-1}.

Thus, neither property (UWr) nor a-Weyl’s theorem holds for T.

We have seen in Example 1.1 that there is no relationship between T € (UWr) and T satisfies a-Weyl's
theorem although the forms of property (UWr) and a-Weyl’s theorem are similar.

In this paper, we will give necessary and sufficient conditions for bounded linear operators to satisfy
both property (UWr) and a-Weyl’s theorem by topological uniform descent in section 2. What’s more, we
also discuss both property (UWr) and a-Weyl’s theorem under quasi-nilpotent perturbation for bounded
linear operators. In section 3, we will talk about operator functions to satisfy both property (UWr) and
a-Weyl’s theorem in terms of topological uniform descent. In addition, we also discuss the case that Drazin
invertible operators satisfy both property (UWr) and a-Weyl’s theorem.

2. Property (UWp) and a-Weyl’s theorem of bounded linear operators

In this section, we will describe both property (UWr) and a-Weyl’s theorem hold for T by means of the
property of topological uniform descent.

Theorem 2.1. Let T € B(H). The following statements are equivalent:

(1) T satisfies both the property (UWr) and a-Weyl's theorem;

(2) op(T) =[o:(T)N{A e C: (T = Al) = d(T - AD}JU{A € o(T) : n(T — AL) = 0} U [accoq(T) Noea(T)] U {{A €
C : n(T = Al) = oo} Nacc[p,(T) N a(T)]}.

Proof. (1) = (2). The inclusion “2” is obvious. For the opposite inclusion, take arbitrarily A that does
not belong to the right side of (2). Without loss of generality, suppose that Ay € o(T). Then we have
n(T — Apl) > 0.

Case1 Suppose that Ag & 0, (T). Then Ag € 0,(T)\0ea(T). Since T € (UWr), we have Ag ¢ op(T).

Case 2 Suppose that Ag ¢ acco,(T) U {A € C: n(T — Al) = oo}. Then Ay € 71,(T). Since T satisfies both
property (UWrp) and a-Weyl’s theorem, we can get that Ag ¢ 64(T).

Case 3 Suppose that Ay ¢ 0.(T) U acco,(T) U acc[p.(T) N o(T)]. Then Ay € p(T) N do(T), we can get
Ag € TI(T)([9, Corollary 4.9]). From T € (UWr) we get that Ag ¢ (7).

Case 4 Suppose that Ag ¢ {A € C : n(T — Al) = d(T — AI)} U acco,(T) U acc[p.(T) N o(T)]. We have
0 < n(T = Agl) < oo, thus Ag € 75, (T). Since T satisfies both property (UWr) and a-Weyl’s theorem, we get
that Ao o2 O'h(T).
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(2) = (1). Itis clear that {[0,(T)\oe(T)] UTI(T) U 7§, (T)} N [0(T) N {A € C : n(T — AI) = d(T — AD)}] = 0,
{loa(T)\0ea(T)] UTI(T) U 110 (T)} N {A € o(T) = n(T = AI) = 0} = 0, {[0a(T)\0ea(T)] U ILT) U 715, (T)} N [acea,(T) N
0ea(T)] = 0, {[0a(T)\oea(T)] U TIT) U 15, (T)} N {{A € C : n(T — Al) = oo} N acc[p,(T) N o(T)] = 0. Hence
[0a(T)\0ea(T)] U TI(T) U 715,(T) = o0o(T). It follows that T satisfies both property (UWp) and a-Weyl's
theorem. O

Remark 2.2. (i) In Theorem 2.1, suppose T € B(H) satisfies both property (UWr) and a-Weyl's theorem, then each
part of the decomposition of o,(T) can not be deleted.
(a) Let A, B € B(£?) be defined by

_ e R )= XX
A(x1/x2/ ) - (OI x1, 0/ 3 /0/ 5 7 )/ B(x1/x2/ ) (0/ 0/ 2 7 3 7 )
(A O " I _ _ _ _ . _ . L L
PutT = 0o BJ Then we have o(T) = {0}, T(T) = 0, 04(T) = 0ea(T) = {0}, 7((T) = 0. Hence T satisfies bot

property (UWr) and a-Weyl’s theorem. But {A € o(T) : n(T—AI) = 0} = [acco,(T) Noe(T)] = {A € C : n(T = Al) =
oo} Nacclp.(T) N o(T)]} = 0. Thus 6.(T) N{A € C: n(T — AL) = d(T — AL)} cannot be deleted.
(b) Let T € B(£?) be defined by
T(x1,x2,+++) = (0,x1,x2,+).

Then we have o(T) = D, T(T) = 0, 04(T) = 0e(T) = T, 7 (T) = 0, and so T satisfies both property (UWn) and
a-Weyl’s theorem. But o,(T) # [0-(T)N{A € C: n(T—Al) = d(T—AD}U[acco,(T)Noe@(T)JU{{A € C: n(T—-Al) =
oo} Nacc[p,(T) Na(T)1}. It follows that {A € o(T) : n(T — Al) = O} cannot be deleted.

(c) Let T € B({?) be defined by

X2 X3

2737 )
Then we have o(T) = 04(T) = {0, 5,3, 1, -+ }, 0ea(T) = {0}, I(T) = 73 (T) = {3, 3, 3, -+ }. So property (UWry) and
a-Weyl’s theorem hold for T. But o4(T) # [0:(T)N{A € C: n(T — Al) = d(T — ADH U{A € o(T) : n(T — Al) =
0} U {fA € C: n(T — Al) = oo} Nacclpa(T) N o(T)]}. Thus acco,(T) N 6,(T) cannot be deleted.

(d) Let A, B € B({?) be defined by

T(xl/XZI' : ) = (O

Alx1,x2,-+0) = (0,x1,x2,--+), B(x1,x2,+++) = (0,x2,0, x4, ).

PutT = IS‘ g . Then we have o(T) = D, T(T) = 0, 04(T) = 0,(T) = {0} UT, 5, (T) = 0. It follows that T
satisfies both property (UWr) and a-Weyl's theorem. However, o,(T) # [0-(T)N{A € C : n(T—AI) = d(T-AD}HU{A €
o(T) : n(T — Al) = 0} U [accao(T) N 60,(T)], which means that {A € C : n(T — Al) = oo} Nacc[p,(T) N o(T)] cannot
be deleted.

(ii) It is clear that 6,,(T) = osr, (T)U{A € C : n(T—Al) > d(T—Al)}. From Theorem 2.1, we can get that T satisfies
both property (UWr) and a-Weyl's theorem if and only if o(T) = [0-(T)N{A € C : n(T—AI) = d(T-AI}JU{A € o(T) :
n(T—Al) = 0yU[acco,(T)Nose, (T)JUH{A € C : n(T—Al) = oo}Naccp,(T)No(T)[}U{A € C : n(T—AI) > d(T—Al)}.

(iii) If 6.(T) = 0, we claim that into(T) = 0. If not, there exists a continuous curve segment L C do(T). Take
Ao € L, from 6.(T) = 0 we can get that Ay € TI(T). Then Ay € isoo(T), a contradiction. Thus, o(T) = do(T). Take
arbitrarily A € o(T) = do(T). It follows from A ¢ o.(T) that A € TI(T) and A € isoo(T). Since o(T) is a bounded set,
we can get that o(T) consists of finite points. Therefore, if 0.(T) = 0, then o(T) = II(T).

From Theorem 2.1, we can obtain this result: If 0.(T) = 0 and T satisfies both property (UWr) and a-Weyl’s
theorem(or only property (UWn) is required), then oy(T) = 0, a contradiction with the fact that o,(T) is nonempty.
Therefore, if T satisfies both property (UWr) and a-Weyl's theorem(or only property (UW)), o-(T) # 0.

Corollary 2.3. Let T € B(H). The following statements are equivalent:

(1) T satisfies both property (UWr) and a-Weyl’s theorem;

(2) op(T) = [0(T)N{A e C: n(T = Al) = 0}]JU{A € o(T) : n(T — AI) = 0} U [acco(T) Noea(T)]U {{A € C :
n(T — Al) = d(T — A} Nacclpa(T) N o(T)]}.



T. Zhang, X. Cao / Filomat 37:23 (2023), 7771-7780 7775

Proof. (1) = (2). The inclusion “2” is obvious. For the opposite inclusion, we know that o.(T) N {A €
C:n(T-Al) = d(T - Al < oo} = 0. Hence [0(T)N{A € C: n(T—Al) =d(T - A} = [o(T)N{A e C:
(T —Al) =d(T —Al) = 0}] C o.(T)N{A € C: n(T - Al) = oo}. From {A € C: n(T — Al) = c0,d(T — Al) <
oo} Nacc[p,(T) No(T)] = @ we can get that {A € C : n(T — AI) = oo} Nacc[p,(T) No(T)] ={{A e C:n(T - Al) =
d(T—Al) = oo} Nacc[p,(T)No(T)]} S {A € C: n(T—Al) = d(T—Al)}Nacc[p.(T)No(T)]. According to Theorem
2.1, the inclusion “C” is obvious.

(2) = (1). Similar to the proof of Theorem 2.1, this result is trivial. [

It is easy to get that [p.(T) No(T)] C{A € C: n(T — AI) < d(T — Al)} and {A € C: n(T — AI) > d(T — AI)} C
acc{A € C: n(T — Al) > d(T — Al)}. From (ii) in Remark 2.2 we obtain the following corollary.

Corollary 2.4. Let T € B(H). The following statements are equivalent:

(1) T satisfies both property (UWr) and a-Weyl’s theorem;

(2) 0p(T) = [0(T)N{A € C: (T = Al) = d(T - AD}U{A € o(T) : n(T — Al) = 0} U[acco,(T) Nose, (T)]U[{A €
C:n(T-Al) =oo}Nacc{A € C:n(T — Al) < d(T — AD)}] U acc{A € C : n(T — AI) > d(T — AD)}.

Corollary 2.5. Let T € B(H). The following statements are equivalent:

(1) T satisfies both property (UWr) and a-Weyl’s theorem;

(2) 75 (T) S p(T) S pp(T) U{A € o(T) : n(T — Al) = 0} U [acco,(T) Nosp, (U [{A € C: n(T - Al) =
oo} Nacc{d € C: (T — Al) < d(T — AD}]Uacc{A € C: n(T = AI) > d(T — AI)}.

Proof. (1) = (2). It is obvious that 7(,(T) C p(T). Suppose that Ag € p(T). Then Ay & [0(T) N{A € C:
n(T—Al) =d(T —AD}. If Ap ¢ {A € o(T) : n(T — AI) = 0} U [acca,(T) Noge, (T)JU[{A € C : n(T — Al) =
oo} Nacc{d € C : n(T — AI) < d(T — AD)}] U acc{A € C : n(T — Al) > d(T — Al)}, from Corollary 2.4 we can get
that Ao € pb(T)

(2) = (1). Itis clear that {[0,(T)\0e(T)] UIL(T)} € p<(T). From Corollary 2.4 and the proof of Theorem
2.1, we have {[0,(T)\0(T)] U TI(T)} € 00(T) and 75,(T) € 0o(T). Thus T satisfies both property (UWr) and
a-Weyl's theorem. [J

Weyl type Theorem and its perturbation problems have attracted extensive attention in recent years([7,
10, 17]). In the following, we will discuss quasi-nilpotent perturbation of both property (UW7) and a-Weyl’s
theorem.
We call R € B(H) is Riesz operator if R — Al is Fredholm operator for every nonzero A. In [3, Theorem
4.7], we have that
0.(T) = 0.(T + R)

for every Riesz operator R commuting with T € B(H), where * € {ea,ab,b}. It is clear that quasi-nilpotent
operators are Riesz operators. T € B(H) is said to be a-isoloid operator if isoo,(T) € 0,(T), where o,(T) =
{A e C:n(T - Al) > 0}. If isoo,(T) € II(T), then T is called a-polaroid operator.

Example 2.6. (1) Let T, Q € B(¢?) be defined by
T(xll X2,X3 " ) = (O/ X1,X2,X3,"** )/ Q(x1/x2/ X3, ) = (0/ —X1, 0/ O/ e )

We have that T satisfies both property (UWr) and a-Weyl's theorem. However, 6(T+Q) = 0,(T+Q) =D, 0,(T) =T,
I(T) = 7§ (T) = 0. It follows that both property (UWr) and a-Weyl's theorem don’t hold for T + Q.
(2)Let A, B € B({?) be defined by

x3,O,E,---),B(x1,x2,---)=(0,O,— =,

A(x1/x2/"'):(0/x1/0/§ 5 2/ 3/

0 0

A0
o )20 -B

PutT = ) Then we have QT = TQ, T is a-isoloid operator, (T) = 0,(T) = 0.(T) = {0},
75o(T) = TIT) = 0. It follows that T satisfies both property (UWn) and a-Weyl's theorem, but we can see that
T+Q ¢ (UWp).
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From Example 2.6 we know that the commutativity of T is indispensable, and we can’t also induce
that T + Q satisfies both property (UW) and a-Weyl’s theorem if T is a-isoloid operator. Now, let Q be a
quasi-nilpotent operator with QT = TQ. For T € B(H), the quasi-nilpotent part of T is defined by

Ho(T) = {x € H : lim ||T"x]|" = 0}.
It is known that T is a quasi-nilpotent operator if and only if Hy(T) = H. Thus we have the following lemma.

Lemma 2.7. [3, Theorem 4.9] Let T € B(H) and Q a quasi-nilpotent operator with QT = TQ, then o(T) = o(T + Q)
and 6,(T) = 0,(T + Q).

Proof. Since —Q is quasi-nilpotent operator, we only need T + Q is bounded below if T is bounded below.
We claim that Hy(T) = {0} if T is bounded below. In fact, since T is bounded below, there exists k > 0 such
that ||Tx|| > kl|x|l, Vx € H. Suppose that xo € Hy(T), then lim ||T"x0||% = 0and ||T"xpl| = k"||xol|. It follows that

||T”xo||»]7 > k||x0||%. Thus, xg = 0. Since T + Q is upper semi-Weyl operator, we only need N(T + Q) = {0}.

For all x € N(T + Q) we have that Qx = —=Tx. Thus Q"xy = (-=1)"T"x,. From Q is quasi-nilpotent operator

we can get that lim ||Q”x||% =0, so lim ||T"x||% = 0. It follows that x € Hy(T). Since T is bounded below,
n—00 n—oo

Hy(T) = {0}. So, x = 0. Hence, T + Q is bounded below.
If T is invertible, we know that T + Q is Weyl operator. From T + Q is bounded below we can get that
T + Qisinvertible. O

Theorem 2.8. Let T € B(H) and Q a quasi-nilpotent operator with QT = TQ. Then the following statements are
equivalent:

(1) T satisfies both property (UWr) and a-Weyl's theorem, and T is a-polaroid operator;

(2) T + Q satisfies both property (UWr) and a-Weyl'’s theorem, and T + Q is a-polaroid operator.

Proof. Since —Q is quasi-nilpotent operator, we only need to show (1) = (2). Let A € 0,(T + Q)\oe(T + Q),
from Lemma 2.7 we can get that A € 0,(T)\oe(T). It follows from T € (UWr) that A € 0o(T) and so
A€ oo(T + Q). Let Ay € I(T + Q), then Ag € isoo(T + Q). From Lemma 2.7 and T is a-polaroid operator
we have Ay € TI(T). By T € (UWp) we can get Ag € oo(T). Then Ay € go(T + Q). Let o € 75 (T + Q),
from Lemma 2.7 and T is a-polaroid operator, we get that uo € I(T). By T € (UWr) we can get 1o € oo(T)
and o € 0o(T + Q). Let u € isoo,(T + Q). Similar to the above proof, it is clear that y € I(T + Q). Thus,
T + Q € (UWr) and satisfies a-Weyl’s theorem, and T + Q is a-polaroid operator. [J

In the following, we will discuss the quasi-nilpotent perturbation of both property (UWr) and a-Weyl’s
theorem according to topological uniform descent.

Theorem 2.9. Let T € B(H). Then the following statements are equivalent:
(1) T satisfies both property (UWr) and a-Weyl’s theorem, and T is a-polaroid operator;
(2) 0y(T) = [0(T) Naccoa(T)] U accoe(T) U [pa(T) N o(T)].

Proof. (1) = (2). The inclusion “2” is obvious. For the opposite inclusion, take arbitrarily A that does not
belong to the right side of (2). Without loss of generality, suppose that Ay € o(T). Then we have Aq € 0,(T).

Casel Suppose Ag ¢ 0.(T)Uacco.(T). Then there exists € > 0 such that A € p(T) U [04(T)\0e(T)] when
0 < |[A = Agll < €. From T is a-polaroid operator and T € (UWry), we can get that Ay € II(T). Thus Ag ¢ 0,(T).

Case 2 Suppose Ay ¢ acco,(T) U accoe(T). Then Ay € isoo,(T). From T is a-polaroid operator and
T € (UWr), we get that Ay ¢ o4(T).

(2) = (1). Itis clear that {[0,(T)\oe(T)] UTI(T) U 115, (T)} N [0:(T) Nacco,(T)] = 0, {[o4(T)\0ea(T)] UITI(T) U
18T} Maccoee(T) = 0, {[oa(T\oea( DIUIKT) Uy (TN [po(T)No(T)] = 0. Ths, [0,(T)\ea(TUTI(T) U (T) =
oo(T). And isoo,(T) N{[o-(T) Nacca,(T)]Uacco(T)U[p.(T)Na(T)]} = 0. It follows that both property (UWr)
and a-Weyl's theorem hold for T, and T is a-polaroid operator. [J

From Theorem 2.8 and Theorem 2.9 we finally get the following result.
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Corollary 2.10. Let T € B(H) and Q a quasi-nilpotent operator with QT = TQ. Then the following statements are
equivalent:

(1) T + Q satisfies both property (UWr) and a-Weyl’s theorem, and T + Q is a-polaroid operator;

(2) ap(T) = [0+(T) Nacco,(T)] U accoe(T) U [pa(T) N o(T)].

3. Property (UWy) and a-Weyl’s theorem of operator functions

For T € B(H), we use Hol(o(T)) to denote the class of all complex-valued functions analytic on a
neighborhood of o(T) and not constant on any components of o(T).

Remark 3.1. (i) T satisfies both property (UWr) and a-Weyl'’s theorem does not imply f(T) satisfies both property
(UWn) and a-Weyl's theorem, where f € Hol(o(T)).
Let A, B € B(£?) be defined by

Alxy,x2,++) = (0,x1,x2,+ ), B(x1,x2, -+ +) = (x2, X3, X4, ).

PutT = ( A(-)'- ! B (i I ) Then T satisfies both property (UWr) and a-Weyl'’s theorem. Let f(z) = (z—1)(z+1),z €
C, we can get 0 € 0,(f(T))\oea(f(T)). But 0 ¢ II(T), 0 ¢ 15, (T). We know that both property (UWn) and a-Weyl's
theorem don’t hold for f(T).

(ii) f(T) satisfies both property (UWr) and a-Weyl’s theorem for some f € Hol(o(T)) does not imply T satisfies
both property (UWr) and a-Weyl's theorem. Let A, B, C € B(£?) be defined by

X2 X3
A(xlleI' * ) = (0,x2,0,x4,' o )IB(xler/' : ) = (010/ ?/ E!' ° ')/C(xlleI' : ) = (O/xlerI' ‘ )

A+I 0 0
PutT=| 0 B-I 0 | Weknow that o,(T?) = 0ea(T?) = {re’® : r = 2(1 + cos 0)} U {1, §}, II(T?) = 0,
0 0 C+I
8 (T?) = 0. So T* € (UWn) and satisfies a-Weyl’s theorem. But TI(T) = {1}, 14 (T) = {-1}, 04(T) = 0ea(T) =
{-1, —%} U{A e C:||A = 1|| = 1}. Thus both property (UWr) and a-Weyl’s theorem don’t hold for T.

From the above Remark, T and f(T) satisfy both property (UWr) and a-Weyl’s theorem are not directly
connected. In the following, we will discuss the property (UWr) and a-Weyl’s theorem for operator
functions through the relation between 0;(T) and o(T).

First we have this fact: For any f € Hol(o(T)), f(0e(T)) = 0e(f(T)) if and only if for any A, u € pgr, (T),
ind(T — Al) - ind(T — ulI) > 0. Next, we will use topological uniform descent to describe the properties of
Fredholm index.

Lemma 3.2. Let T € B(H) and f € Hol(o(T)). If f(T) € (UWn), then for any A, u € psr, (T), ind(T — Al) - ind(T —
ul) = 0.

Proof. 1f not, then there exist Ay, to € psr, (T) such that ind(T — Agl) = m > 0, ind(T — pl) = —n < 0. Suppose
that f(z) = (z — A9)"(z — po)™ when n < co and f(z) = (z — Ao)(z — to) when n = co. In both instances, we can
get 0 € 0,(f(T))\oea(f(T)). From f(T) € (UWr), we know that f(T) is Browder operator. Thus Ag ¢ 0,(T), a
contradiction. [J

Lemma 3.3. Let T € B(H) and T € (UWry). Then the following statements hold:
(1) p(T) C pp(T) U accoea(T) if and only if for any A € pgp, (T), ind(T — AL) 2 0;
(2) p(T) C pp(T) U accosr, (T) UacciA € C : n(T — AL) = 0} if and only if for any A € pgr, (T), ind(T — AI) < 0.

Proof. (1). “=". If not, there exist Ay € psr, (T) such that ind(T — Agl) < 0. We can get that Ay € p,(T) and
Ao ¢ accoe(T), then Ag € py(T), a contradiction.
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“&”. Suppose that for any A € pgsr, (T), ind(T — Al) > 0. Take Ag € p(T) but Ag ¢ accoe,(T), then there
exists € > 0 such that T — Al is an upper semi-Weyl operator when 0 < [|[A — Agl| < €. By ind(T — AI) > 0
and T € (UWr) we get that T — Al is a Browder operator. It follows that Ay € do(T) N p(T) and Ay € II(T).
Therefore, Ay € py(T).

(2). Similar to the proof of (1), this result is obvious. [

Theorem 3.4. Let T € B(H). Then for any f € Hol(o(T)), f(T) satisfies both property (UWr) and a-Weyl's theorem
if and only if:

(1) T satisfies both property (UWr) and a-Weyl's theorem;

(2) p(T) C pp(T) U accoea(T) or p(T) € pp(T) U accos, (T) Uacc{A € C : n(T — Al) = 0);

(3) If 0o(T) # 0, then op(T) = [0.(T) N{A € C : n(T — AL) = 0o}] U [acca,(T) N 0..(T)].

Proof. “="”. From Lemma 3.2 and Lemma 3.3, we only need to prove (3) holds. The inclusion “2” is
clear. For the converse, we first claim that {A € iso0,(T) : n(T — AI) < oo} = go(T). In fact, take Ay € 0o(T),
Az € {A €i5004(T) : n(T — AI) < oo}. Set 01 = {A1}, 02 = {A2} and 03 = o(T)\[o1 U 02]. Then by [12, Theorem

T, 0 O
2.10] T can be represented as T =| 0 T, 0 | whereo(T;) =0y, i=1,2,3. Put fy(z) = (z — A1)z — A2).
0 0 T;
fo(Th) 0 0
Then fo(T) = 0 fo(T2) 0 . Therefore 0 € isoo,(fo(T)) and 0 < n(fo(T)) < co. It follows that
0 0 f(T3)

0 € 75, (fo(T)). From fo(T) satisfies both property (UWr) and a-Weyl’s theorem, we obtain that fo(T) is a
Browder operator, and so is T — A,I. The inclusion “2” is clear. So {A € isog,(T) : n(T — Al) < oo} = go(T).

Then we prove o(T) = 0,(T). If not, put Ay € o(T)\0u(T). Let Ay € 0o(T) and £i(T) = (T — AI)(T — A,l),
then 0 € 0,(f1(T))\0e(f1(T)). Since fi(T) € (UWr), we can get that f1(T) is a Browder operator. It implies
that A € p(T), a contradiction.

Take arbitrarily A that does not belong to the right side of (3). Without loss of generality, suppose that
Ao € a(T).

Case1l Suppose that Ag ¢ 0.(T)Uacco,(T). From o(T) = 0,(T) we can get that Ay € p.(T) Nisoo(T), then
Ao € TI(T). It follows that Ag ¢ o;,(T).

Case 2 Suppose that Ay ¢ {A € C : n(T — AI) = oo} U acco,(T). It follows that Ay € {A € isoo,(T) :
n(T — Al) < oo}. Thus Ay € 0o(T).

Case 3 Suppose that Ay & 0,,(T). Then Ag € p,(T) U [0,(T)\0ea(T)]. Since o(T) = 0,(T) and T € (UWr),
we can get Ay ¢ op(T).

“«<”. Case1l Suppose that oo(T) = 0. Since T satisfies both property (UWr) and a-Weyl's theorem,
we know that 0,(T) = 0,(T), I(T) = 7(,(T) = 0. From the condition (2) and Lemma 3.3 we can get that
0u(f(T)) = f(0u(T)) = f(Ga(T)) = 0u( F(T)). Thus o f(T\u(F(T)) = 0. Meanwhile, TI(F(T)) € FT(T)) = 0,
50(f(T)) € f(15,(T)) = 0. So f(T) satisfies both property (UWr) and a-Weyl’s theorem.

Case 2 Suppose that 0o(T) # 0. The fact 0,(T) = [0-(T) N {A € C : n(T — Al) = co}] U [acco,(T) N 0¢(T)]
implies that 0.,(T) = 04(T). Take po € 0,(f(T)) \ 0ea(f(T)) and suppose that

S(T) = wol = a(T = )™ (T = A1) -+ (T = Ay g(T),

where A; # A;if i # j and g(T) is invertible. From the condition (2) and Lemma 3.3 we have A; €
Pa(T) U [04(T)\0ea(T)] for 1 < i < t. Since 0,4(T) = 04(T) and T € (UWp), we know that A; € py(T) for
1 <i <t It follows that py € oo(f(T)). Take arbitrarily ug € I1(f(T)) and suppose that f(T) — pol has the
same decomposition as above. Then T — A;I is Drazin invertible for 1 <7 < t. Since T € (UWr), we can get
that uo € oo(f(T)). Take arbitrarily po € 7, (f(T)) and suppose that f(T) — ol has the same decomposition
as above. Then A; € p,(T) U isoo,(T) and n(T — A;I) < co. From the condition (3) we have o € oo(f(T)).
Hence for any f € Hol(o(T)), f(T) satisfies both property (UWr) and a-Weyl's theorem. [J

From (3) in Theorem 3.4 we can get that T satisfies both property (UWr) and a-Weyl’s theorem, and for
any A € pgr, (T), ind(T — AI) > 0. Hence we have the following fact:
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Corollary 3.5. Let T € B(H) and 0o(T) # 0. Then for any f € Hol(o(T)), f(T) satisfies both property (UWr) and
a-Weyl’s theorem if and only if o,(T) = [0(T) N{A € C : n(T — AI) = 0o}] U [acco,(T) N 0..(T)].

Corollary 3.6. Let T € B(H). Then oo(T) = 0 and for any f € Hol(o(T)), f(T) satisfies both property (UWr) and
a-Weyl’s theorem if and only if one of the following conditions holds:

(1) o(T) = [0(T)N{A € C: n(T — AI) = 00o}] U {A € g,(T) : n(T — AI) = 0} U [acca,(T) N 0.,(T)];

(2)o(T) =[o(T)N{A € C: (T = AI) = d(T = AD}JU{A € o(T) : n(T — AI) = 0} U [acco,(T) Nose, (T)] U {{A €
C : n(T = Al) = oo} Nacclp.(T) N o(T)]}.

Proof. “=". The inclusion “2” is clear. For the converse, by Lemma 3.2 we know that for any A, u € psr, (T),
ind(T — Al) - ind(T — ul) 2 0.

Case1 Suppose that A € pgr, (T), ind(T — Al) > 0. Take arbitrarily Ay that does not belong to the right
side of (1). We claim that Ay ¢ 0,(T). In fact, if Ag € 0,(T), then n(T — Apl) > 0. If Ay ¢ 0.(T) U acco,(T),
from the proof of Theorem 3.4 we can get o(T) = 0,(T). Then A € isoo(T) and Ay € II(T). It follows from
T € (UWn) that Ag € oo(T). If Ag ¢ {A € C: n(T — Al) = oo} Uacca,(T), then Ag € 7 (T) and hence Ag € ao(T).
If Ag ¢ 064(T), then Ay € 6,(T)\0xa(T). It follows that Ay € ao(T). But o(T) = 0. This contradiction shows that
Ag ¢ 04(T). From ind(T — Aol) > 0 we get that Ay ¢ o(T).

Case 2 Suppose that A € pgr, (T), ind(T — Al) < 0. Take arbitrarily A that does not belong to the right
side of (2). We claim that Ag ¢ o(T). Similar to the proof of case 1, this claim is clear.

“<”. Case 1 If condition (1) holds, we obtain that for any A € pgr, (T), ind(T — AI) > 0. If not,
there exist Ay € psr, (T), ind(T — Apl) < 0. It follows that Ag ¢ [0-(T)N{A € C : n(T — AI) = o}JU {A €
04(T) : n(T — AI) = 0} U [accoa(T) N 0e(T)], then Ag ¢ o(T), a contradiction. If there exist u € oo(T), then
pé&lo(T)N{A € C:n(T - Al = oco}]U{A € 0,(T) : n(T — Al) = 0} U [acco,(T) N 0.,(T)]. By condition (1)
we can get u ¢ o(T), a contradiction. Hence 0o(T) = 0. It is clear that {[0,(T)\o(T)] U II(T) U 75, (T)} N
[0:(T) N{A € C: (T — AI) = oo}] = 0, {[04(T)\0ea(T)] U TI(T) U 115,(T)} N {A € 04(T) : n(T = AI) = 0} = 0,
{[oa(T)\0ea(T)] U II(T) U 115 (T)} N [accoa(T) N oea(T)] = 0. Thus {[0a(T)\0ea(T)] U ITI(T) U 715,(T)} < p(T), a
contradiction. So we can get 0,(T)\oe(T) = TI(T) = 7, (T) = 0, then T satisfies both property (UW) and
a-Weyl’s theorem. From Theorem 3.4 we know that for any f € Hol(o(T)), f(T) satisfies both property
(UWr) and a-Weyl’s theorem.

Case 2 If condition (2) holds, we get that for any A € psr, (T), ind(T — AI) < 0. Similar to the proof of
case 1, the result is trivial. O

From Corollary 3.5 and Corollary 3.6 we can describe the property (UWr) and a-Weyl’s theorem for
operator functions through the relation between 0;(T) and 0.(T).

Theorem 3.7. Let T € B(H). Then for any f € Hol(o(T)), f(T) satisfies both property (UWr) and a-Weyl's theorem
if and only if one of the following statements holds:

(1) o(T) =[0(T)N{A € C: n(T — AI) = 00} U {A € 0,(T) : n(T — AlI) = 0} U [accan(T) N oea(T)];

(2)o(T) = [o(T)N{A € C: (T = AI) = d(T = AD}JU{A € o(T) : n(T — AI) = 0} U [acco,(T) Nose, (T)] U {{A €
C : n(T — ML) = co} Nacc[pa(T) N a(T)]};

(3) 0p(T) = [0(T) N {A € C : (T = AI) = 00}] U [accaq(T) N 00o(T)].

We can get that property (UWry) is transmitted from Drazin invertible operator to its Drazin inverse in
[2]. Now, we will discuss S satisfies both property (UWr) and a-Weyl’s theorem by topological uniform
descent.

If T € B(H) is Drazin invertible with inverse S, then asc(T) = des(T) = p for any p € IN. We know that
R(T?) is closed and H = N(I7) @ R(T?). Under this space decomposition, T = T; @ T,, where T; is nilpotent
operator and T is invertible. Thus S=0& T, 1. In[1, 4, 5], we get that

o(S)\{0} = {% : A €a(T)\{0}}, 0.(S)\{0} = {% A€o (T)\{0}},* € {b,ea,a,r1, D}

Besides, one can verify that for any A # 0, n(S — AI) = n(T — %I), a(s — Al) = d(T — %I) and acco,(S) \ {0} =
{% : A € acco,(T) \ {0}}.
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Theorem 3.8. Let T € B(H) be Drazin invertible with inverse S. Then

(1) T satisfies both property (UWr) and a-Weyl’s theorem if and only if S satisfies both property (UWr) and
a-Weyl’s theorem;

(2) For any f € Hol(o(T)) N Hol(c(S)), f(T) satisfies both property (UWr) and a-Weyl'’s theorem if and only if
f(S) satisfies both property (UWr) and a-Weyl’s theorem.

Proof. (1). “=”. From Theorem 2.1, we only need 04(S) = [0-(S) N {A € C : n(S — AI) = d(S - AD}J U {A €
0(S) : n(S — Al) = 0} U [acco,(S) N oea(S)] U HA € € : n(S — Al) = co} Nacc[pa(S) No(S)]}. If T is invertible, then
S = T~!. The conclusion is clear. In the following, we assume T is not invertible but Drazin invertible.

Let A does not belong to the right side. If A = 0. Since 0 € II(T) and T € (UWr), we get that 0 ¢ o,(T).

Thus 0 ¢ 0,(S)([2, Lemma 4.9]). If A # 0. Now, S — Al = 0 )\Tz‘l(%l —Ty) ), then ; ¢ [0.(T2) N {A €

C:n(Tr, = Al) =d(T> — A U{A € o(Ty) : n(T2 — A) = 0} U [acco,(T2) N 0e(T2)] U {({A € C : n(T2 — Al) =
T,-1 0

0 To-3)
where T; — Al is invertible. So % ¢ [o(T)N{A e C:n(T—-Al) =d(T-AD}JU{A € o(T) : n(T — AI) =
0} U [accoq(T) N oe(T)] U {{A € C : n(T — AL) = oo} Nacc[p,(T) N o(T)]}. By Theorem 2.1 we can get % ¢ op(T)
and so } & 0y(S).

“&"”. Suppose that S satisfies both property (UWr) and a-Weyl’s theorem. The Drazin inverse of S is
U := T?S = TST and Drazin inverse of U is T ([1, Chapter 1]). Thus, T satisfies both property (UWr) and
a-Weyl’s theorem.

(2). “=”. It is obvious that T satisfies both property (UWp) and a-Weyl’s theorem. Then from (1),
we get that S satisfies both property (UWr) and a-Weyl’s theorem. Suppose that 0o(S) # 0, we claim
that 0o(T) # 0. In fact, let A € 0¢(S). If A = 0, then 0 < dimN(T?) < co. It follows that n(T1) > 0 and
T is not invertible. By T € (UWr) we have that T; is Browder operator. So T is Browder operator and

oo} Nacc[p.(T2) N o(T2)]}. Under above space decomposition, we know that T — %I = (

0€ap(T). If A #0. Now, S— Al = ( _SU /\Tz‘l(%ol ~Ty) ) It follows that %I — T, is Browder operator
_1
but not invertible. We know that T — %I = h 0 A T 0 17 ) then % € 0o(T). From Corollary 3.5 we
2= %

get 0p(T) = [0(T) N{A € C : n(T — Al) = oo}] U [acco,(T) N 0e,(T)]. By using the similar way of (1) we
get that 0,(S) = [0:(S) N{A € C : n(S — AI) = co}] U [acca,(S) N 0e(S)]. Moreover, e (f(S)) = f(0e(S)) for
any f € Hol(o(T)) N Hol(6(S)). From Lemma 3.3 and Theorem 3.4 f(S) satisfies both property (UWr) and
a-Weyl’s theorem.

“«&”. The same as the above proof. [J
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