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On characteristic functions of generalized resolvents generated by
integral equations with operator measures

Vladislav M. Bruka

aSaratov State Technical University, Saratov, Russia

Abstract. We consider a symmetric minimal relation L0 generated by an integral equation with operators
measures. We describe the generalized resolvents of L0 using the characteristic function M(λ) (λ ∈ C), i.e.,
a function that has the property (Imλ)−1ImM(λ) ⩾ 0. We obtain a necessary and sufficient condition for a
holomorphic function M(λ) to be a characteristic function of a generalized resolvent. We give a detailed
example of finding the characteristic function.

1. Introduction

Generalized resolvents of symmetric operators were introduced by M.A. Naimark in 1940 (see, for
example, [1]). In the article [24], A.V. Straus described the generalized resolvents of a symmetric operator
generated by a formally self-adjoint differential expression of even order in the scalar case. In such a de-
scription, a function M(λ) (λ ∈ C) plays an essential role. This function has the property (Imλ)−1ImM(λ) ⩾ 0.
In [24], the function M(λ) is called the characteristic function of the generalized resolvent. The characteristic
function is used in solving many problems associated with the generalized resolvents (see [24]).

In [5], these results from [24] were extended to the operator case, and in [7], to the case of a differential-
operator expression with a non-negative weight operator function. Further, the generalized resolvents
of differential operators were studied in many works (a detailed bibliography is available, for example,
in [22], [20]).

In this paper, we consider the integral equation

y(t) = x0 − iJ
∫ t

a
dp(s)y(s) − iJ

∫ t

a
dm(s) f (s), (1)

where y is an unknown function, a ⩽ t ⩽ b; J is an operator in a separable Hilbert space H, J = J∗, J2 = E (E is
the identical operator); p, m are operator-valued measures defined on Borel sets ∆⊂ [a, b] and taking values
in the set of linear bounded operators acting in H; x0 ∈H, f ∈L2(H, dm; a, b). We assume that the measures
p, m have bounded variations and p is self-adjoint, m is non-negative.

If the measures p, m are absolutely continuous (i.e., p(∆) =
∫
∆

p(t)dt, m(∆) =
∫
∆

m(t)dt for all Borel
sets ∆ ⊂ [a, b], where p(t), m(t) are bounded operators for fixed t and the functions

∥∥∥p(t)
∥∥∥, ∥m(t)∥ belong
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to L1(a, b) ), then integral equation (1) is transformed to a differential equation with a non-negative weight
operator function. Linear relations and operators generated by such differential equations were considered
in many works (see [21], [6], [7], further detailed bibliography can be found, for example, in [20], [3]).

The study of integral equation (1) differs essentially from the study of differential equations by the
presence of the following features: i) a representation of a solution of equation (1) using an evolutional
family of operators is possible if the measures p, m have not common single-point atoms (see [10]); ii) the
Lagrange formula contains summands relating to single-point atoms of the measures p, m (see [11]).

We consider a symmetric minimal relation L0 generated by equation (1). We obtain a form of generalized
resolvents of L0. This form contains the characteristic function. The proposed article is a continuation of the
works [15], [16]. In [15], continuously invertible relations T(λ) with the property L0 − λE ⊂ T(λ) ⊂ L∗0 − λE
are described. In this description, a function M(λ) plays an important role. The function M(λ) is determined
by the relation T(λ) and the choice of a system of functions vk, where vk ∈ ker(L∗0−λE) and the linear span of
the set {vk} is dense in ker(L∗0 − λE). In [16], the generalized resolvents of the relation L0 are described using
the function M(λ) from [15]. However, this function M(λ) is not characteristic (see the example in [16]).

In this article, we construct a system of functions ϑk different from the system {vk} in [15], [16], but
having the same properties: ϑk ∈ ker(L∗0 − λE) and the linear span of the set {ϑk} is dense in ker(L∗0 − λE).
We describe generalized resolvents using the system of functions ϑk. The corresponding function M(λ)
is characteristic. We obtain a necessary and sufficient condition for a holomorphic function M(λ) to be a
characteristic function of a generalized resolvent. We give a detailed example of finding the characteristic
function.

We note that this article partially corrects the errors made in the work [9]. Also note that some special
cases of the describing of generalized resolvents and related problems for equation (1) are considered in
[12], [13], [14].

2. Designations and preliminary assertions

Let B be a Hilbert space. A linear relation T is understood as any linear manifold T ⊂ B × B. The
terminology on the linear relations can be found, for example, in [18], [22], [2]. In what follows we make
use of the following notations: {·, ·} is an ordered pair;D(T) is the domain of T; R(T) is the range of T; ker T
is a set of elements x ∈ B such that {x, 0} ∈ T; T−1 is the relation inverse for T, i.e., the relation formed by the
pairs {x′, x}, where {x, x′} ∈ T. A relation T is called surjective if R(T) = B. A relation T is called invertible or
injective if ker T = {0} (i.e., the relation T−1 is an operator); it is called continuously invertible if it is closed,
invertible, and surjective (i.e., T−1 is a bounded everywhere defined operator). A relation T∗ is called adjoint
for T if T∗ consists of all pairs {y1, y2} such that the equality (x2, y1) = (x1, y2) holds for all pairs {x1, x2} ∈ T.
A relation T is called symmetric if T ⊂ T∗ and self-adjoint if T = T∗.

It is known (see, for example, [19, ch.3], [18, ch.1]) that the graph of an operator T :D(T)→B is the set
of pairs {x,Tx} ∈ B × B, where x ∈ D(T) ⊂ B. Consequently, the linear operators can be treated as linear
relations; this is why the notation {x1, x2} ∈T is used also for the operator T. Since all considered relations
are linear, we shall often omit the word ”linear”.

Let T be a closed symmetric relation, T ⊂ B×B, and let T̃ be a self-adjoint extension of T to B̃, where B̃ is
a Hilbert space, B̃ ⊃ B, and scalar products coincide in B and B̃. By P denote an orthogonal projection of B̃
onto B. The function λ→Rλ defined by the formula Rλ = P(T̃ − λE)−1

|B, Imλ , 0, is called the generalized
resolvent of the relation T (see, for example, [1, ch.9], [17]).

A.V. Straus (see [23]) obtained a formula for all generalized resolvents of a symmetric operator. It is
shown in [17] that this formula remains true for symmetric relations also. ByNλ denote a defect subspace of
the closed symmetric relation T, i.e., the orthogonal complement in B of the range of the relation T−λE. We
fix some number λ0 (Imλ0 , 0). Let λ→F (λ) be a holomorphic operator function, whereF (λ) :Nλ0→Nλ0

is
a bounded operator, ∥F (λ)∥ ⩽ 1, Imλ · Imλ0 > 0. Let TF (λ) be the relation consisting of all pairs of the form
{y0 +F (λ)z − z, y1 + λ0F (λ)z − λ0z}, where {y0, y1} ∈ T, z ∈ Nλ0 . Then (see [23], [17]) the family of operators
Rλ is a generalized resolvent of T if and only if Rλ can be represented in the form

Rλ = (TF (λ) − λE)−1, Imλ · Imλ0 > 0. (2)
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In what follows, we use the following notions from measure theory. Let H be a separable Hilbert space
with a scalar product (·, ·) and a norm ∥·∥. By B denote a set of Borel subsets ∆ ⊂ [a, b]. We consider a
function ∆→P(∆) defined on B and taking values in the set of linear bounded operators acting in H. The
function P is called an operator measure on [a, b] (see, for example, [4, ch. 5]) if it is zero on the empty set
and the equality P

(⋃∞
n=1 ∆n

)
=
∑
∞

n=1 P(∆n) holds for disjoint Borel sets∆n, where the series converges weakly.
Further, we extend any measure P on [a, b] to a segment [a, b0] (b0 > b) letting P(∆) = 0 for each Borel sets
∆⊂ (b, b0].

By V∆(P) we denote V∆(P)= ρP(∆)= sup
∑

n ∥P(∆n)∥, where the supremum is taken over finite sums of
disjoint Borel sets ∆n ⊂ ∆. The number V∆(P) is called the variation of the measure P on the Borel set ∆.
Suppose that the measure P has the bounded variation on [a, b]. Then for ρP-almost all ξ ∈ [a, b] there exists
an operator function ξ→ΨP(ξ) such that ΨP possesses the values in the set of linear bounded operators
acting in H, ∥ΨP(ξ)∥=1, and the equality

P(∆) =
∫
∆

ΨP(s)dρP (3)

holds for each set ∆ ∈ B. The functionΨP is uniquely determined up to values on a set of zero ρP-measure.
Integral (3) converges in the sense of usual operator norm ([4, ch. 5]).

Further,
∫ t

t0
stands for

∫
[t0t) if t0 < t, for −

∫
[t,t0) if t0 > t, and for 0 if t0 = t. This implies that y(a) = x0

in equation (1). A function h is integrable with respect to the measure P on a set ∆ ∈ B if there exists the
Bochner integral

∫
∆
ΨP(t)h(t)dρP =

∫
∆
(dP)h(t). Then the function y(t) =

∫ t

t0
(dP)h(s) is continuous from the left.

By SP denote a set of single-point atoms of the measure P (i.e., a set t ∈ [a, b] such that P({t}) , 0). The
set SP is at most countable. The measure P is continuous if SP = ∅, it is self-adjoint if (P(∆))∗=P(∆) for each
Borel set ∆ ∈ B, it is non-negative if (P(∆)x, x) ⩾ 0 for all Borel sets ∆ ∈ B and for all elements x ∈ H.

In addition, we use the following notation. We construct a continuous measure P0 from the measure
P in the following way. We set P0({tk}) = 0 for tk ∈ SP and we set P0(∆) = P(∆) for all Borel sets such that
∆∩SP = ∅. We denote P̂ = P−P0. Then P̂({tk}) = P({tk}) for all tk ∈ SP and P̂(∆) = 0 for all Borel sets ∆ such
that ∆ ∩ SP = ∅.

In following Lemma 2.1, p1, p2, q are operator measures having bounded variations and taking values
in the set of linear bounded operators acting in H. Suppose that the measure q is self-adjoint and assume
that these measures are extended on the segment [a, b0]⊃ [a, b0)⊃ [a, b] in the manner described above.

Lemma 2.1. [11] Let f , 1 be functions integrable on [a, b0] with respect to the measure q and y0, z0 ∈ H. Then any
functions

y(t)= y0− iJ
∫ t

t0

dp1(s)y(s)− iJ
∫ t

t0

dq(s) f (s), z(t)=z0− iJ
∫ t

t0

dp2(s)z(s)− iJ
∫ t

t0

dq(s)1(s) (a ⩽ t0< b0, t0⩽ t ⩽ b0)

satisfy the following formula (analogous to the Lagrange one):∫ c2

c1

(dq(t) f (t), z(t)) −
∫ c2

c1

(y(t), dq(t)1(t)) = (iJy(c2), z(c2)) − (iJy(c1), z(c1)) +
∫ c2

c1

(y(t), dp2(t)z(t))−

−

∫ c2

c1

(dp1(t)y(t), z(t)) −
∑

t∈Sp1∩Sp2∩[c1,c2)

(
iJp1({t})y(t),p2({t})z(t)

)
−

∑
t∈Sq∩Sp2∩[c1,c2)

(
iJq({t}) f (t),p2({t})z(t)

)
−

−

∑
t∈Sp1∩Sq∩[c1,c2)

(
iJp1({t})y(t),q({t})1(t)

)
−

∑
t∈Sq∩[c1,c2)

(
iJq({t}) f (t),q({t})1(t)

)
, t0 ⩽ c1 < c2 ⩽ b0. (4)

Further we assume that measures p, m have bounded variations and p is self-adjoint, m is non-negative.
We consider equation (1), where x0 ∈ H, f is integrable with respect to the measure m on [a, b], a ⩽ t ⩽ b0.
We replace p by p0 and m by m0 in (1). Then we obtain the equation

y(t) = x0 − iJ
∫ t

a
dp0(s)y(s) − iJ

∫ t

a
dm0(s) f (s). (5)
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Equations (1), (5) have unique solutions (see [10]).
By W(t, λ) denote an operator solution of the equation

W(t, λ)x0 = x0 − iJ
∫ t

a
dp0(s)W(s, λ)x0 − iJλ

∫ t

a
dm0(s)W(s, λ)x0, (6)

where x0 ∈ H, λ ∈ C (C is the set of complex numbers). It follows from Lemma 2.1 that W∗(t, λ)JW(t, λ) = J.
The functions t→W(t, λ) and t→W−1(t, λ) = JW∗(t, λ)J are continuous with respect to the uniform operator
topology. Consequently, there exist constants ε1 > 0, ε2 > 0 such that the inequality

ε1 ∥x∥2 ⩽ ∥W(t, λ)x∥2 ⩽ ε2 ∥x∥2 (7)

holds for all x ∈ H, t ∈ [a, b0], λ ∈ C ⊂ C (C is a compact set).

Lemma 2.2. [15]. Suppose that a function f is integrable with respect to the measure m. A function y is a solution
of the equation

y(t) = x0 − iJ
∫ t

a
dp0(s)y(s) − iJλ

∫ t

a
dm0(s)y(s) − iJ

∫ t

a
dm(s) f (s), x0 ∈ H, a ⩽ t ⩽ b0,

if and only if y has the form

y(t) =W(t, λ)x0 −W(t, λ)iJ
∫ t

a
W∗(ξ, λ)dm(ξ) f (ξ).

3. Linear relations generated by the integral equation

This article substantially uses the results of [15], [16]. In this section, we provide definitions and
statements from [15], [16] that are used in this article. Moreover, in this section, we construct a system of
functions {ϑk}whose the linear span is dense in ker(L∗10 − λE) (see below). This system is different from the
system {vk} introduced in [15], [16]. In the next section, we use the system {ϑk} to find the characteristic
function M(λ).

Let m is a non-negative operator measure defined on Borel sets ∆ ⊂ [a, b] and taking values in the set of
linear bounded operators acting in the space H. The measure m is assumed to have a bounded variation

on [a, b]. We introduce the quasi-scalar product (x, y)m =

∫ b0

a
((dm)x(t), y(t)) on a set of step-like functions

with values in H defined on the segment [a, b0]. Identifying with zero functions y obeying (y, y)m = 0 and
making the completion, we arrive at the Hilbert space denoted byL2(H, dm; a, b)=H. The elements of H are
the classes of functions identified with respect to the norm

∥∥∥y
∥∥∥

m
= (y, y)1/2

m . In order not to complicate the
terminology, the class of functions with a representative y is indicated by the same symbol and we write
y ∈ H. The equality of functions in H is understood as the equality for associated equivalence classes. We
denote the scalar product in the space H by the symbols (·, ·)H or (·, ·)m. The scalar product generated by the
measure m0 is denoted by (·, ·)m0 .

Let us define a minimal relation L0 in the following way. The relation L0 consists of all pairs {ỹ, f̃0} ∈ H×H
satisfying the condition: for each pair {ỹ, f̃0} there exists a pair {y, f0} such that the pairs {ỹ, f̃0}, {y, f0} are
identical in H × H and {y, f0} satisfies equation (1) and the equalities

y(a) = y(b0) = y(α) = 0, α ∈ Sp; m({β}) f0(β) = 0, β ∈ Sm. (8)

Further, without loss of generality it can be assumed that if {y, f0} ∈ L0, then equalities (1), (8) hold for this
pair. In general, the relation L0 is not an operator since a function y can happen to be identified with zero
in H, while f is non-zero. The relation L0 is symmetric and closed. We note that if y ∈ D(L0), then y is
continuous and y(b) = 0 (see[14], [15]).

By Sp denote the closure of the set Sp. Let S0 be the set t∈ [a, b] such that y(t)=0 for all y∈D(L0). The
set S0 is closed and Sp ∪ {a} ∪ {b} ⊂ S0 (see[15]).
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Lemma 3.1. [15]. Suppose {y, f } ∈ L0. Then f (t) = 0 for m-almost all t ∈ S0.

By H0 (by H1) denote a subspace of functions that vanish on [a, b] \ S0 (on S0, respectively) with respect
to the norm in H. The subspaces H0, H1 are orthogonal and H = H0 ⊕ H1. We note that H0 = {0} if and only
if m(S0) = 0. We denote L10 = L0 ∩ (H1 × H1). It follows from Lemma 3.1 thatD(L10) ⊂ H1, R(L10) ⊂ H1 and
L0 ∩ H0 × H0 = {0, 0}. Hence,

L∗0 = (H0 × H0) ⊕ L∗10, (9)

i.e., the relation L∗0 consists of all pairs {y, f } ∈ H of the form {y, f } = {u, v} + {z, 1} = {u + z, v + 1}, where
u, v ∈ H0, {z, 1} ∈ L∗10.

Consequently, any generalized resolvent R̃λ of the relation L0 has the form R̃λ= R0λ⊕Rλ, where Rλ is some
generalized resolvent of L10 and R0λ is a generalized resolvent of the relation {0, 0}, i.e., R0λ = (TF0(λ) −λE)−1

(see (2)), TF0(λ) is the relation consisting of pairs of the form {F0(λ)z− z, λ0F0(λ)z−λ0z}. Here F0(λ) :H0→H0
is a bounded operator, ∥F0(λ)∥ ⩽ 1, z ∈ H0, the operator function λ→F0(λ) is holomorphic, Imλ · Imλ0 > 0.
Therefore, to find the characteristic function of the generalized resolvent, we consider the relation L10.

The setTp = (a, b)\S0 is open and it is the union of at most a countable number of disjoint open intervals
Jk, i.e., Tp =

⋃k1
k=1Jk and Jk ∩ J j = ∅ for k , j, where k1 is a natural number (equal to the number of

intervals if this number is finite) or the symbol∞ (if the number of intervals is infinite). By J denote the set
of these intervals Jk.

Remark 3.2. The boundaries αk, βk of any interval Jk = (αk, βk) ∈ J belong to S0. This follows from the closedness
of S0 and the continuity of functions y∈D(L0) (see [15]).

Let XA = XA(t) be an operator characteristic function of a set A, i.e., XA(t) = E if t ∈ A and XA(t) = 0 if
t < A. We will often omit the argument t in the notation XA. We denote

wk(t, λ) = X[αk,βk)W(t, λ)W−1(αk, λ), (10)

where (αk, βk) = Jk ∈ J. Then (see[15])

w∗k(t, λ)Jwk(t, λ) = J, αk ⩽ t < βk. (11)

By H10 (by H11) denote a subspace of functions that belong to H1 and vanish on Sm (on [a, b] \ Sm,
respectively) with respect to the norm in H. So, H10 (H11) consists of functions of the form X[a,b]\(S0∪Sm)h (of
the form XSm\S0 h, respectively), where h ∈ H is an arbitrary function. Therefore,

H1 = H10 ⊕ H11, H = H0 ⊕ H10 ⊕ H11.

Obviously, the space H11 is the closure in H of the linear span of functions that have the form X{τ}(·)x, where
x ∈ H, τ ∈ Sm \ S0. By (8), it follows that H11 ⊂ ker L∗10.

Let uk(·, λ, τ) :H→H1 be an operator acting by the formula

uk(t, λ, τ)x = −X[a,b]\(Sm∪S0)wk(t, λ)iJ
∫ t

a
w∗k(s, λ)dm(s)λX{τ}(s)x, (12)

where x ∈ H, τ ∈ (αk, βk) ∩ Sm, (αk, βk) = Jk ∈ J. Then (see[15]) for any x ∈ H the function

uk(·, λ, τ)x + X{τ}(·)x ∈ ker(L∗10 − λE).

Lemma 3.3. [15]. The linear span of functions of the form X[a,b]\(Sm∪S0)wk(·, λ)x0 and uk(·, λ, τ)Bτx j + X{τ}(·)Bτx j is
dense in ker(L∗10 −λE). Here x j, x0 ∈ H; τ∈ (αk, βk)∩Sm; Bτ : H→H is a bounded continuously invertible operator;
k = 1, ...,k1 if k1 is finite and k ∈N if k1 is infinite (N is the set of natural numbers).
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LetM be a set consisting of intervals J ∈ J and single-point sets {τ}, where τ ∈ Sm \ S0. The setM is
at most countable. Let k be the number of elements inM. We arrange the elements ofM in the form of a
finite or infinite sequence and denote these elements by Ek, where k is any natural number if the number of
elements inM is infinite, and 1 ⩽ k ⩽ k if the number of elements inM is finite.

To each element Ek ∈ M assign the operator function ϑk in the following way. If Ek is the interval,
Ek = Jk = (αk, βk) ∈ J, then

ϑk(t, λ) = X[αk ,βk)\Sm wk(t, λ) = X[a,b]\Sm wk(t, λ). (13)

If Ek is a single-point set, Ek = {τk}, then

ϑk(t, λ)= λ−1un(t, λ, τk) + λ−1X{τk}(t) if λ , 0 and ϑk(t, 0) = X{τk}(t) if λ = 0, (14)

where τk ∈ (Sm \ S0) ∩Jn, Jn = (αn, βn)∈J, n = 1, ...,k1 if k1 is finite and n ∈N if k1 is infinite. In case (14),
using (12), we get

ϑk(t, λ)x = −X[a,b]\(Sm∪S0)wn(t, λ)iJ
∫ t

a
w∗n(s, λ)dm(s)X{τk}(s)x + λ−1X{τk}(t)x if λ , 0 (x ∈ H). (15)

Lemma 3.4. The linear span of functions t→ϑk(t, λ)ξ j is dense in ker(L∗10 − λE). (Here ξ j ∈ H, k ∈ N if k = ∞,
and 1 ⩽ k ⩽ k if k is finite.)

Proof. The required statement follows from Lemma 3.3 immediately.

Corollary 3.5. A function f ∈ H1 belongs to the range R(L10 − λE) if and only if the equality ( f , ϑk(·, λ)ξ j)H = 0
holds for all k and all ξ j ∈ H. (Here k ∈N if k = ∞, and 1 ⩽ k ⩽ k if k is finite.)

Proof. The proof follows from the equality R(L10 − λE) ⊕ ker(L∗10 − λE) = H1 and Lemma 3.4.

Remark 3.6. In [15], [16], to each element Ek∈M was assigned the operator function vk in the following way. If Ek
is the interval, Ek =Jk = (αk, βk)∈ J, then vk(t, λ)=ϑk(t, λ)=X[a,b]\Sm wk(t, λ). If Ek is a single-point set, Ek = {τk},
then

vk(t, λ)= un(t, λ, τk)X{τk}(t)wn(τk, λ) + X{τk}(t)wn(τk, λ), (16)

where τk ∈ (Sm \S0) ∩ Jn, Jn = (αn, βn) ∈ J. The linear span of functions t → vk(t, λ)ξ j (ξ j ∈ H) is dense
in ker(L∗10− λE). There exist constants γ1k = γ1k(λ), γ2k = γ2k(λ) such that the inequality γ1k ∥vk(·, 0)x∥H ⩽
∥vk(·, λ)x∥H ⩽ γ2k ∥vk(·, 0)x∥H holds for all x ∈ H (see [15]).

Lemma 3.7. There exist constants γ1 = γ1k(λ1, λ2), γ2 = γ2k(λ1, λ2) > 0 such that the inequality

γ1k ∥ϑk(·, λ1)x∥H ⩽ ∥ϑk(·, λ2)x∥H ⩽ γ2k ∥ϑk(·, λ1)x∥H (17)

holds for all x ∈ H.

Proof. Using Lemma 2.2 and (6), we obtain

W(t, λ)x0 =W(t, 0)x0 −W(t, 0)iJ
∫ t

a
W∗(s, 0)dm0(s)λW(s, λ)x0, x0 ∈ H, (18)

W(t, 0)x0 =W(t, λ)x0 +W(t, λ)iJ
∫ t

a
W∗(ξ, λ)dm0(s)λW(s, 0)x0, x0 ∈ H. (19)

Suppose that ϑk has form (13). Using (10), (18), (19), we get

ϑk(t, λ)x0 = ϑk(t, 0)x0 − ϑk(t, 0)iJ
∫ t

αk

ϑ∗k(s, 0)dm0(s)λϑk(s, λ)x0, x0 ∈ H, (20)
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ϑk(t, 0)x0 = ϑk(t, λ)x0 + ϑk(t, λ)iJ
∫ t

αk

ϑ∗k(ξ, λ)dm0(s)λϑk(s, 0)x0, x0 ∈ H. (21)

It follows from (3), (7), (20), (21) that there exist constants γ3 > 0, γ4 > 0 such that

γ3

∥∥∥Ψ1/2
m (t)ϑk(t, 0)x

∥∥∥ ⩽ ∥∥∥Ψ1/2
m (t)ϑk(t, λ)x

∥∥∥ ⩽ γ4

∥∥∥Ψ1/2
m (t)ϑk(t, 0)x

∥∥∥
for all x ∈ H, all t ∈ [a, b0], and all λ ∈ C ⊂ C (C is a compact set). Equalities (3), (20), (21) imply (17) in the
case when ϑk has form (13).

Suppose that ϑk has form (14). Using (14), (15), (12), we get

∥ϑk(·, λ)x∥2H=
∥∥∥un(·, λ, τk)λ−1X{τk}(·)x

∥∥∥2

H
+
∥∥∥λ−1X{τk}(·)x

∥∥∥2

H
⩾
∥∥∥λ−1X{τk}(·)x

∥∥∥2

H
⩾γ5

∥∥∥X{τk}(·)x
∥∥∥2

H
, γ5=γ5(λ)>0. (22)

On the other hand, using (12), we obtain

∥ϑk(·, λ)x∥H⩽
∥∥∥un(·, λ, τk)λ−1X{τk}(·)x

∥∥∥
H
+

∥∥∥λ−1X{τk}(·)x
∥∥∥
H
⩽ γ6

∥∥∥X{τk}(·)x
∥∥∥
H
, γ6 = γ6(λ) > 0, (23)

for all x ∈ H, all t ∈ [a, b0], and all λ , 0. Inequalities (22), (23) imply (17) in the case when ϑk has form (14).
The lemma is proved.

Lemma 3.8. There exist constants δ1k = δ1k(λ), δ2k = δ2k(λ) > 0 such that the inequality

δ1k ∥ϑk(·, λ)x∥H ⩽ ∥vk(·, λ)x∥H ⩽ δ2k ∥ϑk(·, λ)x∥H (24)

holds for all x ∈ H.

Proof. According to Remark 3.6, vk = ϑk if Ek is the interval, Ek = Jk = (αk, βk) ∈ J. Obviously, inequality
(24) holds in this case. Suppose that vk, ϑk have form (16), (14), respectively. Using (16), (12), (7), (10), we
obtain

∥vk(·, λ)x∥2H =
∥∥∥un(·, λ, τk)X{τk}(·)wn(τk, λ)x

∥∥∥2

H
+
∥∥∥X{τk}(·)wn(τk, λ)x

∥∥∥2

H
⩾ δ3k

∥∥∥X{τk}(·)x
∥∥∥2

H
, δ3k = δ3k(λ) > 0. (25)

On the other hand, using (12), we get

∥vk(·, λ)x∥H⩽
∥∥∥un(·, λ, τk)X{τk}(·)wn(τk, λ)x

∥∥∥
H
+

∥∥∥X{τk}(·)wn(τk, λ)x
∥∥∥
H
⩽ δ4k

∥∥∥X{τk}(·)x
∥∥∥
H
, δ4k=δ4k(λ) >0, (26)

for all x ∈ H. Inequalities (25), (26), and (22), (23) imply (24) in the case when vk, ϑk have form (16), (14),
respectively. The lemma is proved.

We fix some point λ0∈C and by Qk,0 denote a set x ∈ H such that the functions t→ϑk(t, λ0)x are identical
with zero in H. We put Qk = H ⊖Qk,0. On the linear space Qk we introduce a norm ∥·∥− by the equality

∥ξk∥− = ∥ϑk(·, λ0)ξk∥H , ξk ∈ Qk. (27)

By Q−k denote the completion of Qk with respect to norm (27). Using (7), (13), (14), we get the inequality
∥ξk∥− ⩽ γ ∥ξk∥, where γ > 0. Hence the space Q−k can be treated as a space with a negative norm with
respect to Qk ([4, ch. 1], [18, ch.2]). By Q+k denote the associated space with a positive norm. The definition
of spaces with positive and negative norms implies that Q+k ⊂ Qk ⊂ Q−k . By (·, ·)+ and ∥·∥+ we denote the
scalar product and the norm in Q+k , respectively.

Remark 3.9. It follows from Remark 3.6, Lemmas 3.7, 3.8 that the set Qk,0 will not change if the function ϑk(·, λ0)
is replaced by ϑk(·, λ) or by vk(·, λ) in the definition of Qk,0. Moreover, with such replacement, the space Q−k will not
change in the following sense: the set Q−k will not change, and the norm in it will be replaced by the equivalent one.
The similar statement holds for the space Q+k .



V. M. Bruk / Filomat 37:23 (2023), 7699–7718 7706

Suppose that a sequence {xkn}, xkn ∈ Qk, converges in the space Q−k to x0 ∈ Q−k as n→∞. Then the
sequence {ϑk(·, λ)xkn} is fundamental in H1. Therefore this sequence converges to some element in H1. By
ϑk(·, λ)x0 we denote this element.

Let Q̃−N=Q−1× ...×Q−N (Q̃+N=Q+1× ...×Q+N) be the Cartesian product of the first N sets Q−k (Q+k , respectively)
and let VN(t, λ)= (ϑ1(t, λ), ..., ϑN(t, λ)) be the operator one-row matrix. It is convenient to treat elements from
Q̃−N as one-column matrices, and to assume that VN(t, λ)ξ̃N=

∑N
k=1 ϑk(t, λ)ξk, where ξ̃N = col(ξ1, ..., ξN) ∈ Q̃−N,

ξk ∈ Q−k . Let kerk(λ) be a linear space of functions t→ϑk(t, λ)ξk, ξk ∈ Q−k . The space kerk(λ) is closed in H.
We denote KN(λ) = ker1(λ)+̇...+̇kerN(λ). Obviously, KN1 (λ) ⊂ KN2 (λ) for N1 < N2. By VN(λ) denote the
operator ξ̃N→VN(·, λ)ξ̃N, where ξ̃N ∈Q̃−N. The operator VN(λ) maps continuously and one-to-one Q̃−N onto
KN(λ) ⊂ H1 ⊂ H.

Let Q−, Q+, Q be linear spaces of sequences, respectively, η̃ = {ηk}, φ̃ = {φk}, ξ̃ = {ξk}, where ηk ∈ Q−k ,
φk ∈ Q+k , ξk ∈ Qk; k ∈N if k = ∞, and 1 ⩽ k ⩽ k if k is finite; k is the number of elements inM. We assume

that the series
∑
∞

k=1

∥∥∥ηk

∥∥∥2

−
,
∑
∞

k=1

∥∥∥φk

∥∥∥2

+
,
∑
∞

k=1 ∥ξk∥
2 converge if k = ∞. These spaces become Hilbert spaces if

we introduce the scalar products by the formulas

(η̃, ζ̃)−=
k∑

k=1

(ηk, ζk)−, η̃, ζ̃ ∈ Q−; (φ̃, ψ̃)+=
k∑

k=1

(φk, ψk)+, φ̃, ψ̃ ∈ Q+; (ξ̃, σ̃) =
k∑

k=1

(ξk, σk), ξ̃, σ̃ ∈ Q .

The spaces Q+,Q−can be treated as spaces with positive and negative norms with respect to Q ([4, ch. 1],
[18, ch.2]). So, Q+ ⊂ Q ⊂ Q− and γ1

∥∥∥φ̃∥∥∥
−
⩽

∥∥∥φ̃∥∥∥⩽ γ2

∥∥∥φ̃∥∥∥
+

, where φ̃ ∈ Q+, γ1, γ2 > 0. The ”scalar product”
(η̃, φ̃) is defined for all φ̃ ∈ Q+, η̃ ∈ Q−. If η̃ ∈ Q, then (η̃, φ̃) coincides with the scalar product in Q.

LetM ⊂ Q− be a set of sequences vanishing starting from a certain number (its own for each sequence).
The set M is dense in the space Q−. The operator VN(λ) is the restriction of VN+1(λ) to Q̃−N. By V′(λ)
denote an operator in M such that V′(λ)η̃ = VN(λ)η̃N for all N ∈ N, where η̃ = (η̃N, 0, ...), η̃N ∈ Q̃−N. The
operator V′(λ) admits an extension by continuity to the space Q−. By V(λ) denote the extended operator.
This operator maps continuously and one-to-one Q− onto ker(L∗10 − λE) ⊂ H1 ⊂ H. Moreover, we denote
Ṽ(t, λ)η̃ = (V(λ)η̃)(t), where η̃ = {ηk} ∈ Q−.

Remark 3.10. The operator V(λ) is constructed by the functions ϑk (13), (14) in the same way that an operator
V(λ) is constructed by the functions vk in [15] (see Remark 3.6). The operatorsV(λ), V(λ) have the same properties
formulated in Lemma 3.11.

Lemma 3.11. The operator V(λ) maps Q− onto ker(L∗10 − λE) continuously and one to one. A function z belongs to
ker(L∗10 − λE) if and only if there exists an element η̃= {ηk} ∈Q− such that z(t)= (V(λ)η̃)(t)= Ṽ(t, λ)η̃. The adjoint
operator V∗(λ) maps H onto Q+ continuously, and acts by the formula

V∗(λ) f =
∫ b0

a
Ṽ∗(t, λ)dm(t) f (t), (28)

and ker V∗(λ)=H0 ⊕ R(L10 − λE). Moreover, V∗(λ) maps ker(L∗10 − λE) onto Q+ one to one.

Proof. The proof repeats verbatim the corresponding proof from [15] with the change ofV(λ) to V(λ).

4. The description of generalized resolvents

Following Theorems 4.1 and 4.2 are proved in [15] for functions vk (see Remark 3.6). For functions ϑk
(13), (14), the proof is the same. We have changed some designations from [15] to shorten the record.
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Theorem 4.1. A pair {ỹ, f̃ } ∈ H × H belongs to L∗0 − λE if and only if there exist a pair {ŷ, f̂ } ∈ H × H, functions
y0, y′0 ∈ H0, y, f ∈ H1 and an element η̃ ∈ Q− such that the pairs {ỹ, f̃ }, {ŷ, f̂ } are identical inH×H and the equalities

ŷ = y0 + y, f̂ = y′0 + f ,

y(t)= Ṽ(t, λ)η̃ −
k1∑

k=1

X[αk ,βk)\Sm wk(t, λ)iJ
∫ t

αk

w∗k(s, λ)dm(s) f (s) (29)

hold, where the series in (29) converges in H1, k1 is the number of intervals Jk ∈ J.

Theorem 4.2. Let T(λ) be a linear relation such that L10 − λE⊂T(λ) ⊂ L∗10 − λE and λ , 0. The relation T(λ) is
continuously invertible in the space H1 if and only if there exists a bounded operator M(λ) :Q+→Q− such that the
following equality holds for any pair {y, f } ∈ T(λ) and for any λ

y(t) = y(t, λ) =
∫ b

a
Ṽ(t, λ)M(λ)Ṽ∗(s, λ)dm(s) f (s)+

+ 2−1
k1∑

k=1

∫ b

a
X[αk ,βk)\Sm (t)wk(t, λ)sgn(s − t)iJw∗k(s, λ)dm(s)X[αk,βk)\Sm (s) f (s) − λ−1

k1∑
k=1

XSm∩(αk,βk)(t) f (t).

(30)

Lemma 4.3. In Theorem 4.2, the function λ→T−1(λ) f is holomorphic for any f ∈ H1 at a point λ1 (λ1 , 0) if and
only if the function λ→M(λ)x̃ is holomorphic for any element x̃ ∈ Q+ at the same point λ1.

Proof. First we assume that the function λ→M(λ)x̃ is holomorphic. Then all functions on the right side of
equality (30) are holomorphic. Consequently, the function y =T−1(λ) f is holomorphic for any f ∈ H1.

Now suppose that y = T−1(λ) f is a holomorphic function for any f ∈ H1. Let us prove that the
function λ→M(λ)x̃ is holomorphic for any x̃ ∈ Q+. We use the notation from Theorem 4.2. Moreover,
we denote S(λ) = M(λ)V∗(λ). According to Lemma 3.11, V∗(λ) f is defined by equality (28). It follows
from the holomorphicity of the function λ→T−1(λ) that the function λ→V(λ)S(λ) f is holomorphic. Using
Lemma 3.11, we obtain that the function λ→S(λ) f is holomorphic. Now the holomorphicity of the function
λ→M(λ) follows from Lemma 4.4 that is formulated after the proof of this lemma. In Lemma 4.4 it should
be taken that B1 = H1, B2 = Q+, B3 = Q−, T1(λ) = V∗(λ), T2(λ) = M(λ), T3(λ) = S(λ). The lemma is
proved.

Lemma 4.4. [8]. Let B1, B2, B3 be Banach spaces. Suppose bounded operators T3(λ) :B1→B3, T1(λ) :B1→B2,
T2(λ) :B2→B3 satisfy the equality T3(λ) = T2(λ)T1(λ) for every fixed λ belonging to some neighborhood of a point
λ1 and suppose the range of operator T1(λ1) coincides withB2. If the functions T1(λ), T3(λ) are strongly differentiable
at the point λ1, then the function T2(λ) is are strongly differentiable at λ1.

It follows from Lemma 3.11 that for any element x̃ ∈ Q+ there exists a function f ∈ H1 such that
V∗(λ) f = x̃. We denote

z(t) = z(t, f , λ) = Ṽ(t, λ)M(λ)x̃ −
k1∑

n=1

2−1X[αn,βn)\Sm (t)wn(t, λ)iJ
∫ βn

αn

w∗n(s, λ)dm0(s) f (s), (31)

where x̃ = V∗(λ) f . It follows from Lemmas 3.4, 3.11 that z ∈ ker(L∗10 − λE).

Theorem 4.5. Suppose that the relation T(λ) satisfy the conditions of Theorem 4.2, and T(λ) is continuously
invertible, and R(λ) = T−1(λ), and Imλ,0. Then the equality

(Imλ)−1Im(M(λ)x̃, x̃ ) − (z, z)m = (Imλ)−1Im(R(λ) f , f )m − (R(λ) f ,R(λ) f )m (32)

holds for all f ∈ H1 and x̃ = V∗(λ) f ∈ Q+.



V. M. Bruk / Filomat 37:23 (2023), 7699–7718 7708

Proof. Using (30), we get

y(t) = (R(λ) f )(t) = Ṽ(t, λ)M(λ)
∫ b

a
Ṽ∗(s, λ)dm(s) f (s)+

+

k1∑
n=1

(
−2−1X[αn,βn)\Sm (t)wn(t, λ)iJ

∫ t

αn

w∗n(s, λ)dm0(s) f (s)+2−1X[αn,βn)\Sm (t)wn(t, λ)iJ
∫ βn

t
w∗n(s, λ)dm0(s) f (s)

)
−

− λ−1
k1∑

n=1

XSm∩(αn,βn)(t) f (t). (33)

By standard transformations, equality (33) is reduced to the form

y(t)= Ṽ(t, λ)M(λ)
∫ b

a
Ṽ∗(s, λ)dm(s) f (s) −

k1∑
n=1

X[αn,βn)\Sm (t)wn(t, λ)iJ
∫ t

αn

w∗n(s, λ)dm0(s) f (s)+

+

k1∑
n=1

2−1X[αn,βn)\Sm (t)wn(t, λ)iJ
∫ βn

αn

w∗n(s, λ)dm0(s) f (s) − λ−1
k1∑

n=1

XSm∩(αn,βn)(t) f (t). (34)

We fix an interval (αn, βn) ∈ J and denote fn = X[αn,βn) f . LetMn ⊂ M be a set consisting of the interval
(αn, βn) ∈ J and single-point sets {τ}, where τ ∈ Sm∩(αn, βn). Suppose k̃n is a natural number equal to the
number of elements inMn if this number is finite or k̃n is the symbol∞ if the number of elements inMn is
infinite.

We arrange the elements ofMn in the form of a finite or infinite sequence and denote these elements by
Enk, where k is any natural number if the number of elements inMn is infinite, and 1 ⩽ k ⩽ k̃n if the number
of elements inMn is finite; En1 is the interval (αn, βn), Enk (k ⩾ 2) is the single-point set {τk}, τk ∈ Sm∩ (αn, βn).

To each element Enk ∈Mn assign the operator function ϑnk in the following way (see also (10), (13), (14)).
If k = 1, then

ϑn1(t, λ) = X[a,b]\Sm wn(t, λ) = X[αn,βn)\Sm wn(t, λ), wn(t, λ) = X[αn,βn)W(t, λ)W−1(αn, λ); (35)

if k ⩾ 2, then

ϑnk(t, λ)=λ−1un(t, λ, τk) + λ−1X{τk}(t) = −X[αn,βn)\Sm wn(t, λ)iJ
∫ t

αn

w∗n(s, λ)dm(s)X{τk}(s) + λ−1X{τk}(t) =

=


0 for t < τk,

λ−1X{τk}(t) for t = τk,

−X[αn,βn)\Sm wn(t, λ)iJw∗n(τk, λ)m({τk}) for t >τk.

(36)

Using (35), (36), we get

ϑ∗n1(t, λ) = X[αn,βn)\Smw∗n(t, λ); ϑ∗nk(t, λ) =


0 for t < τk,

λ−1X{τk}(t) for t = τk,

m({τk})wn(τk, λ)iJX(τk ,b]X[αn,βn)\Sm w∗n(t, λ) for t > τk.

We denote V∗(λ) fn = x̃n and

xn1 =

∫ βn

αn

ϑ∗n1(s, λ)dm(s) fn(s) =
∫ βn

αn

w∗n(s, λ)dm0(s) fn(s), (37)

xnk =

∫ βn

αn

ϑ∗nk(s, λ)dm(s) fn(s) =

= λ−1
∫
{τk}

dm(s)X{τk}(s) f (τk) +m({τk})wn(τk, λ)iJ
∫ b

τk

w∗n(s, λ)dm0(s) fn(s), k ⩾ 2. (38)
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It follows from (28) and Lemma 3.11 that x̃n ∈ Q+ ⊂ Q ⊂ Q− is a sequence x̃n = {x j} with elements xn1, xnk
and zeros. Suppose p j :Q−→Q−j is an operator defined by the formula p jη̃ = η j, where η̃= {η j} ∈ Q−. Let
x jn1 = xn1, x jnk = xnk. Then by p jn1 (by p jnk for k ⩾ 2) we denote the operator such that

p jn1 η̃ = ηn1 (p jnk η̃ = ηnk for k ⩾ 2, respectively). (39)

Hence p jn1 x̃n = xn1 and p jnk x̃n = xnk for k ⩾ 2. Let µn1 = p jn1 M(λ)x̃n and µnk = p jnk M(λ)x̃n for k ⩾ 2. So,

(M(λ)x̃n, x̃n) =
∑k̃n

k=1(µnk, xnk).
Let yn = R(λ) fn. It follows from (34) that the equality

yn(t)= Ṽ(t, λ)M(λ)x̃n − X[αn,βn)\Sm (t)wn(t, λ)iJ
∫ t

αn

w∗n(s, λ)dm0(s) fn(s)+

+ 2−1X[αn,βn)\Sm (t)wn(t, λ)iJ
∫ βn

αn

w∗n(s, λ)dm0(s) fn(s) − λ−1XSm∩(αn,βn)(t) fn(t) (40)

holds. Using (35), (36), (40), and the equality

Ṽ(t, λ)M(λ)x̃n = X[a,b]\(S0∪[αn,βn))(t)Ṽ(t, λ)M(λ)x̃n + X[αn,βn)(t)Ṽ(t, λ)M(λ)x̃n, (41)

we get

yn(t) = X[a,b]\(S0∪[αn,βn))(t)Ṽ(t, λ)M(λ)x̃n + X[αn,βn)\Sm (t)wn(t, λ)µn1+

+

k̃n∑
k=2

(
−X[αn,βn)\Sm wn(t, λ)iJ

∫ t

αn

w∗n(s, λ)dm(s)X{τk}(s)µnk + λ
−1X{τk}(t)µnk

)
−

− X[αn,βn)\Sm (t)wn(t, λ)iJ
∫ t

αn

w∗n(s, λ)dm0(s) fn(s) + 2−1X[αn,βn)\Sm (t)wn(t, λ)iJxn1 −

k̃n∑
k=2

λ−1X{τk}(t) fn(t), (42)

where τk ∈ Sm ∩ (αn, βn). We denote

zn(t) = Ṽ(t, λ)M(λ)x̃n − 2−1X[αn,βn)\Sm (t)wn(t, λ)iJ
∫ βn

αn

w∗n(s, λ)dm0(s) fn(s).

By (31), so that z(t) =
∑k1

n=1 zn(t). It follows from (37), (41) that

zn(t) = X[a,b]\(S0∪[αn,βn))(t)Ṽ(t, λ)M(λ)x̃n + X[αn,βn)\Sm wn(t, λ)µn1+

+

k̃n∑
k=2

(
−X[αn,βn)\Sm wn(t, λ)iJ

∫ t

αn

w∗n(s, λ)dm(s)X{τk}(s)µnk+ λ
−1X{τk}(t)µnk

)
−2−1X[αn,βn)\Sm (t)wn(t, λ)iJxn1, (43)

where τk ∈ Sm ∩ (αn, βn). We note that zn ∈ ker(L∗10 − λE).
Using (42), (43), we obtain

yn(t)− zn(t)=−X[αn,βn)\Sm (t)wn(t, λ)iJ
∫ t

αn

w∗n(s, λ)dm0(s) fn(s)+X[αn,βn)\Sm (t)wn(t, λ)iJxn1−

k̃n∑
k=2

λ−1X{τk}(t) fn(t);

yn(t) + zn(t) = 2X[a,b]\(S0∪[αn,βn))(t)Ṽ(t, λ)M(λ)x̃n + 2X[αn,βn)\Sm wn(t, λ)µn1+

+ 2
k̃n∑
k=2

(
−X[αn,βn)\Sm wn(t, λ)iJ

∫ t

αn

w∗n(s, λ)dm(s)X{τk}∩(αn,βn)(s)µnk + λ
−1X{τk}∩(αn,βn)(t)µnk

)
−

− X[αn,βn)\Sm (t)wn(t, λ)iJ
∫ t

αn

w∗n(s, λ)dm0(s) fn(s) −
k̃n∑
k=2

λ−1X{τk}∩(αn,βn)(t) fn(t).
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We decompose the functions yn − zn, yn + zn into terms to which Lagrange formula (4) is applicable. Let
us introduce the following designations:

φ1(t) = −X[αn,βn)\Sm (t)wn(t, λ)iJ
∫ t

αn

w∗n(s, λ)dm0(s) fn(s) + X[αn,βn)\Sm (t)wn(t, λ)iJxn1;

φ2(t) = −
k̃n∑
k=2

λ−1X{τk}∩(αn,βn )(t) fn(t); (44)

ψ1(t) = 2X[αn,βn)\Sm (t)wn(t, λ)µn1 − X[αn,βn)\Sm (t)wn(t, λ)iJ
∫ t

αn

w∗n(s, λ)dm0(s) fn(s);

ψ2(t) = 2λ−1
k̃n∑
k=2

X{τk}∩(αn,βn)(t)µnk − λ
−1
k̃n∑
k=2

X{τk}∩(αn,βn)(t) fn(τk); (45)

ψ3(t) = −2
k̃n∑
k=2

X[αn,βn)\Sm wn(t, λ)iJ
∫ t

αn

w∗n(s, λ)dm(s)X{τk}∩(αn,βn)(s)µnk =

k̃n∑
k=2

ψ3k(t),

where

ψ3k(t)=−2X[αn,βn)\Sm wn(t, λ)iJ
∫ t

αn

w∗n(s, λ)dm(s)X{τk}(s)µnk=

0 for t ⩽ τk,

−2X[αn,βn)\Smwn(t, λ)iJw∗n(τk, λ)m({τk})µnk for t>τk.

Then

yn − zn = φ1 + φ2, yn + zn = ψ1 + ψ2 + ψ3 + 2X[a,b]\(S0∪[αn,βn))(t)Ṽ(t, λ)M(λ)x̃n. (46)

Since zn ∈ ker(L∗10 − λE), {yn, fn} ∈ L∗10 − λE, it follows that {yn − zn, fn} ∈ L∗10 − λE, {yn + zn, fn} ∈ L∗10 − λE.
Theorem 4.1 implies that {φ1,X[αn,βn)\Sm fn} ∈ L∗10−λE, {ψ1,X[αn,βn)\Sm fn} ∈ L∗10−λE. By (8), so thatφ2 ∈ ker L∗10,
ψ2 ∈ ker L∗10. Therefore,

{yn − zn, λ(yn − zn) + fn} ∈ L∗10, {yn + zn, λ(yn + zn) + fn} ∈ L∗10,

{φ1, λφ1 + X[αn,βn)\Sm fn} ∈ L∗10, {ψ1, λψ1 + X[αn,βn)\Sm fn} ∈ L∗10.

We denote

u− = λ(yn − zn) + fn, u+ = λ(yn + zn) + fn. (47)

Then {yn−zn,u−} ∈ L∗10, {yn+zn,u+}∈L∗10. Moreover, (λφ1+X[αn,βn)\Sm fn, ψ2)m = 0, (φ2, λψ1+X[αn,βn)\Sm fn)m=0.
We note that for all functions 1, h ∈ H the equalities

(X[a,b]\Sm1,XSm h)m=0; (X[a,b]\Sm1, h)m= (X[a,b]\Sm1,X[a,b]\Sm h)m= (1, h)m0 ; (XSm
1, h)m = (XSm1,XSm h)m

hold. Moreover,

(X[a,b]\(S0∪[αn,βn))Ṽ(·, λ)M(λ)x̃n, yn − zn)m = 0, (X[a,b]\(S0∪[αn,βn))Ṽ(·, λ)M(λ)x̃n, fn)m = 0.

Therefore by (46), (47), we get

(u−, yn + zn)m − (yn − zn,u+)m= (λ(φ1 + φ2) + fn, ψ1 + ψ2 + ψ3)m− (φ1 + φ2, λ(ψ1 + ψ2 + ψ3) + fn)m=

= (λφ1, ψ1)m0 + ( fn, ψ1)m0 + (λφ2, ψ2)m + ( fn, ψ2)m + (λφ1, ψ3)m0 + ( fn, ψ3)m0−

− (φ1, λψ1)m0 − (φ1, λψ3)m0 − (φ1, fn)m0 − (φ2, λψ2)m − (φ2, fn)m. (48)
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It follows from (44), (45) that

(λφ2, ψ2)m=

k̃n∑
k=2

(−X{τk}∩(αn,βn) fn(τk), λ−1X{τk}∩(αn,βn)(2µnk − fn(τk)))m; (49)

( fn, ψ2)m=

k̃n∑
k=2

(X{τk}∩(αn,βn) fn(τk), λ−1X{τk}∩(αn,βn)(2µnk − fn(τk)))m; (50)

−(φ2, λψ2)m =

k̃n∑
k=2

(λ−1X{τk}∩(αn,βn) fn(τk),X{τk}∩(αn,βn)(2µnk − fn(τk)))m; (51)

−(φ2, fn)m =

k̃n∑
k=2

(λ−1X{τk}∩(αn,βn) fn(τk),X{τk}∩(αn,βn) fn(τk)))m. (52)

Summing (49), (50), (51), (52), we get

((λφ2, ψ2)m + ( fn, ψ2)m − (φ2, λψ2)m − (φ2, fn)m =

= 2
k̃n∑
k=2

(λ−1X{τk} fn(τk),X{τk}µnk)m = 2
k̃n∑
k=2

(λ−1 fn(τk),m({τk})µnk), τk ∈ (αn, βn). (53)

Taking into account (53), we continue equality (48)

(u−, y + z)m − (y − z,u+)m = [(λφ1 + fn, ψ1)m0 − (φ1, λψ1 + fn)m0 ] + [(λφ1 + fn, ψ3)m0 − (φ1, λψ3)m0 ]+

+ 2
k̃2∑

k=2

(λ−1 fn(τk),m({τk})µnk), τk ∈ (αn, βn). (54)

We denote

φ̃1(t) = wn(t, λ)iJxn1 − wn(t, λ)iJ
∫ t

αn

w∗n(s, λ)dm0(s) fn(s); (55)

ψ̃1(t) = 2wn(t, λ)µn1 − wn(t, λ)iJ
∫ t

αn

w∗n(s, λ)dm0(s) fn(s); (56)

ψ̃3k(t) =

0 for t < τk,

−2wn(t, λ)iJw∗n(τk, λ)m({τk})µnk for t ⩾ τk
; ψ̃3(t) =

k̃n∑
k=2

ψ̃3k(t),

where τk ∈ Sm ∩ (αn, βn). Then

φ̃1(t)−φ1(t)=X[αn,βn)∩Sm (t)φ̃1(t), ψ̃1(t)−ψ1(t)=X[αn,βn)∩Sm (t)ψ̃1(t), ψ̃3k(t)−ψ3k(t)=X{τk}(t)ψ̃3k(t).

This implies that

(φ1, ψ1)m0 = (φ̃1, ψ̃1)m0 , (φ1, fn)m0 = (φ̃1, fn)m0 , ( fn, ψ1)m0 = ( fn, ψ̃1)m0 , (φ1, ψ3k)m0 = (φ̃1, ψ̃3k)m0 . (57)

By (37), it follows that limt→βn−0 φ̃1(t) = φ̃1(βn) = 0. Using (57), we continue equality (54)

(u−, yn + zn)m − (yn − zn,u+)m = [(λφ̃1 + fn, ψ̃1)m0 − (φ̃1, λψ̃1 + fn)m0 ]+

+

k̃n∑
k=2

[(λφ̃1 + fn, ψ̃3k)m0 − (φ̃1, λψ̃3k)m0 ] + 2λ−1
k̃n∑
k=2

( fn(τk),m({τk}µnk), τk ∈ Sm∩(αn,βn). (58)
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Let us transform the formula (λφ̃1+ fn, ψ̃1)m0 − (φ̃1, λψ̃1+ fn)m0 . It follows from Lemma 2.2 and equalities
(55), (56) that

φ̃1(t) = iJxn1 − iJ
∫ t

αn

dp0(s)φ̃1(s) − iJλ
∫ t

αn

dm0(s)φ̃1(s) − iJ
∫ t

αn

dm0(s) fn(s), (59)

ψ̃1(t) = 2µn1 − iJ
∫ t

αn

dp0(s)ψ̃1(s) − iJλ
∫ t

αn

dm0(s)ψ̃1(s) − iJ
∫ t

αn

dm0(s) fn(s). (60)

We denote Φ̃1 = λφ̃1 + fn, Ψ̃1 = λψ̃1 + fn. Then

(λφ̃1 + fn, ψ̃1)m0 − (φ̃1, λψ̃1 + fn)m0 = (Φ̃1, ψ̃1)m0 − (φ̃1, Ψ̃1)m0 .

Using (59), (60), we obtain that the pairs {φ̃1, Φ̃1}, {ψ̃1, Ψ̃1} satisfy equations (61), (62), respectively (see
below)

φ̃1(t) = iJxn1 − iJ
∫ t

αn

dp0(s)φ̃1(s) − iJ
∫ t

αn

dm0(s)Φ̃1(s), (61)

ψ̃1(t) = 2µn1 − iJ
∫ t

αn

dp0(s)ψ̃1(s) − iJ
∫ t

αn

dm0(s)Ψ̃1(s). (62)

Therefore we can apply Lagrange formula (4) to the functions φ̃1, Φ̃1, ψ̃1, Ψ̃1 for c1 = αn, c2 = βn, q = m0,
p1 = p2 = p0. Using (4) and the equality limt→βn−0 φ̃1(t) = φ̃1(βn) = 0, we get

(λφ̃1 + fn, ψ̃1)m0 − (φ̃1, λψ̃1 + fn)m0 =

∫ βn

αn

(dm0(t)Φ̃1(t), ψ̃1(t)) −
∫ βn

αn

(dm0(t)φ̃1(t), Ψ̃1(t)) =

= (iJφ̃1(βn), ψ̃1(βn)) − (iJφ̃1(αn), ψ̃1(αn)) = −(iJiJxn1, 2µn1) = 2(xn1, µn1). (63)

Now let us transform the formula (λφ̃1 + fn, ψ̃3k)m0 − (φ̃1, λψ̃3k)m0 . For this we denote

ψ̃4k(t) = −2−1ψ̃3k(t) =

0 for t < τk,

wn(t, λ)iJw∗n(τk, λ)m({τk})µnk for t ⩾ τk,
(64)

where τk ∈ Sm ∩ (αn, βn). It follows from Lemma 2.2, equalities (55), (64), and (10), (11) that the equality

ψ̃4k(t) = iJm({τk})µnk − iJ
∫ t

τk

dp0(s)ψ̃4k(s) − iJλ
∫ t

τk

dm0(s)ψ̃4k(s)

holds. We denote Ψ̃4k = λψ̃4k. Then the pair {ψ̃4k, Ψ̃4k} satisfies the equation

ψ̃4k(t) = iJm({τk})µnk − iJ
∫ t

τk

dp0(s)ψ̃4k(s) − iJ
∫ t

τk

dm0(s)Ψ̃4k(s).

We can apply Lagrange formula (4) to the functions φ̃1, Φ̃1, ψ̃4k, Ψ̃4k for c1 = τk, c2 = βn, q = m0, p1 = p2 = p0.
We first note that equalities (55), (37) imply

φ̃1(τk) = −wn(τk, λ)iJ
∫ τk

αn

w∗n(s, λ)dm0(s) fn(s)+

+ wn(τk, λ)iJ
∫ βn

αn

w∗n(s, λ)dm0(s) fn(s) = wn(τk, λ)iJ
∫ βn

τk

w∗n(s, λ)dm0(s) fn(s).
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Now using (4) and the equality limt→βn−0 φ̃1(t) = φ̃1(βn) = 0, we get

(λφ̃1 + fn, ψ̃3k)m0 − (φ̃1, λψ̃3k)m0 = −2[(Φ̃1, ψ̃4k)m0 − (φ̃1, Ψ̃4k)m0 ] =

=−2
[∫ βn

τk

(dm0(t)Φ̃1(t), ψ̃4k(t))−
∫ βn

τk

(dm0(t)φ̃1(t), Ψ̃4k(t))
]
=−2[(iJφ̃1(βn), ψ̃4k(βn)) − (iJφ̃1(τk), ψ̃4k(τk))]=

=−2[−iJwn(τk, λ)iJ
∫ βn

τk

w∗n(s, λ)dm0(s) fn(s), iJm({τk})µnk)] =

= 2(wn(τk, λ)iJ
∫ βn

τk

w∗n(s, λ)dm0(s) fn(s),m({τk})µnk). (65)

Using (37), (38), (63), (65), and the equality m({τk}) = m∗({τk}), we continue equality (58):

(u−, yn + zn)m − (yn − zn,u+)m = 2(xn1, µn1)+

+ 2
k̃n∑
k=2

(
(λ−1 fn(τk),m({τk}µnk)+(wn(τk, λ)iJ

∫ βn

τk

w∗n(s, λ)dm0(s) fn(s),m({τk}µnk)
)
=2(x̃n,M(λ)x̃n). (66)

On the other hand, using (47), we get

( fn, yn + zn)H − (yn − zn, fn)H = (u− − λ(yn − zn), yn + zn)H − (yn − zn,u+ − λ(yn + zn))H =
= (u−, yn + zn)H − (yn − zn,u+)H − (λyn, yn)H + (λzn, yn)H − (λyn, zn)H+

+ (λzn, zn)H + (yn, λyn)H − (zn, λyn)H + (yn, λzn)H − (zn, λzn)H. (67)

Combining (66) and (67), we obtain

( fn, yn + zn)H − (yn − zn, fn)H = 2(x̃n,M(λ)x̃n) − (λyn, yn)H + (λzn, yn)H−
− (λyn, zn)H + (λzn, zn)H + (yn, λyn)H − (zn, λyn)H + (yn, λzn)H − (zn, λzn)H.

This implies

Im( fn, yn)H = Im(x̃n,M(λ)x̃n ) − (Imλ)[(yn, yn)H − (zn, zn)H]. (68)

Using (68), we get

Im( f , y)H = Im(x̃,M(λ)x̃ ) − (Imλ)[(y, y)H − (z, z)H].

Since y = R(λ) f , we obtain

Im(M(λ)x̃, x̃ ) − (Imλ)(z, z)m = (R(λ) f , f )m − (Imλ)(R(λ) f ,R(λ) f )m. (69)

Equality (69) implies (32). The theorem is proved.

Corollary 4.6. If

(Imλ)−1Im(R(λ) f , f )m − (R(λ) f ,R(λ) f )m ⩾ 0 (70)

for all f ∈ H, then

(Imλ)−1Im(M(λ)x̃, x̃ ) ⩾ 0 (71)

for all x̃ ∈ Q+.
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Theorem 4.7. Let R(λ) (Imλ , 0) be a generalized resolvent of the relation L10 and y = R(λ) f . Then y has the form
(30), where M(λ) :Q+→Q− is the bounded operator such that M(λ)=M∗(λ), Imλ , 0. The function λ→M(λ)x̃ is
holomorphic for every x̃ ∈ Q+ on the half-planes Imλ , 0 and inequality (71) holds for every λ (Imλ , 0) and for
every x̃ ∈ Q+.

Proof. Equality (30) follows from (2) and Theorem 4.2. The equality R∗(λ) = R(λ) implies M(λ) = M∗(λ).
The generalized resolvent is holomorphic. Then it follows from Lemma 4.3 that the function M(λ) is
holomorphic. Inequality (70) holds for the generalized resolvent R(λ) (see, for example, [17]). Using
Corollary 4.6, we obtain that inequality (71) holds for the function M(λ). The theorem is proved.

Theorem 4.8. Suppose that the relation T(λ) satisfies the conditions of Theorem 4.2, and T(λ) is continuously
invertible, and R(λ) = T−1(λ), and M(λ) is the operator from Theorem 4.2. Assume that the function λ→M(λ) is
holomorphic on the half-planes Imλ , 0 and M(λ) = M∗(λ). Then the function λ→R(λ) is a generalized resolvent
of the relation L10 if and only if the inequality

(Imλ)−1ImM(λ)−

−

M∗(λ)V∗(λ) + 2−1i
k1∑

n=1

p∗jn1
JX[αn,βn)\Sm w∗n(·, λ)


V(λ)M(λ) − 2−1i

k1∑
n=1

X[αn,βn)\Sm wn(·, λ)Jp jn1

 ⩾ 0 (72)

holds, i.e., the operator on the left side of inequality (72) is non-negative.

Proof. ByA denote the operator on the left side (72). Then (A x̃, x̃ ) = (Imλ)−1Im(M(λ)x̃, x̃ ) − (z, z)m, where
x̃ = V∗(λ) f ∈ Q+ ⊂ Q−, f ∈ H1, z is defined by equality (31), p jn1 is the operator such that p jn1 x̃ = xn1 (see (39)),
and xn1 is defined by equality (37). Using (32), we get

(A x̃, x̃ ) = (Imλ)−1Im(R(λ) f , f )m − (R(λ) f ,R(λ) f )m.

Thus, inequality (72) is equivalent to the following

(Imλ)−1Im(R(λ) f , f )m − (R(λ) f ,R(λ) f )m ⩾ 0. (73)

It follows from Lemma 4.3 that the function λ→ R(λ) is holomorphic on the half-planes Imλ , 0. The
equality M(λ) = M∗(λ) is equivalent to the equality R(λ) = R∗(λ). Now the desired assertion follows
from [17], where it was established that a function λ→ R(λ) is a generalized resolvent if and only if this
function is holomorphic on the half-planes Imλ , 0, R(λ) = R∗(λ), and inequality (73) holds. The theorem
is proved.

5. The example

We consider equation (1) on a segment [0, b] and assume that H = C, J = E = 1, p = 0, m = m0 + m̂,
where m0 is the usual Lebesque measure (i.e., m([α, β)) = β − α for 0 ⩽ α < β ⩽ b; we write ds instead of
dm0(s) ), 0 < τ < b, m̂({τ}) = 1 and m̂(∆) = 0 for all Borel sets such that τ < ∆. So, Sm = {τ}. Thus equation
(1) has the form

y(t) = x0 − i
∫ t

0
dm(s) f (s). (74)

In this example, we consider the minimal operator L0 generated by equation (74). We find a function
M(λ) corresponding to the resolvent of a self-adjoint extension of the operator L0 and use the system of
functions {ϑk} (13), (14) to find M(λ). This function M(λ) has the property (Imλ)−1ImM(λ) ⩾ 0. In the
example from [16], a function M(λ) was found using the system of functions {vk} (see (16) and Remark 3.6).
This function from [16] does not have the property (Imλ)−1ImM(λ) ⩾ 0 (see [16]).
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It follows from the definition of L0 and (8), (74) that L0 is an operator and if y = L0 f , then

y(t) = −i
∫ t

0
f (s)ds, y(b) = 0, f (τ) = 0 ⇔ y′(t) = −i f (t), y(0) = y(b) = 0, f (τ) = 0.

Since S0 = {0, b} and m(S0) = 0, we have H0 = {0} and L∗10 = L∗0 in equality (9).
Equation (6) (for x0 = 1) takes the form

W(t, λ) = 1 − iλ
∫ t

0
W(s, λ)ds, λ ∈ C.

Therefore, W(t, λ) = e−iλt. Obviously, if λ = 0, then W(t, 0) = 1. The number of intervals Jk ∈ J is k1 = 1.
We write w(t, λ) instead of w1(t, λ). Then w(t, λ) = X[0,b)W(t, λ). Without loss of generality it can be assumed
that w(t, λ) =W(t, λ) = e−iλt.

The setM consists of the interval (0, b) and the single-point set {τ}. Hence the number of elements ofM
is k = 2. By (27), it follows that Q10 = Q20 = {0} and Q1 = Q−1 = Q+1 = Q2 = Q−2 = Q+2 = H = C. Therefore,
Q = Q− = Q+ = C2.

The domain D(L0) of L0 is dense in H = L2(C, dm; 0, b). This yields that L∗0 is an operator. A function y
belongs toD(L∗0) if and only if there exist numbers η1, η2 ∈ C such that

y(t) = X[0,b]\{τ}(t)η1 + X{τ}(t)η2 − X[0,b]\{τ}(t)i
∫ t

0
dm(s)u(s), (75)

where u = L∗0y (see [16]).
With each pair {y,u} ∈ L∗0 we associate a pair of boundary values {Y,Y′} ∈ C × C by the formulas

Y =
(
η1
η2

)
− 2−1i


∫ b

0 dm(s)u(s)∫ b

0 dm(s)u(s)

 + 2−1i
(

0
u(τ)

)
+ i

(
0∫ τ

0 dm(s)u(s)

)
, Y′ =

(∫ b

0 u(s)ds
u(τ)

)
, (76)

where y has form (75), u = L∗0y. Let L be a restriction of L∗0 to a set of functions satisfying the condition
Y = 0. Then L is the self-adjoint operator and L0 ⊂ L ⊂ L∗0 (see [16]). Let us find the function

M(λ) =
(
M11(λ) M12(λ)
M21(λ) M22(λ)

)
: C2
→ C2 (77)

that corresponds to the resolvent Rλ = (L − λE)−1.
Using (13), (14), and the equality m({τ}) = 1, we get

ϑ1(t, λ) = X[0,b]\{τ}w(t, λ) = X[0,b]\{τ}e−iλt =

e−iλt for t , τ,
0 for t = τ

; (78)

ϑ2(t, λ) =u1(t, λ, τ)λ−1 + X{τ}(t)λ−1=

= −X[0,b]\{τ}e−iλti
∫ t

0
eiλsdm(s)λX{τ}(s)λ−1ds + X{τ}(t)λ−1=


0 for t < τ,
λ−1 for t = τ,
−ie−iλteiλτ for t >τ; λ , 0.

(79)

Therefore,

ϑ∗1(t, λ) = X[0,b]\{τ}eiλt =

eiλt for t , τ,
0 for t = τ

; ϑ∗2(t, λ) =


0 for t < τ,
λ−1 for t = τ,
ie−iλτX(τ,b]eiλt for t > τ; λ , 0.
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We denote

x1 = x1( f , λ) =
∫ b

0
ϑ∗1(s, λ)dm(s) f (s) =

∫ b

0
eiλs f (s)ds, (80)

x2= x2( f , λ) =
∫ b

0
ϑ∗2(s, λ)dm(s) f (s)= λ−1 f (τ) +

∫ b

τ
ieiλse−iλτ f (s)ds. (81)

Using (34), we get

y(t) = ϑ1(t, λ)(M11(λ)x1 +M12(λ)x2) + ϑ2(t, λ)(M21(λ)x1 +M22(λ)x2)−

− X[0,b]\{τ}e−iλti
∫ t

0
eiλs f (s)ds + 2−1X[0,b]\{τ}e−iλti

∫ b

0
eiλs f (s)ds − λ−1X{τ}(t) f (τ). (82)

By (78), (79), it follows that

ϑ1(t, λ)(M11(λ)x1 +M12(λ)x2) = X[0,b]\{τ}e−iλt(M11(λ)x1 +M12(λ)x2), (83)

ϑ2(t, λ)(M21(λ)x1 +M22(λ)x2) =


0 for t < τ,
λ−1(M21(λ)x1 +M22(λ)x2) for t = τ,
−ie−iλteiλτ(M21(λ)x1 +M22(λ)x2) for t > τ; λ , 0.

(84)

To find M12(λ), M22(λ), we take the function f1(t) = X{τ}(t), i.e., f1(t) = 1 if t = τ and f1(t) = 0 if t , τ (by
{Y1,Y′1} denote the corresponding pair of boundary values). It follows from (80), (81) that x1 = 0, x2 = λ−1.
We denote y1 = Rλ f1. Using (82), (83), (84), we obtain

y1(t) = ϑ1(t, λ)M12(λ)λ−1 + ϑ2(t, λ)M22(λ)λ−1
− λ−1X{τ}(t). (85)

We denote u1 = L∗0y1 = λy1 + f1. Then using (85), (78), (79), we get

u1(t) = ϑ1(t, λ)M12(λ)+ϑ2(t, λ)M22(λ) = X[0,b]\{τ}(t)e−iλtM12(λ)+X{τ}(t)λ−1M22(λ)−X(τ,b](t)ie−iλteiλτM22(λ). (86)

Taking into account (75), (85), we obtain

y1(t) = X[0,b]\{τ}(t)M12(λ)λ−1 + X{τ}(t)λ−1(M22(λ)λ−1
− 1) − X[0,b]\{τ}(t)i

∫ t

0
dm(s)u1(s). (87)

Using (86), by direct calculations, we get∫ b

0
dm(s)u1(s) = λ−1(i(e−iλb

− 1)M12(λ) + e−iλbeiλτM22(λ));
∫ τ

0
dm(s)u1(s) = iλ−1(e−iλτ

− 1)M12(λ). (88)

By (76), (87), (88), so that

Y1=

(
M12(λ)λ−1

λ−1(M22(λ)λ−1
− 1)

)
− 2−1i

(
λ−1(i(e−iλb

− 1)M12(λ)+ e−iλbeiλτM22(λ))
λ−1(i(e−iλb

− 1)M12(λ)+ e−iλbeiλτM22(λ))

)
+

+ 2−1i
(

0
λ−1M22(λ)

)
+ i

(
0

iλ−1(e−iλτ
−1)M12(λ)

)
.

The equality Y1 = 0 is equivalent to two equalitiesM12(λ)λ−1 + 2−1λ−1((e−iλb
− 1)M12(λ) − ie−iλbeiλτM22(λ)) = 0,

λ−1(M22(λ)λ−1
− 1)+2−1λ−1((e−iλb

−1)M12(λ)− ie−iλbeiλτM22(λ)) +2−1λ−1iM22(λ)−λ−1(eiλτ
−1)M12(λ)= 0.
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Solving this system of equations, we get

M12(λ) = i
2λeiλτe−iλb

e−iλb(2 − iλ) + (2 + iλ)
; M22(λ) =

2λ(e−iλb + 1)
e−iλb(2 − iλ) + (2 + iλ)

. (89)

To find M11(λ), M21(λ), we take the function f2(t) = X[0,τ)(t), i.e., f2(t) = 1 if t < τ and f2(t) = 0 if t ⩾ τ (by
{Y2,Y′2} denote the corresponding pair of boundary values). It follows from (80), (81) that x1 = iλ−1(1− eiλτ),
x2 = 0. We denote y2 = Rλ f2. Using (82), (83), (84), we obtain

y2(t) = ϑ1(t, λ)M11(λ)x1+ϑ2(t, λ)M21(λ)x1−X[0,b]\{τ}e−iλti
∫ t

0
eiλs f2(s)ds+2−1X[0,b]\{τ}e−iλti

∫ b

0
eiλs f2(s)ds. (90)

The equality f2(t) = X[0,τ)(t) implies

−X[0,b]\{τ}e−iλti
∫ t

0
eiλs f2(s)ds =


λ−1(e−iλt

− 1) for t < τ,
0 for t = τ,
λ−1e−iλt(1 − eiλτ) for t > τ;

(91)

2−1X[0,b]\{τ}e−iλti
∫ b

0
eiλs f2(s)ds =

2−1ie−iλtx1 for t , τ,
0 for t = τ.

(92)

By (75), (90), (91), (92), it follows that

y2(t) = X[0,b]\{τ}(M11(λ)x1 + 2−1ix1) + X{τ}(t)λ−1M21(λ)x1 − X[0,b]\{τ}(t)i
∫ t

0
dm(s)u2(s), (93)

where u2 = L∗0y2 =λy2+ f2. Equalities (78), (79), (90), (91), (92) imply that u2(t) = u21(t)+u22(t)+u23(t)+u24(t),
where

u21(t) = X[0,b]\{τ}λe−iλtM11(λ)x1; u22(t) =


0 for t < τ,
M21(λ)x1 for t = τ,
−λieiλτe−iλtM21(λ)x1 for t > τ;

(94)

u23(t) =


e−iλt for t < τ,
0 for t = τ,
e−iλt(1 − eiλτ) for t > τ;

u24(t) =

2−1λie−iλtx1 for t , τ,
0 for t = τ.

. (95)

Using (94), (95), and the equality x1 = iλ−1(1 − eiλτ), by direct calculations, we obtain∫ b

0
dm(s)u2(s)= i(e−iλb

− 1)M11(λ)x1 + eiλτe−iλbM21(λ)x1 + 2−1(e−iλb + 1)x1, (96)

∫ τ

0
dm(s)u2(s) = i(e−iλτ

− 1)M11x1 + 2−1(e−iλτ + 1)x1. (97)

By (76), (93), so that

Y2 =

(
M11(λ)x1 + 2−1ix1
λ−1M21(λ)x1

)
− 2−1i


∫ b

0 dm(s)u2(s)∫ b

0 dm(s)u2(s)

 + 2−1i
(

0
M21(λ)x1

)
+ i

(
0∫ τ

0 dm(s)u2(s)

)
,

where the integrals
∫ b

0 dm(s)u2(s),
∫ τ

0 dm(s)u2(s) are calculated by formulas (96), (97), respectively.
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The equality Y2 = 0 is equivalent to two equalitiesM11(λ)x1 + 2−1ix1 − 2−1i
∫ b

0 dm(s)u2(s) = 0,

λ−1M21(λ)x1 − 2−1i
∫ b

0 dm(s)u2(s) +2−1iM21(λ)x1 + i
∫ τ

0 dm(s)u2(s) = 0.

Solving this system of equations, we obtain

M11(λ) = i
(2 − iλ)e−iλb

− (2 + iλ)
2((2 − iλ)e−iλb + (2 + iλ))

; M21(λ) = i
−2λe−iλτ

(2 − iλ)e−iλb + (2 + iλ)
. (98)

Thus the matrix M(λ) (77) is calculated by equalities (98), (89).
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