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Abstract. In this paper we propose a new identity for multiplicative differentiable functions, based on
this identity we establish a dual Simpson type inequality for multiplicatively convex functions. Some
applications of the obtained results are also given.

1. Introduction
Let I be an interval of real numbers

Definition 1.1 ([23]). A function f : I — R is said to be convex, if

flx+A=0y)<tf @)+ 1= f(y)
holds for all x,y € I and all t € [0, 1].

The fundamental inequality for convex functions is undoubtedly the Hermite-Hadamard inequality,
which can be stated as follows: For every convex function f on the interval [g, b], we have

f(a;rb) — aff( f(a)+f(b) )

If the function f is concave, then (1) holds in the reverse direction see [23].

The concept of convexity plays an important and very central role in many areas, and has a close
relationship in the development of the theory of inequalities, which is an important tool in the study
of some properties of solutions of differential equations as well as in the error estimates of quadrature
formulas. Concerning some papers dealing with some quadrature see [8, 11, 13-15] and references therein.

In 1967, Grossman and Katz, created the first non-Newtonian calculation system, called geometric
calculation. Over the next few years they had created an infinite family of non-Newtonian calculi, thus
modifying the classical calculus introduced by Newton and Leibniz in the 17th century each of which
differed markedly from the classical calculus of Newton and Leibniz known today as the non-Newtonian
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calculus or the multiplicative calculus, where the ordinary product and ratio are used respectively as sum
and exponential difference over the domain of positive real numbers see [10]. This calculation is useful for
dealing with exponentially varying functions.

The complete mathematical description of multiplicative calculus was given by Bashirov et al. [5]. Also
in the literature, there remains a trace of a similar calculation proposed by the mathematical biologists
Volterra and Hostinsky [24] in 1938 called the Volterra calculation which is identified as a particular case of
multiplicative calculation.

Recently, Ali et al. [1] gave the analogue of the Hermite-Hadamard inequality for multiplicatively
convex functions as follows :

Theorem 1.2. Let f be a positive and multiplicatively convex function on interval [a, b], then the following inequal-
ities hold

1

b-a

f(a+b) ff (0™ <m @)

Theorem 1.3. Let f and g be a positive and multiplicatively convex functions on interval [a, b], then the following
inequalities hold

(ol fror|
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b-a b-a
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Regarding the generalizations of the results obtained in [1] for different kind of multiplicatively con-
vexity we have: for multiplicatively ¢-convex and log-¢-convex functions [2], for multiplicatively s-convex
functions [19], for multiplicatively h-convex functions [21], for multiplicatively preinvex functions [20], for
multiplicatively s-preinvex functions [18], for multiplicatively h-preinvex functions [22] and recently the
authors in [4] gave the analogue inequality for multiplicatively convex functions on coordinates and for
product of two multiplicatively convex functions on coordinates. The fractional analogue of the Hermite-
Hadamard inequality via multiplicative convexity was obtained by Budak and Ozgelik [7] and for interval-
valued multiplicative integrals by Zhang et al. [25]. In the same context, the midpoint and trapezoid-type
inequalities were studied in [12], while Ali et al. investigate the Ostrowski and Simpson-type inequalities
in [3]. Further literature on multiplicative integral inequalities can be found in [6, 16, 17].

We recall that the dual Simpson quadrature rule, can be stated as follows :

(Zf(3a+b) f(a;b)+2f(a-;3b))_b_ia]f(u)du

where f is four-times continuously differentiable function on (g, b), and H f(4)||oo = sup | f(4) (x)) (see [9]).
xe(a,

Motivated by the aforementioned literature, the present study proposes a novel identity for multi-
plicative differentiable functions, and leverages this identity to derive a dual Simpson-type inequality for
multiplicatively convex functions. To demonstrate the significance of our findings, we present a number of
applications of our results.
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2. Preliminaries

In this section we begin by recalling some definitions, properties and notions of derivation as well as
multiplicative integration

Definition 2.1 ([5]). Let f : R — R* be a positive function. The multiplicative derivative of the function f noted
by f* is defined as follows

df L (fE+m)

Remark 2.2. If f has positive values and is differentiable at t, then f* exists and the relation between f* and ordinary
derivative f’ is as follows:

£ () = enf0) = Ry
The multiplicative derivative admits the following properties:

Theorem 2.3 ([5]). Let f and g be multiplicatively differentiable functions, and c is arbitrary constant. Then
functions cf, fg, f + g, f/g and f? are* differentiable and

NCINOESSOR
c (fy =My ®,
. 1) o)

o (F+9) ()= f O g (T,

oy = LO©
- () 0=Fw.
o (F)Y®=F O FHYY.
In [5], Bashirov et al. introduced the concept of the * integral called multiplicative integral which is

b
noted f (f (H)", where the ordinary product and ratio are employed as the addition and subtraction in

a
exponential form, correspondingly, across the positive real number range.
The relationship between the Riemann integral and the multiplicative integral is as follows:

Proposition 2.4 ([5]). If f is Riemann integrable on [a, b], then f is multiplicative integrable on [a, b] and

b b
f«m%=w%fmqmw%

a

Moreover, Bashirov et al. show that multiplicative integral has the following results and properties:

Theorem 2.5 ([5]). Let f be a positive and Riemann integrable on [a, b], then f is multiplicative integrable on [a, b]
and

b dt b i’
. [(Foy) ( f(f(t))‘”] ,

b b b
o [(FHg®Y = [(F&)" [(@a)™,
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b dt
J(r®)
=i
J(o0)

b c b
o [(FOY =[O [(FB)",a<c<b,

-1

fUmW—lm¢ﬂﬂm” quwj
Theorem 2.6 (Multiplicative Integration by Parts [5]). Let f : [a,b] — R be multiplicative differentiable, let
g : [a,b] — R be differentiable so the function f7 is multiplicative integrable, and

b

) f@” 1
f(f (t)g(t)) 3 f( )g(a) b
a f( ®7 (t))

Lemma 2.7 ([3]). Let f : [a,b] — R be multiplicative differentiable, let h : [a,b] — Randlet g: ] C R — R be two
differentiable functions. Then we have

b

(b)
f (f ()" “W) f (h(®))’ y . |
f(h(@)™@ "~ b —
| J(F ey ®)

3. Main results
In order to prove our results, we need the following lemma

Lemma 3.1. Let f :[a,b] = R* be a multiplicative differentiable mapping on [a, b] with a < b. If * is multiplicative
integrable on [a, b], then we have the following identity for multiplicative integrals

P ) (jz%))zr[ o]
_ j[f*((l—t)aﬂ?’“:b)iJ J [;f(f*(l—t) 3a+b+ta;b)(4t—u JdtJ

b-a b-a

1

a-b

b-a
4

XLZ[(u_na+b az%)ieJ]4LZ[(u_ﬂa+% ffhﬁjj4-

Proof. Let

I = [f[f ((1 ~fa+ 2 b)it]dtJ ,
0
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1 3a+b +p\liR) “’
L= ff((l—t) ‘ +t“2) ]] ,
r a+b a+3b (#+) g
13:ff((1—t)— i ) )]

and

r a+3b (3-3) g
o[ [[rfo-ne5en |

0

Using the integration by parts for multiplicative integrals, from I; we have

A
(f*((l—t)a+t3a;b) ] ]

bea t dt
[f*((l—t)a+t3a;b) ] ]
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1

L =

I
f

=
¥
Al
SN—
SN——
W=

dt

= O

1

1
f(f((l—t)a+t3”T+b)%)
Uf((l —t)a+t3“T+b)dt)
0
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Similarly, we have
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Multiplying above equalities we get
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z((f(gazb))z (f(a;b))_l (f(”fb))Z 3[[f<u>”’“] 7

which is the required result. The proof is completed. [

oo
N

Theorem 3.2. Let f :[a,b] —» IR* bea multiplicative differentiable mapping on [a, bl witha < b. If f* is multiplicative
convex on [a, b], then we have

(= ) s (|
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<[ n(r (25 ) () (=) o <b>>]b%ﬂ.

Proof. From Lemma 3.1, properties of multiplicative integral, we have
2 o
3a+b a b a 3b du
(o) et ) [ [rw ]
1 1 a
b—a " 3ab%t b—a 3a+b atb \\4 1
1 f‘ln(f ((1—t)a+tT+) )dtJ[exp 1 (f ((1 ) b patb )
0 0
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0
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0
dt]

1
(1 t)a+t3“+b dt] [epr4af |1r1 (1 t) ] Sl tt%b))'dt]
0
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:

ln(f* (R tb)(‘l’t_i)) dt
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1
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1
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0

Using the multiplicative convexity of f*, we get

e ) e o]
ajl‘% (f()“ (3a+b)]dt] epr4a]
[epr4“;f (1t+1 ln (o) g () dtJ[epr4“:f Lo ) (f () f*(b)f)dt]
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Corollary 3.3. In Theorem 3.2, using the multiplicative convexity of f*, we obtain

(e e (o] et ol

<(F@f®)F.

Corollary 3.4. In Theorem 3.2, If we assume that f* < M, we get

l

(22 52 ) (o] v

4. Applications to special means

IN

We shall consider the means for arbitrary real numbers 4, b
The Arithmetic mean: A (a1, 4>, .. an) Dttty

n
The logarithmic means: L (a,b) = 75— b ~—,a,b>0anda #b.

. . . _ [ pprl_gr? _
The p-Logarithmic mean: L, (a,b) = ((p+1)([:7—a)) ,a,b>0,a#band p € R\{-1,0}.
Proposition 4.1. Leta,b € Rwith 0 < a < b, then we have

ba
AP(aa,a,b)-1AP(ab)+2 AP (a,b,b,b)—Lg(a,b) < (eA(aV’l,bf”l)+3A”’1(u,a,a,b)+3A”’1(u,b)+3A7”1(a b,b,b) )P [

—b

e’ and (ff (u)d“] = exp (—Lz (a, b)). O

Proposition 4.2. Leta,b € Rwith0 < a < b, then we have

Proof. The assertion follows from Theorem 3.2 applied to the function f () = e with p > 2 whose f* (x)

Taaab)-3A @b+ 3AT @b D)L @) < pm T

Proof. The assertion follows from Corollary 3.4 applied to the function f (£) = et whose f* (x) = ¢ 2, M = ¢ ¥
b =

and [ff (u)d“)a b = exp (—L‘1 (a, b)). O
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5. Conclusion

In this work, we focused error bounds of the dual Simpson rule in the framework of multiplicative
calculus, which represents a different type of calculation from that of Newton’s and has shown significance
and effectiveness in several areas of applied sciences. After introducing a new integral identity, we estab-
lished some dual Simpson-type inequalities for functions with multiplicatively convex derivatives. The
study concludes with several applications.

The findings of this study could prompt further investigation into this fascinating subject, as well as
extensions to other forms of generalized convexity, weighted formulas, and higher dimensions.
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