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Oscillation criteria for second-order delay dynamic equations with
a sub-linear neutral term on time scales

A. M. Hassana,∗, S. Affana

aDepartment of Mathematics, Faculty of Science, Benha University, Benha-Kalubia 13518, Egypt

Abstract. This paper addresses the oscillatory behavior of the solutions of second-order dynamic equations
with a sublinear neutral term. Using Riccati transformation and comparison principles, we obtain new
oscillation criteria. The obtained results essentially improve, complement, and simplify some of the previous
ones in the literature. Some examples have been provided herein to illustrate our main results.

1. Introduction

The paper aims to study the oscillation problem of the class of second-order nonlinear dynamic equations
with a sublinear neutral term(

r(t)z∆(t)
)∆
+ q(t)xβ(δ(t)) = 0, t ≥ t0, (1)

where z(t) := x(t) + p(t)xα(τ(t)). Throughout, the following assumptions are satisfied

(H1) 0 < α ≤ 1, β are ratios of odd positive integers;

(H2) r, p, q ∈ Crd([t0,∞)T, [0,∞)) and q(t) is not eventually zero for sufficiently large t and limt→∞ p(t) = 0,

R(t) =
∫ t

t0

∆s
r(s)

;

(H3) τ, δ ∈ Crd([t0,∞)T,T), τ(t) ≤ t, δ(t) ≤ t and limt→∞ τ(t) = limt→∞ δ(t) = ∞.

Herein, we consider∫
∞

t0

∆s
r(s)
= ∞. (2)

By a solution of (1), we mean a function x ∈ Crd[Tx,∞)T, Tx ∈ [t0,∞)T which has the property
r(z∆) ∈ C1

rd[Tx,∞)T and satisfies (1) on [Tx,∞)T. We consider only those solutions x of (1) which satisfy
sup |x(t)| : t ∈ [Tx,∞)T > 0 for all T ∈ [Tx,∞)T. We assume that (1) possesses such solutions. A solution of
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(1) is called oscillatory if it is neither eventually positive nor eventually negative; otherwise, it is termed
nonoscillatory. Dynamic equations on time scales have an enormous potential for applications fields such
as in biology, engineering, economics, physics, neural networks, and social sciences [6].

Within the final two decades, there are numerous thinks about studying oscillatory behavior of solutions
of nonlinear neutral delay dynamic equations, see [2–4, 14, 18, 19, 22] . However, we have relatively fewer
results in the literature for dynamic equations with a sublinear neutral term. Dzurina et al.. [9] studied the
oscillation of second-order difference equation with several sublinear neutral terms of the following form:

(a(t)z′(t))′ + q(t)xβ(σ(t)) = 0, t ≥ t0 > 0

where m > 0 is an integer, z(t) = x(t) +
∑m

i=1 pi(t)xαi (τi(t)).
In [21] Sivaraj et al. established adequate conditions for the oscillation of all solutions of a nonlinear

differential equations (
a(t)

(
x(t) + p(t)xα(τ(t))

)′)′ + q(t)xβ(σ(t)) = 0, t ⩾ t0

where α and β are ratio of odd positive integers.
In [8], Dharuman et al.obtained the oscillation criteria of the solution of a particular case for (1) when

T = Z
∆

(
an∆

(
xn + pnxαn−k

))
+ qnxβn+1−l = 0,n ≥ n0

where 0 < α ≤ 1, β are ratio of odd positive integers.
Recently, Soliman et al.[20] established the sufficient conditions for the oscillatory behavior of solutions

of (1), under the conditions either∫
∞

t0

1
r(s)
∆s = ∞, or

∫
∞

t0

1
r(s)
∆s < ∞

Indeed, equation (1) has numerous applications in mathematical, theoretical, and chemical material
science; for example, it appears in a variety of real-world issues such as in the study of p-Laplace equations
non-Newtonian fluid theory, the turbulentflow of a polytrophic gas in a porous medium, and so on.
As a result, there has been a lot of research activity concerning oscillatory behavior of various classes
of differential equations. We refer the reader to [1, 5, 15–17]. See also [11] and [10] for models from
mathematical biology formulated by PDE’s.

This study aims to unify and continue further investigation of the oscillation criteria of (1). The obtained
results are appropriate for non-neutral differential and difference equations (p(t) = 0). We present a more
general study than those previously reported in the literature in a manner such that we cover all possible
cases for (1) (Sublinear case, superlinear case and linear case).

2. Preliminary Lemmas

In this section, we state and demonstrate some preparatory lemmas that are crucial to prove the main
results obtained herein.

Lemma 2.1. [12] If a and b are nonnegative, then

aαb1−α
≤ αa + (1 − α)b for 0 < α ≤ 1, (3)

where equality holds if and only if a = b.

Theorem 2.2. [7] Assume that ν : T → R is strictly increasing and T̃ := ν(T) is a time scale. Let y : T̃ → R. If
y∆̃(ν(t)) and ν∆(t) exist for t ∈ Tκ, then

(y ◦ ν)∆(t) = y∆̃(ν(t))ν∆(t).

Where ∆̃ denotes to the derivative on T̃.
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Lemma 2.3. Let (H1)-(H3) and (2) hold. If x(t) be an eventually positive solution of (1), then z(t) satisfies

(I) z(t) > 0, z∆(t) > 0, and
(
r(t)z∆(t)

)∆
< 0, t ≥ t1 ≥ t0,

(II) z(t)
R(t) is decreasing for t ≥ t1.

Proof. As x is an eventually positive solution of (1), then by (H2) and (H3) there exists t1 ∈ [t0,∞)T such that
x(t) > 0, x(δ(t)) > 0 and x(τ(t)) > 0 for all t ∈ [t0,∞)T. Now, from (1) we have(

r(t)z∆(t)
)∆
≤ −q(t)xβ(δ(t)), (4)

Hence
(
r(t)z∆(t)

)
is a nonincreasing function and is eventually of one sign. Claim thatz∆(t) > 0 for all

t ∈ [t1,∞)T. If not, then there exists t2 ∈ [t1,∞)T such that z∆(t) ≤ 0 for all t2 ∈ [t1,∞)T. Since q not identically
equal to zero eventually, we may assume that z∆(t) < 0 for all t ∈ [t2,∞)T. From (4), we have(

r(t)z∆(t)
)
≤ −c < 0, for all t ∈ [t2,∞)T, (5)

where c :=
(
r(t2)z∆(t2)

)
> 0, then

z∆(t) ≤
−c
r(t)

(6)

Integrate (6) on [t2, t) ⊂ [t2,∞)T, we obtain

z(t) ≤ z(t2) − c
∫ t

t2

∆s
r(s)

for all t ∈ [t2,∞)T. (7)

Letting t→∞, then it follows from (2) that limt→∞ z(t) = −∞, which is a inconsistency. Then

z(t) > 0, z∆(t) > 0, and
(
r(t)z∆(t)

)∆
< 0, t ≥ t1 ≥ t0

To prove (II), since (I)holds, then for sufficiently large t1

z(t) ≥ z(t1) +
∫ t

t1

r(s)z∆(s)
r(s)

∆s

≥ r(t)R(t)z∆(t).

Moreover, using the previous inequality, we get(
z(t)
R(t)

)∆
=

z∆(t)R(t) − r−1(t)z(t)
R(t)R(σ(t))

≤
r(t)z∆(t)R(t) − z(t)

r(t)R(t)R(σ(t))
≤ 0.

This implies that z(t)
R(t) is decreasing for t ≥ t1, thereby completes the proof.

Lemma 2.4. Let (H1)-(H3) and (2) hold. Assume x(t) be an eventually positive solution of (1), such that z(t) satisfied
(I) of Lemma 2.1. If∫

∞

t0

(
1

r(u)

∫ u

t0

q(s)∆s
)
∆u = ∞. (8)

Then z(t)→∞ as t→∞ .
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Proof. Assume that x(t) be a nonoscillatory solution of (1) on [t0,∞)T such that x(t) > 0, x(τ(t)) > 0, and
x(δ(t)) > 0 for t ∈ [t1,∞)T. We claim that (8) guarantees that z(t) → ∞ as t → ∞ , since z(t) is a positively
increasing function; therefore there exists a constant k > 0 such that

z(t) ≥ k > 0, for t ≥ t1. (9)

Besides, it follows from the definition of z(t) that

x(t) =z(t) − p(t)xα(τ(t))
≥z(t) − p(t)zα(τ(t))

Applying (3) , we get

x(t) ≥z(t) − p(t) (αz(t) + (1 − α))

≥z(t)
(
1 − αp(t) −

p(t)
z(t)

(1 − α)
)
. (10)

Substituting (9) into (10), we get

x(t) ≥ k
(
1 − αp(t) −

p(t)
z(t)

(1 − α)
)
. (11)

Considering (H2) , we obtain

x(t) ≥ k > 0, t ≥ t1. (12)

Integrate (1) from t to t using (12), we obtain

z∆(t) ≥
kβ

r(t)

∫ t

t1

q(s)∆s. (13)

Integrate (13) from t1 to t, we conclude

z(t) ≥ z(t1) + kβ
∫ t

t1

1
r(s)

∫ t

t1

q(s)∆s∆u. (14)

In view of (8), we conclude that z(t)→∞ as t→∞, thereby the proof is complete.

3. Main Results

In this section, we state and prove new oscillation criteria for Eq.(1), and we present oscillation criteria
for the case when (1) is super-linear

Theorem 3.1. Assume that β > 1, (H1) − (H3) and (8) hold, and δ∆ > 0. If there exists a function φ(t) ∈
C1

rd([t0,∞)T, (0,∞)), such that for sufficiently large t2 ≥ t1,

lim sup
t→∞

[∫ t

t0

(
ξβφ(s)q(s) −

(φ∆(s))2r(δ(σ(s)))
4φ(s)δ∆(s)

)
∆s

]
= ∞, (15)

holds for ξ ∈ (0, 1), then (1) is oscillatory.
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Proof. Assume that x(t) be a nonoscillatory solution of (1) on [t0,∞)T such that x(t) > 0, x(τ(t)) > 0, and
x(δ(t)) > 0 for t ∈ [t1,∞)T. From properties of p(t) and z(t), one can see for ϵ ∈ (0, 1) that

αp(t) +
p(t)
z(t)

(1 − α) < ϵ (16)

This combined with (10) provides

x(t) ≥ ξz(t) (17)

where ξ = (1 − ϵ) ∈ (0, 1). Substituting (17) into (1), we have(
r(t)z∆(t)

)∆
+ q(t)ξβzβ(δ(t)) ≤ 0. (18)

Using (8) it follows that z(t)→∞ as t→∞ and for β > 1, we have

zβ(δ(t)) ≥ z(δ(t)).

This combined with (18) provides(
r(t)z∆(t)

)∆
+ q(t)ξβz(δ(t)) ≤ 0, t ≥ t2. (19)

Defining the function

ω(t) = φ(t)
r(t)z∆(t)
z(δ(t))

, t ≥ t2. (20)

It is clear that w(t) > 0 for t ≥ t2 and

ω∆(t) =φ∆(t)
r(σ(t))z∆(σ(t))

z(δ(σ(t)))
+ φ(t)

(
r(t)z∆(t)
z(δ(t))

)∆
=φ∆(t)

r(σ(t))z∆(σ(t))
z(δ(σ(t)))

+ φ(t)
[r(t)z∆(t)]∆

z(δ(t))
+ φ(t)r(σ(t))z∆(σ(t))

(
1

z(δ(t))

)∆
≤ − ξβφ(t)q(t) +

φ∆(t)
φ(σ(t))

ω(σ(t)) −
φ(t)r(σ(t))z∆(σ(t))z∆(δ(t))δ∆(t)

z(δ(t))z(δ(σ(t)))
. (21)

Since z∆(t) > 0, δ∆(t) > 0 and (r(t)z∆(t)) is non increasing, we get

ω∆(t) ≤ − ξβφ(t)q(t) +
φ∆(t)
φ(σ(t))

ω(σ(t)) −
φ(t)[r(σ(t))z∆(σ(t))]2δ∆(t)

r(δ(σ(t)))z2(δ(σ(t)))

≤ − ξβφ(t)q(t) +
φ∆(t)
φ(σ(t))

ω(σ(t)) −
φ(t)δ∆(t)

φ2(σ(t))r(δ(σ(t)))
ω2(σ(t)) (22)

Completing squares, we get

ω∆(t) ≤ − ξβφ(t)q(t)

−
φ(t)δ∆(t)

φ2(σ(t))r(δ(σ(t)))

(ω(σ(t)) −
φ∆(t)r(δ(σ(t)))φ(σ(t))

2φ(t)δ∆(t)

)2

−

(
φ∆(t)r(δ(σ(t)))φ(σ(t))

2φ(t)δ∆(t)

)2
≤ − ξβφ(t)q(t) +

(φ∆(t))2r(δ(σ(t)))
4φ(t)δ∆(t)

. (23)

Integrating (23) from t2 to t, we get ∫ t

t2

(
ξβφ(s)q(s) −

(φ∆(s))2r(δ(σ(s)))
4φ(s)δ∆(s)

)
∆s ≤ ω(t2).

Taking lim supt→∞, we get a inconsistency with (15). This completes the proof.
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The following oscillation results cover the case when (1) is linear.
From Theorem3.1, one can immediately obtain the following oscillation results when β = 1.

Theorem 3.2. Assume that β = 1, (H1) − (H3) and (8) hold, and δ∆ > 0. If there exists a function φ(t) ∈
C1

rd([t0,∞)T, (0,∞)), such that for sufficiently large t2 ≥ t1,

lim sup
t→∞

[∫ t

t2

(
ξφ(s)q(s) −

(φ∆(s))2r(δ(σ(s)))
4φ(s)δ∆(s)

)
∆s

]
= ∞, (24)

holds for ξ ∈ (0, 1), then (1) is oscillatory.

In the following, we use the comparison theorem to establish new oscillation criteria for the linear case of
(1).

Theorem 3.3. Assume that for sufficient large t ∈ [t0,∞)T, (2) holds if the first-order dynamic equation

u∆(t) + ξq(t)R(δ(t))u(δ(t)) = 0, (25)

oscillatory, then (1) is also oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution x(t) on [t0,∞)T. Without loss of generality, we may
assume that there exists a t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) > 0, for t ≥ t1. From (1) and
condition (2) we obtain the following for t ≥ t1,

z(δ(t)) = z(t1) +
∫ δ(t)

t1

r(s)z∆(s)
r(s)

∆s ≥ r(δ(t))z∆(δ(t))R(δ(t)). (26)

As the same Proceeding in the proof of Theorem 3.1, we get(
r(t)z∆(t)

)∆
+ q(t)ξz(δ(t)) ≤ 0, t ≥ t2. (27)

This combined with (26) provides(
r(t)z∆(t)

)∆
+ ξq(t)R(δ(t))r(δ(t))z∆(δ(t)) ≤ 0, t ≥ t2. (28)

Defining u(t) := r(t)z∆(t) > 0 0 and combining this with (28) provides

u∆(t) + ξq(t)R(δ(t))u(δ(t)) ≤ 0, t ≥ t2. (29)

where u := r(t)z∆(t), is a positive solution of the first order delay dynamic inequality (29). By [ [13] ,Theorem
3.1], equation (25) also presents a nonoscillatory solution. This contradiction proves that (1) is oscillatory.

In view of Theorem3.3 and [Theorem 1, Theorem 2, [13]].

Corollary 3.4. Let δσ(t) ≤ t and δ∆(t) ≥ 0, if

lim sup
t→∞

( ∫ σ(t)
δ(t) ξq(s)R(δ(s))∆s

1 − [1 − ξµ(δ(t))q(δ(t))R(δ(δ(t)))]ξµ(σ(t))q(σ(t))R(δ(σ(t)))

)
> 1, (30)

holds for ξ ∈ (0, 1), then every solution of (1) is oscillatory.

The following theorem presents oscillation criteria when (1) is sub-linear.
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Theorem 3.5. Assume that 0 < β < 1, (H1) − (H3) and (8) hold, and δ∆ > 0. If there exists a function φ(t) ∈
C1

rd([t0,∞)T, (0,∞)), such that for sufficiently large t2 ≥ t1,

lim sup
t→∞

[∫ t

t2

(
ξβRβ−1(δ(s))Kβ−1q(s)φ(s) −

(φ∆(s))2r(δ(σ(s)))
4φ(s)δ∆(s)

)
∆s

]
∆s = ∞, (31)

holds for ξ ∈ (0, 1), then (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1) on [t0,∞)T such that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) > 0 for
t ∈ [t1,∞)T. Using the proof of Theorem 3.1. We rewrite (18) as

(
r(t)z∆(t)

)∆
+ q(t)ξβRβ−1(δ(t))

zβ−1(δ(t))
Rβ−1(δ(t))

z(δ(t)) ≤ 0, t ≥ t2 ≥ t1. (32)

As z(t)
R(t) is decreasing, there exists a constant K > 0 such that

z(t)
R(t)

≤ K, t ≥ t2 ≥ t1. (33)

Using (33) and β < 1, then (32) takes the form(
r(t)z∆(t)

)∆
+ q(t)ξβRβ−1(δ(t))Kβ−1z(δ(t)) ≤ 0, t ≥ t2 ≥ t1. (34)

Use the definition of ω(t) in (20). Using the proof of Theorem 3.1, we get

ω∆(t) ≤ −ξβRβ−1(δ(t))Kβ−1q(t)φ(t) +
(φ∆(t))2r(δ(σ(t)))

4φ(t)δ∆(t)
.

Integrating (??) from t2 to t, we get∫ t

t2

(
ξβRβ−1(δ(s))Kβ−1q(s)φ(s) −

(φ∆(s))2r(δ(σ(s)))
4φ(s)δ∆(s)

)
∆s ≤ ω(t2).

Considering lim supt→∞ , we obtain a contradiction with (31) . This completes the proof .

Now, we use comparison theorem to establish an oscillation criteria in the case of 0 < β < 1.

Theorem 3.6. Assume that for sufficient large t ∈ [t0,∞)T, (2) holds if the first order dynamic equation

u∆(t) + q(t)ξβRβ(δ(t))Kβ−1u(δ(t)) = 0, (35)

oscillatory, then (1) is also oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution x(t) on [t0,∞)T. Without loss of generality, we may
assume that there exists a t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) > 0, for t ≥ t1. From (1) and
condition (2) we obtain the following for t ≥ t1,

z(δ(t)) = z(t1) +
∫ δ(t)

t1

r(s)z∆(s)
r(s)

∆s ≥ r(δ(t))z∆(δ(t))R(δ(t)). (36)

Using the proof of Theorem 3.5, we get(
r(t)z∆(t)

)∆
+ q(t)ξβRβ−1(δ(t))Kβ−1z(δ(t)) ≤ 0, t ≥ t2. (37)
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Combining this with (36) provides(
r(t)z∆(t)

)∆
+ q(t)ξβRβ(δ(t))Kβ−1r(δ(t))z∆(δ(t)) ≤ 0, t ≥ t2. (38)

Defining u(t) := r(t)z∆(t) > 0, and combining this with (38) provides

u∆(t) + q(t)ξβRβ(δ(t))Kβ−1u(δ(t)) ≤ 0, t ≥ t2. (39)

where u(t) := r(t)z∆(t), is a positive solution of the first order delay dynamic inequality (39). By [ [13]
,Theorem 3.1], equation (35) also presents a nonoscillatory solution. This contradiction proves that (1) is
oscillatory.

Example 3.7. Assume T = R. Consider the second-order neutral differential equation(
t
(
x(t) +

1
t

x1/3(ηt)
)′)′
+ γx3(λt) = 0, t ≥ 1. (40)

Where η, λ ∈ (0, 1] . Here α = 1/3, β = 3, p(t) = 1
t , q(t) = γ, τ(t) = ηt, δ(t) = λt and r(t) = t. It is clear that

conditions (2) and (8) are satisfied. By using Theorem 3.1 with φ(t) = t, we have

lim sup
t→∞

[∫ t

t0

(
ξβφ(s)q(s) −

(φ∆(s))2r(δ(σ(s)))
4φ(s)δ∆(s)

)
∆s

]
= lim sup

t→∞

[∫ t

t0

(
ξ3γs −

1
4

)
ds

]
= ∞.

For ξ ∈ (0, 1), it is clear that (40) satisfied the condition of Theorem 3.1, then equation (40) is oscillatory for all γ > 0.

Example 3.8. Assume that T = R. Consider the second-order neutral differential equation(
x(t) +

p0

t1−α xα(τ(t))
)′′
+

q0

tβ+1 xβ(λt) = 0, t > 0. (41)

Where 0 < α ≤ 1, p(t) = p0

t1−α , q(t) = q0

tβ+1 , τ(t) ≤ t, δ(t) = λt and r(t) = 1.Here, we have three possible cases 0 < β < 1,
β = 1 and β > 1 . In the case of β = 1, Eq.(41) takes the from(

x(t) +
p0

t1−α xα(τ(t))
)′′
+

q0

t2 x(λt) = 0

Applying corollary 3.4 and take in your account that for T = R; σ(t) = t and µ(t) = 0. It follows that condition (30)
becomes

lim sup
t→∞

( ∫ σ(t)

δ(t)
ξq(s)R(δ(s))ds

)
= lim sup

t→∞

( ∫ t

λt

ξq0

s2 (λs)ds
)

= ξq0 (ln(t) − ln(λt))

= ξq0 ln
( 1
λ

)
Hence , for β = 1 Eq.(41) is oscillatory for q0 > 1

ξ ln( 1
λ )

.

Consider β > 1 , it is clear that conditions (2) and (8) are satisfied. By using Theorem 3.1 with φ(t) = tβ, we have

lim sup
t→∞

[∫ t

t0

(
ξβφ(s)q(s) −

(φ∆(s))2r(δ(σ(s)))
4φ(s)δ∆(s)

)
∆s

]
= lim sup

t→∞

[∫ t

t0

(
ξβ

s
−
β2s2β−2

4sβλ

)
ds

]
= ∞.
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It is clear that (41) satisfied the condition of Corollary 3.1, then equation (41) is oscillatory.
Finally consider 0 < β < 1 . Applying Theorem 3.5, we have R(t) = t and

lim sup
t→∞

[∫ t

t0

(
ξβλβ−1(s)β−1Kβ−1 q0

sβ+1 (s) −
1

4λs

)
ds

]
=

(
ξβλβ−1Kβ−1q0 −

1
4λ

)
ln(t)

Hence (41) is oscillatory when q0 > 1
4ξβλβKβ−1 .

As a special case of (41), consider β = α = 1/3 and τ(t) = δ(t) = 1/2; Eq.(41) takes the form(
x(t) +

1
t

x1/3
( t

2

))′′
+

q0

t4/3
x1/3

( t
2

)
= 0 (42)

It follows that (42) oscillates when q0 > K2/3

25/3ξ1/3 . By choosing small values of K and ξ = 0.9 , the criteria for oscillation
of this equation consistent with the results of [20]

Example 3.9. [8] Assume T = Z. Consider the second order neutral difference equation

∆
(
(n + 1)∆

(
xn +

1
n

x1/3
n−2

))
+

(
4n + 10 +

2n + 1
n(n + 1)

)
x3

n−3 = 0, n ≥ 1. (43)

Here α = 1/3, β = 3, rn = n + 1, pn =
1
n , qn = 4n + 10 + 2n+1

n(n+1) , τn = n − 2, δn = n − 3, . It is clear that conditions
(2) and (8) are satisfied. By using Theorem 3.1; take φn = n, then condition (15) that becomes

lim sup
n→∞

 n∑
s=1

ξ3
(
4s + 10 +

2s + 1
s(s + 1)

) = ∞.
Therefore, it is Clear that (43) satisfied the condition of Theorem 3.1, then equation (43) is oscillatory.
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