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Abstract. The main objective of the paper is to generalize and enrich the Weyl transform by introducing the
Weyl correspondence in the linear canonical transform (LCT) domain. In this paper, we propose the linear
canonical-Wigner transform in harmonic analysis of phase space along with the admissible Wigner-Ville
distribution (WVD) and Weyl transform in the LCT domain and discuss some useful results. Further we
establish the relationship between the Wigner-Ville distribution and the Weyl transform in the LCT domain.

1. Introduction

The linear canonical transform (LCT) is a phase space transform with roots in optics and quantum
mechanics [1–4]. It was introduced by Stuart A. Collins Jr. [1] in paraxial optics and independently by
Marcos Moshinsky and Christiane Quesne [2] in quantum mechanics, to understand the conservation of
information and of uncertainty under linear maps of phase space. The LCT is the generalization of classical
Fourier transform, fractional Fourier transform, Fresnel transform, Lorentz transform, etc.

The Wigner-Ville distribution (WVD) was proposed by Wigner [5] in 1932 to study quantum corrections
for classical statistical mechanics. Wigner constructed such a function for the quantum mechanical wave
function with which its probabilistic interpretation led naturally to the concept of a distribution function
similar to the concept in probability theory [5]. The WVD is shown to be an important method in the
linear-frequency-modulated signal detection and parameter estimation, which is also essential in the signal
processing community [6, 7]. Moreover, B. Z. Li et al. [6–8] obtained several important properties of the
WVD.

The Weyl correspondence was first envisaged by Weyl [9] arising in quantum mechanics, and is called
Weyl transform by Wong [10]. The Weyl transform has many applications to time-frequency analysis,
the theory of differential equations, linear system theory, etc. In 1950, H. Weyl [9] proved that the Weyl
transform is a Hilbert-Schmidt operator when the symbol is square integrable. Further, J. C. T. Pool [11]
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pointed out that for the symbol belonging to Lp, (1 ≤ p ≤ 2), the Weyl transform is bounded and compact.
Apart from this, B. Simon [12] proved that the Weyl transform of Lp function for p > 2 is not bounded.
Moreover, M. W. Wong [10] studied some other important properties of the Weyl transform.

The present paper is organized into six Sections, Section 1 is introductory, in which a brief introduction
of the LCT as well as the WVD and Weyl transform are given. Section 2 is devoted to the introductory of
the linear canonical transform, the classical Wigner–Ville distribution, classical weyl transform, Schwartz
type space etc. Section 3 is dealt with the linear canonical-Wigner transform, in which we discuss some of
its properties. In section 4, the Wigner-Ville distribution is discussed in LCT domain in brief. Section 5 is
concerned with the Weyl transform in LCT domain and further establish the relationship between the Weyl
transform and Wigner–Ville distribution function in the frame of LCT domain. Section 6 is the conclusion
of the paper.

2. Priliminary

2.1. The linear canonical transform (LCT)
For a function φ ∈ L1(R), the LCT is denoted by LAφ and defined as follows(
LAφ

)
(ξ) =

∫
R

KA(ξ, x)φ(x)dx (1)

where KA(ξ, x) represents the kernel of the LCT and is given as

KA(ξ, x) =

 1
√

2πia2
exp

(
i a1

2a2
x2
− i 1

a2
xξ + i a4

2a2
ξ2

)
, a2 , 0,

1
√

a1
exp

(
i a3

2a1
ξ2

)
δ
(
x − ξ

a1

)
, a2 = 0.

It is a three parameter class of linear integral transformation i.e. parameters are in terms of 2×2 unimodular

matrix A =
[
a1 a2
a3 a4

]
, which have a quadratic-phase kernel. For typographical convenience, we denote the

matrix as A = (a1, a2; a3, a4) in the text and we shall be dealing with the case when a2 , 0.

The inversion of (1) is denoted by L−1
A = LA−1 and defined as

φ(x) =
(
LA−1

(
LAφ

))
(x) =

∫
R

KA−1 (x, ξ)
(
LAφ

)
(ξ)dξ (2)

where the kernel KA−1 (x, ξ) is given as

KA−1 (x, ξ) =

√
i

2πa2
exp

(
−i

a4

2a2
ξ2 + i

1
a2
ξx − i

a1

2a2
x2

)
, a2 , 0.

Proposition 2.1. [3] If KA(ξ, x) and KA−1 (x, ξ) are respectively the kernel of the LCT and inverse of the LCT, then

∆A,xKA(ξ, x) =
(
−
ξ
a2

)
KA(ξ, x) and ∆A,xKA−1 (x, ξ) =

(
−
ξ
a2

)
KA−1 (x, ξ),

where the differential operators ∆A,x and ∆A,x are defined as

∆A,x =
1
i

d
dx
− x

a1

a2
and ∆A,x = −

1
i

d
dx
− x

a1

a2
. (3)

Here, ∆A,x and ∆A,x are adjoint operators to each other.
Similarly as above, we have

∆A−1,xKA(ξ, x) =
(
−
ξ
a2

)
KA(ξ, x) and ∆A−1,xKA−1 (x, ξ) =

(
−
ξ
a2

)
KA−1 (x, ξ),
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where the differential operators ∆A−1,x and ∆A−1,x are respectively defined as

∆A−1,x =
1
i

d
dx
+ x

a4

a2
and ∆A−1,x = −

1
i

d
dx
+ x

a4

a2
. (4)

Here, ∆A−1,x and ∆A−1,x are also adjoint operators to each other.

The Schwartz space S(R) is the space of rapidly decreasing complex-valued infinitely differentiable functions
φ in R such that for every choice of β and N of non-negative integers∣∣∣∣Dβ

xφ(x)
∣∣∣∣ ≤ CN,β (1 + |x|)−N , Dx = −i

d
dx
. (5)

Equivalent condition : for all non-negative α, β, ∃ Cα,β < ∞ such that∣∣∣∣xαDβ
xφ(x)

)
≤ Cα,β, Dx = −i

d
dx
. (6)

To suit our discussion on the LCT, we define a variant of the Schwartz space S.

Definition 2.2. [3] The test function space SA(R) is the set of all infinitely differentiable complex-valued functions
φ on R such that for all non-negative integers β and N, there exist CN,β, such that∣∣∣∣∣(∆βA,xφ)

(x)
∣∣∣∣∣ ≤ CN,β

(
1 +

∣∣∣∣∣ x
a2

∣∣∣∣∣)−N

. (7)

Equivalent condition : for all non-negative integers α, β, ∃ Cα,β < ∞

sup
x∈R

∣∣∣∣∣( x
a2

)α (
∆
β

A,xφ
)

(x)
∣∣∣∣∣ ≤ Cα,β < ∞, (8)

or

sup
x∈R

∣∣∣∣∣xα (
∆
β

A,xφ
)

(x)
∣∣∣∣∣ < ∞, (9)

where ∆A,x is as in Proposition 2.1 and a2 is as above.

Lemma 2.3. [3] If φ(x), ψ(x) ∈ SA(R). Then for all β ∈N0

(i)
(
∆
β

A,x

) [
φ(x)ψ(x)

]
=

β∑
γ=0

(
β
γ

)
(−1)γ∆

β−γ

A,x ψ(x)Dγ
xφ(x),

Lemma 2.4. For the differential operator ∆A,y as in Proposition 2.1, we have(
1 − ∆2

A,y

)n
exp

(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
)

=

[
1 +

(
ξ
a2

)2]n

exp
(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
)
, ∀n ∈N0. (10)

Proof. Using Proposition 2.1, we get(
1 − ∆2

A,y

)n
exp

(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
)

=

n∑
r=0

(
n
r

) (
−∆2

A,y

)r
exp

(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
)
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=

n∑
r=0

(
n
r

)
(−1)r

(
∆A,y

)2r
exp

(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
)

=

n∑
r=0

(
n
r

)
(−1)r

[
−

(
ξ
a2

)2]r

exp
(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
)

=

[
1 +

(
ξ
a2

)2]n

exp
(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
)
. (11)

2.2. The classical Wigner-Ville distribution (WVD)

The classical Wigner-Ville distribution W( f , 1) on R2 of two functions f and 1 be in S(R) is defined by

W( f , 1)(x, ξ) = (2π)−
1
2

∫
R

e−iξp f
(
x +

p
2

)
1

(
x −

p
2

)
dp, x, ξ ∈ R, (12)

can be used to interpret quantum mechanics as a form of non-deterministic statistical dynamics [10]. The
Moyal identity is true for the classical WVD. For all f1, 11, f2 and 12 in S(R), we have the Moyal identity〈

W( f1, 11), W( f2, 12)
〉
=

〈
f1, f2

〉 〈
11, 12

〉
. (13)

2.3. The classical Weyl transform

Let σ ∈ Sm,m ∈ R. Then, for any function φ in S(R) a linear operator Wσ from S(R) into S(R) is defined
on R by

(Wσφ)(x) =
1

2π

∫
R

∫
R

ei(x−y)ξσ
(x + y

2
, ξ

)
φ(y)dydξ, x ∈ R, (14)

where the integral in (14) is understood to be an iterated integral and call the classical Weyl transform
associated with the symbol σ. The following result illuminates the relationship between the classical Weyl
transform and the classical Wigner-Ville distribution and play a major role in the development of the theory
of the classical Weyl transform.

〈
Wσ f , 1

〉
=

( 1
2π

) 1
2
∫
R

∫
R

σ (x, ξ) W( f , 1)(x, ξ)dxdξ, x, ξ ∈ R, (15)

where σ ∈ Sm, m ∈ R and f , 1 ∈ S(R).

3. The linear canonical-Wigner transform

In this section, we shall formally introduce the linear canonical-Wigner transform as analogy to the
Fourier-Wigner transform [10] and study some of its properties in Lebesgue space. For this, we define the
function ρA(z, p) f on R by

(
ρA(z, p) f

)
(x) = exp

(
−i

a1

2a2
z2 + i

1
a2

zx − i
a4

2a2
x2 + i

1
2a2

zp − i
a4

2a2
p
(
x +

p
4

))
× f (x + p), x ∈ R. (16)

Proposition 3.1. ρA(z, p) : L2(R)→ L2(R) is a unitary operator for all z and p ∈ R.
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Proof. We have to prove that∥∥∥(ρA(z, p)
)

f
∥∥∥

L2(R)
=

∥∥∥ f
∥∥∥

L2(R)
, f ∈ L2(R),

and ρA(z, p) is onto for all z and p ∈ R only. By (16),∥∥∥(ρA(z, p)
)

f
∥∥∥

L2(R)

=

∫
R

∣∣∣∣∣exp
(
−i

a1

2a2
z2 + i

1
a2

zx − i
a4

2a2
x2 + i

1
2a2

zp − i
a4

2a2
p
(
x +

p
4

))
f (x + p)

∣∣∣∣∣2 dx

=

∫
R

∣∣∣ f (x + p)
∣∣∣2 dx

=

∫
R

∣∣∣ f (x)
∣∣∣2 dx

=
∥∥∥ f

∥∥∥
L2(R)

, f ∈ R,

for all z and p ∈ R. Now, to prove that ρA(z, p) is onto, we let 1 ∈ L2(R) and define the function f on R by

f (x) = exp
(
i

a1

2a2
z2
− i

1
a2

zx + i
a4

2a2
x2 + i

1
2a2

zp − i
a4

2a2
p
(
x −

p
4

))
1(x − p), x ∈ R. (17)

Here, f is obviously in L2(R) and by (16) and (17),(
ρA(z, p) f

)
= exp

(
−i

a1

2a2
z2 + i

1
a2

zx − i
a4

2a2
x2 + i

1
2a2

zp − i
a4

2a2
p
(
x +

p
4

))
f (x + p)

= exp
(
−i

a1

2a2
z2 + i

1
a2

zx − i
a4

2a2
x2 + i

1
2a2

zp − i
a4

2a2
p
(
x +

p
4

))
× exp

(
i

a1

2a2
z2
− i

1
a2

z(x + p) + i
a4

2a2
(x + p)2 + i

1
2a2

zp − i
a4

2a2
p
(
x + p −

p
4

))
1(x)

= 1(x), x ∈ R.

Remark 3.2. It is clear from the proof of Proposition 3.1 that ρA(z, p)−1 = ρ−A−1 (−z,−p), z, p ∈ R. In fact, ρA is a
projective representation, i.e., a unitary representation upto phase factors, of the phase space R2 on L2(R).

Definition 3.3. Let f and 1 be in SA(R). Then, we define the function VA( f , 1) on R2 by

VA( f , 1)(z, p) =

√
i

2πa2

〈
ρA(z, p) f , 1

〉
, z, p ∈ R (18)

where ⟨, ⟩ is the inner product in L2(R). We call VA( f , 1), the linear canonical-Wigner transform of f and 1.

Proposition 3.4. Let f and 1 be in SA(R). Then

VA( f , 1)(z, p) =

√
i

2πa2

∫
R

exp
(
−i

a1

2a2
z2 + i

1
a2

zy − i
a4

2a2
y2

)
f
(
y +

p
2

)
1

(
y −

p
2

)
dy (19)

for all z and p in R.
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Proof. By (16) and (18), we get

VA( f , 1)(z, p)

=

√
i

2πa2

〈
ρA(z, p) f , 1

〉
=

√
i

2πa2

∫
R

exp
(
−i

a1

2a2
z2 + i

1
a2

zx − i
a4

2a2
x2 + i

1
2a2

zp − i
a4

2a2
p
(
x +

p
4

))
f (x + p)1(x)dx. (20)

Now, let x = y − p
2 in (20), we get the desired result (19).

Lemma 3.5. Let φ ∈ SA(R2). Then, the functionΨ on R2 defined by

Ψ(z, p) =

∫
R

exp
(
−i

a1

2a2
z2 + i

1
a2

zy − i
a4

2a2
y2

)
φ(y, p)dy, z, p ∈ R, (21)

is also in SA(R2), provided a2
1 + a2a3 + 1 = 0.

Proof. Let α, β, γ and λ be non-negative integers. Then, by (21) and Proposition 2.1, we have( z
a2

)α ( p
a2

)β (
∆
γ

A,q∆
λ

A,pΨ
)

(z, p)

=
( z

a2

)α ( p
a2

)β ∫
R

∆
γ

A,z exp
(
−i

a1

2a2
z2 + i

1
a2

zy − i
a4

2a2
y2

)
∆
λ

A,pφ(y, p)dy

=
( z

a2

)α ( p
a2

)β ∫
R

(
−

y
a2

)γ
exp

(
−i

a1

2a2
z2 + i

1
a2

zy − i
a4

2a2
y2

)
∆
λ

A,pφ(y, p)dy

=
( p

a2

)β ∫
R

∆αA−1,y exp
(
−i

a1

2a2
z2 + i

1
a2

zy − i
a4

2a2
y2

) (
−

y
a2

)γ
∆
λ

A,pφ(y, p)dy

=

∫
R

exp
(
−i

a1

2a2
z2 + i

1
a2

zy − i
a4

2a2
y2

)
∆
α

A−1,y

((
−

y
a2

)γ ( p
a2

)β
∆
λ

A,pφ

)
(y, p)dy

=

∫
R

exp
(
−i

a1

2a2
z2 + i

1
a2

zy − i
a4

2a2
y2

)
∆
α

A,y

((
−

y
a2

)γ ( p
a2

)β
∆
λ

A,pφ

)
(y, p)dy (22)

for all z and p in R and provided the last integral exist. Now, ∃ Cα,β,γ,λ depending on α, β, γ and λ only,
such that∣∣∣∣∣∣∆αA,y

((
−

y
a2

)γ ( p
a2

)β
∆
λ

A,pφ

)
(y, p)

∣∣∣∣∣∣ ≤ Cα,β,γ,λ

(
1 +

∣∣∣∣∣ y
a2

∣∣∣∣∣2)−N

, y ∈ R, (23)

where N is some positive integer greater than 1
2 . Hence, by (22) and (23),

sup
z,p∈R

∣∣∣∣∣( z
a2

)α ( p
a2

)β (
∆
γ

A,q∆
λ

A,pΨ
)

(z, p)
∣∣∣∣∣ ≤ Cα,β,γ,λ

∫
R

(
1 +

∣∣∣∣∣ y
a2

∣∣∣∣∣2)−N

dy.

Proposition 3.6. VA : SA(R) × SA(R)→ SA(R2) is a bilinear mapping.

Proof. For all f and 1 in SA(R), the function φ on SA(R2) defined by

φ(y, p) = f (y)1(p), y, p ∈ R,

is obviously in SA(R2). Hence, the functionΨ on R2 defined by

Ψ(y, p) = f
(
y +

p
2

)
1

(
y −

p
2

)
, y, p ∈ R. (24)

is also in SA(R2). Therefore, by (19), (24) and Lemma 3.5, VA( f , 1) ∈ SA(R2).
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4. The Wigner-Ville distribution

The Wigner-Ville distribution is a powerful time-frequency analysis tool. Wigner first introduced the
classical Wigner distribution function associated with Fourier transform and then Wigner’s investigation
was substantially completed by Ville and named Wigner-Ville distribution. Moreover, for Wigner-Ville dis-
tribution involving certain integral transforms like fractional Fourier transform, linear canonical transform
etc, we may refer [8, 13]. The theory of Weyl transform associated to the Wigner-Ville distribution is a large
subject of remarkable interest both in mathematical analysis and physics, see, for instance,[10, 14–16]. In
this section, we study the Wigner-Ville distribution in the LCT domain and investigate some of its properties
[6, 7].

Definition 4.1. [6] Let f and 1 be in SA(R). Then, the function WA( f , 1) on R2, defined by

WA( f , 1)(x, ξ) =
1

√
2πia2

∫
R

exp
(
i
a1

a2
xp − i

1
a2
ξp

)
f
(
x +

p
2

)
1

(
x −

p
2

)
dp, x, ξ ∈ R, (25)

is called the Wigner-Ville distribution of f and 1 in the LCT domain.

Theorem 4.2. For all f1, 11, f2 and 12 in SA(R), we have〈
WA( f1, 11),WA( f2, 12)

〉
=

〈
f1, f2

〉 〈
11, 12

〉
. (26)

Proof. Define W̃ : SA(R2)→ SA(R2) by(
W̃AF

)
(x, ξ) =

1
√

2πia2

∫
R

exp
(
i
a1

a2
xp − i

1
a2
ξp

)
F
(
x +

p
2
, x −

p
2

)
dp, x, ξ ∈ R, (27)

for all F in SA(R2).
Now, let F1 and F2 be functions on R2 defined by

F1(u, v) = f1(u)11(v), u, v ∈ R (28)

and

F2(u, v) = f2(u)12(v), u, v ∈ R. (29)

Then, by using (27), we have〈
W̃AF1, W̃AF2

〉
=

∫
R

∫
R

(
W̃AF1

)
(x, ξ)

(
W̃AF2

)
(x, ξ)dxdξ

=

∫
R

{∫
R

(
W̃AF1

)
(x, ξ)

(
W̃AF2

)
(x, ξ)dξ

}
dx

=
1

2πa2

∫
R

∫
R

{∫
R

exp
(
i
a1

a2
xp − i

1
a2
ξp

)
F1

(
x +

p
2
, x −

p
2

)
dp

}
×

{∫
R

exp
(
−i

a1

a2
xp′ + i

1
a2
ξp′

)
F2

(
x +

p′

2
, x −

p′

2

)
dp′

}
dξdx

=
1

2πa2

∫
R

{∫
R

exp
(
i
a1

a2
xp

)
F1

(
x +

p
2
, x −

p
2

)
dp

}
×

{∫
R

exp
(
−i

a1

a2
xp′

)
F2

(
x +

p′

2
, x −

p′

2

)
dp′

}
×

{∫
R

exp
(
i

1
a2
ξ(p′ − p)

)
dξ

}
dx
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=

∫
R

{∫
R

exp
(
i
a1

a2
xp

)
F1

(
x +

p
2
, x −

p
2

)
dp

}
×

{∫
R

exp
(
i
a1

a2
xp′

)
F2

(
x +

p′

2
, x −

p′

2

)
δ(p′ − p)dp′

}
dx

=

∫
R

{∫
R

F1

(
x +

p
2
, x −

p
2

)
F2

(
x +

p
2
, x −

p
2

)
dp

}
dx

=

∫
R

∫
R

F1

(
x +

p
2
, x −

p
2

)
F2

(
x +

p
2
, x −

p
2

)
dpdx (30)

for all F1 and F2 in SA(R2). Let u = x + p
2 and v = x − p

2 . Then, by (30), we get〈
W̃AF1, W̃AF2

〉
=

∫
R

∫
R

F1(u, v)F2(u, v)dudv

= ⟨F1,F2⟩ , F1,F2 ∈ SA(R2). (31)

Then, by (25), (27)-(29) and (31), we get〈
WA( f1, 11),WA( f2, 12)

〉
=

〈
W̃AF1, W̃AF2

〉
= ⟨F1,F2⟩

=

∫
R

∫
R

F1(u, v)F2(u, v)dudv

=

∫
R

∫
R

f1(u)11(v) f2(u)12(v)dudv

=

(∫
R

f1(u) f2(u)du
) (∫

R

11(v)12(v)dv
)

=
〈

f1, f2
〉 〈
11, 12

〉
.

Remark 4.3. The relation (26) is called the Moyal identity as [6] to the Wigner-Ville distribution in the LCT domain
for f1 = f2 = 11 = 12 = f .

Remark 4.4. The function WA( f , 1) is of greatest intrinsic interest in the case 1 = f . In this case we shall write

WA( f , f ) = WA( f )

and call WA( f ), the Wigner-Ville distribution of f in the LCT domain.

Proposition 4.5. We have frequency marginal property :√
i

2πa2

∫
R

WA( f )(x, ξ)dx =
∣∣∣(LA f

)
(ξ)

∣∣∣2 .
Proof. We have√

i
2πa2

∫
R

WA( f )(x, ξ)

=
1

2πa2

∫
R

∫
R

exp
(
i
a1

a2
xp − i

1
a2
ξp

)
f
(
x +

p
2

)
f
(
x −

p
2

)
dpdx.

Now, setting u = x + p
2 and v = x − p

2 , we get√
i

2πa2

∫
R

WA( f )(x, ξ)
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=
1

2πa2

∫
R

∫
R

exp
(
i

a1

2a2

(
u2
− v2

)
− i

1
a2

(uξ − vξ)
)

× f (u) f (v)dudv

=
1

2πa2

∫
R

∫
R

exp
(
i

a1

2a2
u2
− i

1
a2

uξ + i
a4

2a2
ξ2

)
f (u)

×exp
(
i

a1

2a2
v2 − i

1
a2

vξ + i
a4

2a2
ξ2

)
f (v)dudv

=
(
LA f

)
(ξ)

(
LA f

)
(ξ).

This completes the proof of the Proposition 4.5.

We have the following results similar to [6].

Proposition 4.6. We have energy distribution property :√
i

2πa2

∫
R

∫
R

WA( f )(x, ξ)dxdξ =
∫
R

∣∣∣ f (x)
∣∣∣2 dx =

〈
f (x), f (x)

〉
.

Proof. We have∫
R

∫
R

WA
(

f
)

(x, ξ)dξdx

=
1

√
2πia2

∫
R

∫
R

{∫
R

exp
(
i

a1

2a2
xp − i

1
a2
ξp

)
f
(
x +

p
2

)
f
(
x −

p
2

)
dp

}
dξdx

Setting x + p
2 = u and x − p

2 = v, we get∫
R

∫
R

WA
(

f
)

(x, ξ)dξdx

=
1

√
2πia2

∫
R

∫
R

{∫
R

exp
(
−i

a1

2a2

(
v2
− u2

)
+ i

1
a2
ξ(v − u)

)
f (u) f (v)dξ

}
dudv

=

√
2πa2

i

∫
R

∫
R

δ(v − u) exp
(
−i

a1

2a2

(
v2
− u2

))
f (u) f (v)dudv

=

√
2πa2

i

∫
R

f (u) f (u)du

This completes the proof of the Proposition 4.6

Proposition 4.7. We have time marginal property :√
i

2πa2

∫
R

WA( f )(x, ξ)dξ =
∣∣∣ f (x)

∣∣∣2 .
Proof. Proof is straight forward as Proposition 4.6 and immediately attained.

5. The Weyl transform

The Weyl correspondence was first envisaged by Weyl arising in quantum mechanics, and is called Weyl
transform by Wong [10]. The Weyl transform has found many applications to time-frequency analysis, the
theory of differential equations, linear system theory, etc. In the theory of partial differential equation, the
Weyl operator is considered as a particular case of pseudo differential operators, see, for instance [10, 14–19].
In this section, we introduce the Weyl transform in the LCT domain and explicate the relationship with the
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Wigner-Ville distribution in the LCT domain.

At first, we give definition of a class of symbols Ss
A.

Definition 5.1. [3] Let s ∈ R. Then we define Ss
A to be the set of all functions q(x, ξ) ∈ C∞(R×R) such that for any

two non-negative integers α and β, there is a positive constant Cα,β, depending on α and β only, such that∣∣∣∣∣(Dα
x∆

β

A−1,ξq(x, ξ)
)∣∣∣∣∣ ≤ Cα,β

(
1 +

∣∣∣∣∣ ξa2

∣∣∣∣∣)s−β

, x, ξ ∈ R, (32)

where ∆A−1,ξ is as in (4), a2 is as above and Dx =
1
i

d
dx .

Definition 5.2. Let the symbol q ∈ Ss
A(R×R). For all φ in SA(R), the Weyl transform in the framework of the LCT

is a linear operator from SA(R) into SA(R) denoted by Wqφ and defined by

(Wqφ)(x) = (2πa2)−1
∫
R

∫
R

exp
(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
)
q
(x + y

2
, ξ

)
φ(y)dydξ, x ∈ R, (33)

where the integral in (33) is understood to be an iterated integral.

In order to obtain another representation of Wqφ, we let Θ be any function in C∞0 such that Θ(0) = 1. Then
we get following result :

Lemma 5.3. The limit

lim
ε→0+

(2πa2)−1
∫
R

∫
R

Θ(εξ) exp
(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
)
q
(x + y

2
, ξ

)
φ(y)dydξ

exists and is independent of the choice of the function Θ. Moreover, the convergence is uniform with respect to x on
R.

Proof. From Lemma 2.4, we have(
1 − ∆2

A,y

)N
{
exp

(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
)}

=

[
1 +

(
ξ
a2

)2]N

exp
(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
)
, x, y, ξ ∈ R. (34)

So, by (34) and Proposition 2.1, we get

(2πa2)−1
∫
R

∫
R

Θ(εξ) exp
(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
)
q
(x + y

2
, ξ

)
φ(y)dydξ

= (2πa2)−1
∫
R

∫
R

Θ(εξ)
[
1 +

(
ξ
a2

)2]−N

×

[(
1 − ∆2

A,y

)N
{
exp

(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
)}]

q
(x + y

2
, ξ

)
φ(y)dydξ

= (2πa2)−1
∫
R

∫
R

Θ(εξ)
[
1 +

(
ξ
a2

)2]−N

exp
(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
)

×

[(
1 − ∆

2
A,y

)N {
q
(x + y

2
, ξ

)
φ(y)

}]
dydξ (35)

for all x ∈ R and all positive numbers ε. Now, by (35) and Lemma 2.3, we get

(2πa2)−1
∫
R

∫
R

Θ(εξ) exp
(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
)
q
(x + y

2
, ξ

)
φ(y)dydξ
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=

N∑
r=0

2r∑
k=0

(
N
r

)(
2r
k

)
(−1)r+k(2πa2)−1

∫
R

∫
R

Θ(εξ) exp
(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
)

×

(
Dk

yq
) (x + y

2
, ξ

) (
∆

2r−k
A,y φ

)
(y)dydξ (36)

for all x ∈ R and all positive numbers ε. Now, for each fixed x in R,

Θ(εξ)
[
1 +

(
ξ
a2

)2]−N

exp
(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
) (

Dk
yq

) (x + y
2

, ξ
) (
∆

2r−k
A,y φ

)
(y)

−→

[
1 +

(
ξ
a2

)2]−N

exp
(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
) (

Dk
yq

) (x + y
2

, ξ
) (
∆

2r−k
A,y φ

)
(y) (37)

for all y and ξ in R as ε→ 0+. Furthermore, there exists a positive constant C, such that∣∣∣∣∣∣∣Θ(εξ)
[
1 +

(
ξ
a2

)2]−N

exp
(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
) (

Dk
yq

) (x + y
2

, ξ
) (
∆

2r−k
A,y φ

)
(y)

∣∣∣∣∣∣∣
≤ C

[
1 +

(
ξ
a2

)2]−N [
1 +

∣∣∣∣∣ ξa2

∣∣∣∣∣]s ∣∣∣∣∣(∆2r−k
A,y φ

)
(y)

∣∣∣∣∣ , y, ξ ∈ R. (38)

Since [
1 +

(
ξ
a2

)2]−N [
1 +

∣∣∣∣∣ ξa2

∣∣∣∣∣]s ∣∣∣∣∣(∆2r−k
A,y φ

)
(y)

∣∣∣∣∣
is in L1(R2) as a function of (y, ξ) on R2 if 2N − s > 1 i.e., N > s+1

2 , it follows from (36), (37), (38) and the
Lebesgue dominated convergence theorem that

lim
ε→0+

(2πa2)−1
∫
R

∫
R

Θ(εξ) exp
(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
)
q
(x + y

2
, ξ

)
φ(y)dydξ

exists and is independent of the choice of Θ. It can also be checked that the convergence is uniform with
respect to x on R. This completes the proof.

Definition 5.4. From the proof of Lemma 5.3, we can get another formula for Wqφ, when φ is in SA(R).

(Wqφ)(x) = (2πa2)−1
∫
R

∫
R

[
1 +

(
ξ
a2

)2]−N

exp
(
−i

a1

2a2

(
x2
− y2

)
+ i

1
a2

(x − y)ξ
)

×

[(
1 − ∆

2
A,y

)N {
q
(x + y

2
, ξ

)
φ(y)

}]
dydξ,

for all x in R, where N is any positive integer greater than s+1
2 , s ∈ R.

Proposition 5.5. Let q ∈ Ss
A, s ∈ R. Then, Wq : SA(R)→ SA(R) is continuous.

Proof. As Wq is a particular case of pseudo-differential operator [3, P. 9].

Theorem 5.6. Let q ∈ Ss
A(R). Then,

〈
Wq f , 1

〉
=

√
i

2πa2

∫
R

∫
R

q(x, ξ)WA( f , 1)(x, ξ)dxdξ, f , 1 ∈ R. (39)
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Proof. Let Θ be any function in C∞0 (R) such that Θ(0) = 1. Then, by (25), the Lebesgue dominated conver-
gence theorem and Fubini’s theorem, we get√

i
2πa2

∫
R

∫
R

q(x, ξ)WA( f , 1)(x, ξ)dxdξ

= lim
ε→0+

√
i

2πa2

∫
R

∫
R

Θ(εξ)q(x, ξ)WA( f , 1)(x, ξ)dxdξ

= lim
ε→0+

1
2πa2

∫
R

∫
R

Θ(εξ)q(x, ξ)

×

{∫
R

exp
(
i
a1

a2
xp − i

1
a2
ξp

)
f
(
x +

p
2

)
1

(
x −

p
2

)
dp

}
dxdξ

= lim
ε→0+

1
2πa2

∫
R

Θ(εξ)

×

{∫
R

∫
R

q(x, ξ) exp
(
i
a1

a2
xp − i

1
a2
ξp

)
f
(
x +

p
2

)
1

(
x −

p
2

)
dpdx

}
dξ.

Setting u = x + p
2 and v = x − p

2 , we get√
i

2πa2

∫
R

∫
R

q(x, ξ)WA( f , 1)(x, ξ)dxdξ

= lim
ε→0+

1
2πa2

∫
R

Θ(εξ)

×

{∫
R

∫
R

q
(u + v

2
, ξ

)
exp

(
i

a1

2a2

(
u2
− v2

)
− i

1
a2

(u − v)ξ
)

f (u) 1 (v)dudv
}

dξ

= lim
ε→0+

1
2πa2

∫
R

1 (v)

×

{∫
R

∫
R

Θ(εξ)q
(u + v

2
, ξ

)
exp

(
i

a1

2a2

(
u2
− v2

)
− i

1
a2

(u − v)ξ
)

f (u) dudξ
}

dv

=

∫
R

1(v)(Wq f )(v)dv

=
〈
Wq f , 1

〉
.

This completes the proof.

We denote the C∗-algebra of all bounded linear operators from L2(R) into L2(R) by B
(
L2(R)

)
.

Theorem 5.7. There exists a unique bounded linear operatorΨ : L2(R)→ B
(
L2(R)

)
such that

〈(
Ψq

)
f , 1

〉
=

√
i

2πa2

∫
R

∫
R

q(x, ξ)WA( f , 1)(x, ξ)dxdξ (40)

and ∥∥∥Ψq
∥∥∥
∗
≤

1
√

2πa2

∥∥∥q
∥∥∥

L2(R2)
(41)

for all f and 1 in L2(R) and q in L2(R2), where ∥.∥∗ denotes the norm in B
(
L2(R)

)
.
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Proof. Let q ∈ SA(R2). Then, for any f in SA(R), we define
(
Ψq

)
f by(

Ψq
)

f = Wq f . (42)

Then, by Theorem 5.6 and (42),〈(
Ψq

)
f , 1

〉
=

〈
Wq f , 1

〉
=

√
i

2πa2

∫
R

∫
R

q(x, ξ)WA( f , 1)(x, ξ)dxdξ (43)

for all f and 1 in SA(R). Therefore, by Theorem 4.2 and (43),∣∣∣〈(Ψq
)

f , 1
〉∣∣∣ ≤ 1

√
2πa2

∥∥∥q
∥∥∥

L2(R2)

∥∥∥WA( f , 1)
∥∥∥

L2(R2)

=
1

√
2πa2

∥∥∥q
∥∥∥

L2(R2)

∥∥∥ f
∥∥∥

L2(R)

∥∥∥1∥∥∥L2(R)
(44)

for all f and 1 in SA(R). Hence, by (44),∥∥∥(Ψq
)

f
∥∥∥

L2(R)
≤

1
√

2πa2

∥∥∥q
∥∥∥

L2(R2)

∥∥∥ f
∥∥∥

L2(R)
(45)

for all f in SA(R). Therefore, by (45),∥∥∥Ψq
∥∥∥
∗
≤

1
√

2πa2

∥∥∥q
∥∥∥

L2(R2)
, q ∈ SA(R2). (46)

Now, let q ∈ L2(R2). Let
{
qm

}∞
m=1 be a sequence of functions in SA(R2) such that qm → q in L2(R2) as m→∞.

Then, by (46),∥∥∥Ψqm −Ψqk

∥∥∥
∗
≤

1
√

2πa2

∥∥∥qm − qk

∥∥∥
L2(R2)

→ 0

as m, k→∞. Thus,
{
Ψqm

}∞
m=1 is a Cauchy sequence in B(L2(R)). We defineΨq to be limit in B

(
L2(R)

)
of the

sequence
{
Ψqm

}∞
m=0. This definition is independent of the choice of the sequence

{
qm

}∞
m=1. Indeed, let {σm}

∞

m=1
be another sequence of functions in SA(R) such that σm → q in L2(R2) as m → ∞. Then, again by (45), we
get ∥∥∥Ψqm −Ψσm

∥∥∥
∗

1
√

2πa2

∥∥∥qm − σm

∥∥∥
L2(R2)

→ 0

as m→∞. Thus, the limit in B(L2(R)) of
{
Ψqm

}∞
m=1 and {Ψσm}

∞

m=1 are equal.

Next, let q ∈ L2(R2) and let
{
qm

}∞
m=1 be a sequence of functions in SA(R2) such that qm → q in L2(R2) as

m→∞. Then, by (46), we have∥∥∥Ψq
∥∥∥
∗
= lim

m→∞

∥∥∥Ψqm

∥∥∥
∗
≤

1
√

2πa2
lim

m→∞

∥∥∥qm

∥∥∥
L2(R2)

=
1

√
2πa2

∥∥∥q
∥∥∥

L2(R2)

and (41) is proved.
Now, if f and 1 are in SA(R), then by (33),〈(

Ψq
)

f , 1
〉
= lim

m→∞

〈(
Ψqm

)
f , 1

〉
= lim

m→∞

√
i

2πa2

∫
R

∫
R

qm(x, ξ)WA( f , 1)(x, ξ)dxdξ

=

√
i

2πa2

∫
R

∫
R

q(x, ξ)WA( f , 1)(x, ξ)dxdξ.
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Finally, let f and 1 be in L2(R). Then, we pick sequences
{
fm

}∞
m=1 and

{
1m

}∞
m=1 in SA(R) such that fm → f in

L2(R) and 1m → 1 in L2(R) as m→∞. We have〈(
Ψq

)
f , 1

〉
= lim

m→∞

〈(
Ψq

)
fm, 1m

〉
= lim

m→∞

√
i

2πa2

∫
R

∫
R

q(x, ξ)WA( fm, 1m)(x, ξ)dxdξ

=

√
i

2πa2

∫
R

∫
R

q(x, ξ)WA( f , 1)(x, ξ)dxdξ.

It is obvious that Ψ : L2(R2) → B(L2(R)) is the only bounded linear operator satisfying (40) for all f and 1
in L2(R) and q in L2(R2). Therefore, this completes the proof.

6. Conclusion

Based on the LCT and classical Fourier-Wigner transform, this paper proposes the definition of the linear
canonical-Wigner transform in harmonic analysis of phase space alongwith some of its results. Moreover
the Wigner-Ville distribution in the LCT domain as [6] is discussed briefly. Further the Weyl transform in
the LCT domain is defined and established a relation between WVD along with Weyl transform in the LCT
domain. The future works will be applicable to study the boundedness and compactness of defined Weyl
transform in LCT domain on the Lp space.
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