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Abstract. In this paper, we start by presenting multiple-term refinement of Young’s and Young’s type
inequalities and its reverse using different weights, which extends and unifies two recent and important
results due to M. Khosravi (Math. Slovaca 68 (2018), 803-810) and L. Nasiri et al. (Asian-European Journal
Math. 15, (2022) No. 07). Further, we mainly present some new real power inequalities of Young’s
inequality, extending a key results of Alzer et al. (Linear Multilinear Algebra 63(3) (2015), 622-635), D. Q.
Huy et al. (Linear Algebra Appl. 656 (2023), 368-384) and J. Zhao (Bull. Malys. Math. Sci. Soc. 46, No
52 (2023)). As applications of these results, we provide some inequalities for matrices, unitarily invariant
norms and traces.

1. Introduction and preliminaries
The classical Young inequality states that
a*b"™ < aa + (1 - a)b, (1)

where a,b > 0 and 0 < a < 1. Equality holds if and only if @ = b. This inequality can be considered as the
weighted arithmetic-geometric mean inequality

aff,b < aV,b, )

where afi,b = a®b'~* and aV,,b = aa + (1 — a)b. This inequality, despite its simplicity, has attracted the interest
of researchers in operator theory because of its applications in this field. Several studies have focused on
refining this inequality and its reverse by finding intermediate terms or adding some positive quantities.

The first refinement of Young’s inequality is the squared version, which is formulated and proved in [7]
as follows:

(a*6'=")? +15(a — b)? < (aa + (1 - )b, X
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where rg = min{a, 1 — a}.
Later, Kittaneh and Manasrah [15] obtained the following interesting refinement of Young’s inequality
and its reverse:

a0~ +ro(Va— V) < aa + (1 - )b < a°b'™* + Ro(Va — Vb)Y, (4)

where rg = min{a, 1 — a} and Rg = max{«a, 1 — a}.
In [14], Kérus gave the following refinement of Young’s inequality:
(1 + L(a) log? (g)) 40" < qa + (1 a)b. (5)
where L is the 1-periodic function defined by

(6)

Ly [SORP e
0 ift=0.

Very recently, Ighachane and Akkouchi established the following multiple-term refinements of Young’s
inequality.

Theorem 1.1 ([10]). Leta,b > 0,0 < a <1and N € IN*. Then

LN Nt 2
(1 + (22Na) ]0g2 (%)) aApte L (o) ; ﬁ/k({)l, b)X(kz;ll’zLI)(a)
< aa+(1-a), @)

where x; stands for the characteristic function of an interval I, rg = min{a, 1—a}, r,(a) = min{2r,_1(a), 1 -2r,-1 ()}
k=l k=l ko1 k 2
and fix(a,b) = Va2 b 7 — \arb 7| .

For some related refinements and generalizations of Young's inequality, we refer the reader to recent papers
[6, 21] and the references therein.

In [1], Alzer, Fonseca and Kovacec established the following generalization of inequalities (4) for two
weights arithmetic and geometric means using two different weights.

Theorem 1.2 (Alzer-Fonseca-Kovacec). Leta,b>0,0<a<f<1land A > 1. Then

+ A
(%) ((”VW‘(”*W)S<aVab>A—<aﬁab>As(iig) (@V3b)* — tghy"). ®

The significance of Theorem 1.2 is as follows: when g = 1 or a = 3, then Theorem 1.2 retrieves inequalities
(4). In fact, Theorem 1.2 implies better estimates than the main result of [2]. The Alzer-Fonseca-Kovacec
inequalities can be regarded as a major development concerning the Young’s inequality.

The Kantorovich constant is defined by K(t,2) = “Z:)Z for t > 0. Recently, Khosravi has obtained in
[16] the following refinement of Alzer-Fonseca-Kovacec inequalities (8) for A = 1 using the Kantorovich

constant as follows

Theorem 1.3. Leta,b>0and0<a <B < 1. Then

K(H,2) afiub < aV,b — (%)(avﬁb — alfgh) < K(h¥,2)F afi.b, )
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wherer = min{%,1 — &, R = max(%,1- &} and h = L In addition,

B B
K(h'~,2)" afigh < aVgh — ( = —F )(aV b — aflab) < K(h"%,2)X atigh, (10)
where t” —mm{} i, = a} R” —max{i z, - —}andh

Very recently, Nasiri etal. obtained in [18] the following refmement of Theorem 1.3 using the Kantorovich
constant.

Theorem 1.4. Leta,b>0and 0 < a <f < 1. Then

(Vb - /aﬁﬁb)z + K(VHP, 2)" afl,b
av,b - (%)(avﬁb — afigh)

IA

IN

R(VD — \Jatsh)® + K(VIF, 2)F aff,b,

R = max{%,1

g1- %}, r =min{2r,1 - 2r}, R = max{2r,1 - 2r} and h = Z. Moreover,

wherer—mm{ﬁ,l— ﬁ}

2 ,
r(\/& - \/aﬁab) + K(Vh'=2,2)" afigh
< aVgh- (1 ﬁ)(aV b — aff.b)
< R(Va— valab)? + K(Vii=2,2)R atigh,
where r —mm{} z, } ﬁ} R= max{} g, i i} r =min{2r,1 - 2r} and R’ = max{2r,1 - 2r}and h =

In a recent work, Kai [13] gave the following Young type inequality:
[azaa“bl_”‘)((or%](a) +(1- a)z_zaa“bl_a)((%/l)(a)] + r%( Va - \/5)2 <aa+(1-a)’h, (11)

where ryg = min{a, 1 — a} and y; the charcteristic function.
Very recently, Nasiri et al. obtained in [19] the following refinement of Young’s type inequality (11)
using the Kantorovich constant.

Theorem 1.5. Leta,b>0and 0 <a <pf <1

1. IfOSoc<ﬁ$%then
() (e 8 - o320,

where rg = min{2a, 1 — 2a}.
1
2. If§§a<ﬁslthen

da+(1-a)Pb > (1-a) %" +(1-a) ( Va - \/E)z
2
+ rO\/E(\/\/aﬁZﬁl(l_“)\/E_ \/(1—“)\/5)
+ (ig : 1) \/5( VaVap-1(1 — a) Vb — Va1 (1 - o) ‘/E)),

where ry = min{2a — 1,2 — 2a}.



M. A. Ighachane et al. / Filomat 37:22 (2023), 7383-7399 7386

The main aim of this work is to establish refinements and generalisations of Alzer-Fonseca-Kovacec type
inequalities. In Section 2, we obtain the improvement and reverse improvement of Alzer-Fonseca-Kovacec
inequalities (8) and Alzer-Fonseca-Kovacec type inequalities (11) for A = 1 by adding as many refining
terms as we wish. In Section 3, via the weak sub-majorization theory we present a new refinement of
Alzer-Fonseca-Kovacec inequalities mentioned in Theorem 1.2. Further, we establish some Alzer-Fonseca-
Kovacec type inequalities for inequality (11). In Section 4 and 5, we apply the obtained results of the
previous sections to matrix inequalities.

2. Multiple-term refinement of Young’s and Young’s type inequalities and its reverse using different
weights

We start this section by the following refinement of the first inequality in Theorem 1.2 for A = 1 by
adding as much refining terms as desired.

Theorem 2.1. Leta,b>0,0<a <p <1land N € IN". Then

1(2Ve
1+ % log? (aﬁﬁ ) af,b %(avﬁb - aﬁﬁb)
N-1 o
+ Z fix(atigh, DX (1 1) ( ﬁ)
1=0
< aVub

Proof. By using Theorem 1.1, we have

aV,b - %(avﬁb ~agh) = (1 - %)b + %aﬁﬁb
L(2Ng
> [1 + <22Nﬁ) log? (@) 1“(111:1 b)i

N-1 2! o
+ I‘[(‘B)Zﬁk(ﬁlﬁﬁb b))((k1 k)(ﬁ)

k=1
0

As a consequence of Theorem 2.1 is the following refinement of the second inequality in Theorem 1.2 for
A =1, by adding as many refining terms as we wish.

Theorem 2.2. Leta,b>0,0<a <f <1land N € N*. Then

L(2N -
( N a) log? (aﬂ:b) affgh  + 1 — i(avab - aﬂab)

— 21 _
1 - i) Zﬁ,k(aﬁab,a)x(%l,g,) (1 _ ﬁ)

k=1

1+

IA
_
3
=
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Proof. Notice that, if 0 <a < <1then0<1-8<1-a<1. Hence, by changing respectively a,b, @ and f8
by b,a,1 - and 1 — a in Theorem 2.1 we obtain the desired result. [J

Remark 2.3. Observe that, for A = 1 the second inequality in Theorem 1.2 can be written as follows:

(fﬁ )[av b) — (@ab)] < (aVgb) - (atigh), (12)

where 0 < a < B < 1. Consequently, Theorem 2.2 present multiple refining terms of inequality (12).

Using Theorem 1.1, we obtain the following version of Alzer-Fonseca-Kovacec’s type inequalities for
inequality (11) for A = 1 and its refinement.

Theorem 2.4. Leta,b > 0and a, B be two real numbers.

L Ifo<a<pB<1 Then

2
Q2a+(1-a)h>alafb + %(avﬁb — afigh)

N-1 2
" Zn(%)z fi(a(afyh), b)x(%l,g)(%)-
k=1

1=0

2. If1 <a<B <1 Then

a —ﬁ)2

Bra+(1-pBPb>(1- ﬁ)l naﬁ[gb + (aV,b — afi,b)

N-1 -
+ rz( )Zflk( (1= P)(atab), b)x(ic1, 1) (_a)

=0

Proof. We first claim that

o-or-oft)n-o-o 23]

For0 < a < B < 1, we have

(1—a)2—a2(1“%ﬁ)2(1—a)—a( _‘B)

m

= (1-a’-(01- oc)>a( ;ﬁ) a(Tﬁ)
Q-aP-(1-a)_ a®-a
= 1-p > B
- (a—l)aza((x—l)
1-p p
1 1
& —< =
I-p B
— ﬁs%.
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Now, by using Theorem 1.1, we have

a2a+(1-aPb — %z(avﬁb — afigh) = ((1 —aP-a? (%)) b+ %(a(uﬁﬁb))
1 —
> ((1 —a)—«a (T‘B)) b+ % (a(aﬁﬁb))
- (1 - %)b + % (a(atsb)
. . N N-1 o 2! o
> afb'F(apb)f + Zr,(g)z fix(alatigh), b)x(kﬂ],;)(ﬁ)

1= k=1

2!

a = a
= afaf.b+ Zrl (E)

I=

fiatigh), D)x(sc1 1y (

=I|R

k=1 )
This prove the first inequality.
Notice that, if 1 <@ < < 1then 0 < @ < g < 1. Hence, by changing respectively a,b, @ and B by b,a,1 - B
and 1 — « in the first inequality in Theorem 2.4, we obtain the desired results. [

3. An improvement of Alzer-Fonseca-Kovacec’s inequalities via weak sub-majorization

In this section, we give an improved version of Theorem 1.2, due to Alzer-Fonseca-Kovacec’s inequalities
and Alzer-Fonseca-Kovacec’s type inequalities for inequality (11).

The method used in [11, 12] to prove a refinement of Alzer-Fonseca-Kovacec’s type inequalities has the
AM-GM inequality approach, that we cannot use her to prove the general case for a real power A. To prove
the general case we begin with recalling the theory of weak sub-majorization. Throughout this section,
we denote by u* = (u;, e, u;) the vector obtained from the vector u = (uy, ..., u,) € R" by rearranging the
components of it in decreasing order. Then, for two vectors u = (u1,...,u,) and v = (vy,...,v,) iIn R*, u is
said to be weakly sub-majorized by v, written u <, v, if

forall k = 1,...,n. An important feature of the theory of weak sub-majorization which will be used in
proofs of our results is given by the following lemma.

Lemma 3.1. [17, pp. 13] Let u = (u;)i_, ,v = (v;)i_; € R" and ] C R be an interval containing the components of u
and v. If u <, vand ¢ : | — R is a continuous increasing convex function, then

Zn:¢(ui) < Zn:¢(vi)-
pa =1

3.1. An improvement of Alzer-Fonseca-Kovacec’s inequalities

In order to accomplish our results, we need the following Lemmas.
The following Lemma is a direct consequence of Theorem 2.1 for N = 1.

Lemma 3.2. Leta,b>0and 0 <a < <1. Then

L(22
Vb > [1 + # B log? (%)] (atb) + % (aVsh — (atgh) + 2x, (bV(aﬁﬁb) - uﬁgb),

where ry = min{%, 1- %}.
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Lemma3.3. Let a,b > 0,0 < a < B < 1land let u = (uy,up,u3),v = (v1,02,03) € R3? be two vectors with
components

uy = (1 + /\1 IOg2 (g)) ﬂﬁab, Uy = % (aV,gb) , U3z = 21‘0 (bV(ﬂﬂﬁb)) ,

and a
v1=aVub, vy = E(ﬂﬁﬁb)/ v3 = 2roafisb,
2

L a
where rg = mm{ 1- —} and A1 = min ﬂ 2, L(%),L(a) ¢ . Then, we have u <., v, namely, the vectors u* and v*
Z B Y

have components satzsfymg that

uy < v, (13)
uy+uy, < v +0, (14)
uy+uy+uy < 0] +0; +0;. (15)

Proof. In order to prove (13) remark that v} is exactly v1. Indeed, on one hand we have v; > v,, since v1 > up
and 1, > v>. On the other hand, we have

v; —uz = (1 —a—1o)b+aa —roaigh > 0. (16)

In fact, first of all remark that

(e, B) €0,1]* : 0<a$[3<1}={(a,[3)€[0,1]2 : 0<0¢S§}

U{(a,ﬁ)E[O,llz : §Sa<1}.

At this point, we distinguish two situations.

If o € (0, 6 ,then rg = £, and so (16) becomes
2 B

U1 —us

(1—(1—%)b+0za—%aﬁﬁb

(1 a-— —) b+ aa— aliﬁb + % (aVﬁb) - % (aVﬂb)
= (1 a- E 3(1 ﬁ))b+ ﬁ(avﬁb— (atigh))
= (.B Za)b % aVgb — (aﬂﬁb)

0.

p

=

Ifae [g, 1), thenrg=1-— Q. Therefore

U1 — U3

|
—_———

|

|
N— S —

<

+

)

:z

|
—

[—

|

|
N

—

)

n==

=

(S

N

v



M. A. Ighachane et al. / Filomat 37:22 (2023), 7383-7399 7390

This implies that v; > v3, because v; > u3 and u3 > vs. Hence, v] = v;. Moreover, from the previous note

we have u; < v; for every i = 1,2,3. In particular, u] < o].

The third inequality comes from Lemma 3.2 and we have

Uy +up +uz <v+ 0+ 0s. (17)

To prove the second inequality (14), the following inequalities should be shown.

up+uy < v1+0y, (18)
up+us < v +703, (19)
Uy +us < 01 +0s. (20)

The first inequality (18) comes easily from Theorem 2.1 for N = 0. For the second inequality (19), since
vy < up together with (17), we get that

Uy +uz < v+ o3 — (Up — ) < U1+ vs.

Now let us treat our last inequality (20). We discuss the following two cases.
Ifae (O, g], thenry = ;—’ We have

0L+ 0y — (s +uz) = aVab+ %(aﬁﬁb) - (%(avﬁb) + %“(W(aﬁﬁb))
- (55
> 0.
Iface [g,l), thenrg=1-— % Hence
01+ 0y — (Up +uz) = aVab+ %(aﬁﬁb) - (%(bvﬁa) +2 (1 - %) (bV(aﬁ,gb)))
2 —
- ( . P )(aﬂﬁb)
> 0.

This completes the proof. [

We are now able to present our first main result of this section. Our arguments are inspired by some ideas
from [8]. As mentioned before, the following results generalize those of Alzer et al. [1], Duong et al. [8]
and J. Zhao [23].

Theorem 3.4. Leta,b > 0,0 < a < B < 1and ¢ be a strictly increasing convex function defined on (0, +o0). Then
G@Vb) > & ((1 T Ay log? (g))uﬁab) + (%(avﬁb)) —¢ (%(aﬂﬁb))
+ o(2ro®Viatb) - ¢ (2r0 (aﬁgb)). 1)

where ry = min{%,l — %} and A = min{@ﬁ{L(%),L(a)}.
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Proof. Letu = (u1, up,u3) and v = (vq,v2, v3) two vectors in R? where the component are the same as Lemma
3.3. Since u <y, v, by applying Lemma 3.1, we get that

(1) + P(u2) + P(usz) < P(v1) + P(v2) + P(v3),

or equivalently,
B(01) 2 () + (p(12) — p(02)) + (P(u3) — P(v3)).
This completes the proof. [J
The reverse version of Theorem 3.4 is presented in the following theorem. To achieve this result, we use
the previous theorem and some special variable changes. We also mention that the following theorem can

be proved using the same arguments of Theorem 3.4.

Theorem 3.5. Leta,b> 0,0 < a < B < 1and ¢ be a strictly increasing convex function defined on (0, +c0). Then

o(aveh) = cp((l 1 15 log? ( ))aﬁﬁb) + qb( i (uVab)) - qb( 1:5{ (aj:tab))
+ @(2Ro(aV(aiab))) — ¢ (2Ry (aﬁl% b)), (22)
where Ry = min {12,112} and 1, = rnm{L(zi D —ap L (12),La - ,B)}

Proof. It is easy to see that0 <1 - <1—a <1 whenever 0 < a < < 1. Hence, by changing respectively
a,b,a and B by b,a,1 — fand 1 — a in Theorem 3.4, we get the desired result. O

Now, by selecting ¢(x) = x* for A > 1, in Theorems 3.4 and 3.5, we get the following corollary.

Corollary 3.6. Leta,b>0,0<a < B <1land A > 1. Then, we have

) (1 + Ay log? (g))A (atb)" + (%)A ((avﬁb)A - (aﬁﬁb)A)
+ (2r)" ((bV(aﬁﬁb))A - (aﬁgb)A), (23)

1- %}, and Ay = min{@ﬁzl L(%),L(a)} . And

where ryp = min { 5

p

A
(aveh)' = (1 1 15 log? ( )) (atisb)" + (1 ) ((@Vab) — (atiab))
+ R ((@Viazb)' - (atseb)'), (24)
where Ry = min{g,l - %} and A, = min{L(zi p’)(l a)?, L (%),L(l —ﬁ)}.

Remark 3.7. Before proceeding to further results, we explain a little about the relation among the Corollary 3.6 and
Theorem 1.2. Notice that the first inequality in Theorem 1.2 can be written as follows:

A
(%) [(avﬁb)A - (aﬁﬁb)A] < (aVab)" — (afiab)", (25)
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with0 < a < B < 1and A > 1. While the second inequality in the same theorem can be stated in the following way

A
(g) [@Vab)' - atab)'] < (“Vﬂb)A — (afig)", 26

where 0 < a < B < 1and A > 1. Consequently, the first inequality in Corollary 3.6 present two refining term of (25),
while the second inequality in Corollary 3.6 present two refining term of (26). Therefore, the Corollary 3.6 give a
considerable refinement of Theorem 1.2. This is the main significance of our results. In the next sections, we present
explicit examples of refined inequalities for both matrices.

3.2. An improvement of Alzer-Fonseca-Kovacec’s type inequalities

In this subsection, we present Alzer-Fonseca-Kovacec’s type inequalities mentioned in the previous
subsection for inequality (11). For this, we need the following Lemmas. The first one comes directly from
Theorem 2.4.

Lemma3.8. Leta,b>0and 0 < a < p < 3. Then

a’a+ (1 - )b > af (afib) + %2 (aV,gb - (aﬁﬁb)) + 21 (bV(a(aﬁ,gb)) - \/a(aﬂgb)),

where 1y = min{%, 1- %}.

Lemma 3.9. Leta,b>0,0<a<p< % and u = (11, U, u3),v = (v1, 02, v3) € R® be two vectors with components
a az
1 = abaleb, up = F (aVﬁb),u3 =219 (bVoc(al:iﬁb)),
and
a2
v =a*a+(1-a)bh, vo = F(aﬁﬁb)’ v3 = 21y Vaatisb,
2

where rg = min{§,1 — £}. Then, we have u <, v, namely, the vectors u* and v* have components satisfying that

B’ B
uy < v, (27)
uy+uy; <0+, (28)
uyp+uy +uy < 0] +0, + 05 (29)

Proof. In order to prove (27) remark that v] is exactly v;. Indeed, on one hand we have v; > v, since

2(1 —
v — Uy = (1—0()2—#)172(1—%)1720,

and u; > v,. On the other hand, we have

v —uz = (1 —a)? —19)b + a’a — roar(atigh) > 0. (30)

In fact, first of all remark that
2 1 2 B
{(oz,ﬁ)e[O,l] : 0<a§ﬂ<§}= (@ el01P: 0<ass

LJ{(UC,ﬁ)G[O,l]2 : §$a< %}
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At this point we distinguish two situations.
Ifae (O, g], then ry = £, and so (30) becomes

U1 — U3

\%

=

El

(1 — a)* = ro)b + a?a — roar(alfgh)

a? a?

2
((1 —-a)’ - g)b +a%a - %aﬁﬁb + 5 (aV/;b) ~ (aVﬁb)

p

((1 —a)p - “—2(1 —p) - f)b + “—z(avﬁb ~ (afigh)

p p p

(1 - % - %)b + %z(avﬁb ~ (afigh)
2

)b + %z(avﬁb — (afigh))

Ifae [g, %), thenrg=1-— % Therefore

((1 —a)? - (1 - %))b +a%a

o (1 _ %) (aVgh) + a (1 - %) ((ﬂvﬁb) - (“ﬁﬁb))

o-or- o3 -

(2a —Baa + « (1 - %) ((aVﬁb) - (aﬁlgb))

U1 — Uz

\%

2

((1 _a)2 _ az(lﬁ_ﬁ) _ (1 _ %) + M —(X(l —ﬁ))b
(Qa - pPaa+a (1 - %) (aVgb) - (atigh))
(2042(;— B all - ﬁ))b

Qa - Blaa + (1 - %) (aVgb) - (atigh))

((1 - p)2a - p)
o 22T H)

0.

; )b +(2a - P)aa + a (1 - %) (aVsb) — (atsb))

This gives that v > v3, because u3 > v; and v; > u3. Hence, v] = v;. Moreover, by the previous note, we
have u; < vy for every i = 1,2, 3. In particular, 1} < v].

=1

The third inequality comes from Lemma 3.8 and we have

Uy +uy+uz <0+ 0 +03. (31)

To prove the second inequality (28), the following inequalities should be shown.

Uup + Uy
U, + us

Uy + Uz

U1+ 0y,
01 + 03,
01 + 0s.

(32)
(33)
(34)
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The first inequality (32) comes easily from Theorem 2.4 for N = 0. For the second inequality (33), since
vy < up together with (31), we get that

Uy +uz <y +o3— (Up — ) < v + vs.

Now, let us treat our last inequality (34). We discuss the following two cases.
Ifae (O, g], thenrg = % We have

D+ —(+us) = Pa+(1-a)?b+ %Z(aﬁﬁb) - (%2 (aVb) + 21 (bVa(aﬁl;b)))

2
= [1=a2- ad-p _ g)b
(( VT B
> (1-2- g)b
: ( BB
_ B- 20()b
-
> 0.
Ifae [g, %), thenro =1- . Hence
1+ — (U +u3) = afa+(1—a)’b+ %z(aﬁﬁb)
- (%z(avﬁb) + 2(1 - %) (bVa(aﬂﬁb)))
_ 201 _
_ a(zaﬁ ﬁ)(uﬁﬁb)+((1—a)2——a (15 P —(1—%))19
> 0.

This completes the proof. [J

In the following, we state our second main result of this section, which present a improvement of Alzer-
Fonseca-Kovacec’s type inequalities for inequality (11).

Theorem 3.10. Leta,b > 0,0 < a < B < 1 and ¢ be a strictly increasing convex function defined on (0, +c0). Then
¢(Pa+1-a)’h)) = ¢(afaab)+ ¢ (%(avﬁb)) —¢ (%(aﬁﬁb))
+ ¢(2roBValatsh) - ¢ (2r0 Va (aﬁgb)) . (35)

where 1y = min{%‘,l - %}.

Proof. Letu = (u1, up, u3) and v = (vq,v2, v3) two vectors in R? where the component are the same as Lemma
3.9. Since u <y, v, by applying Lemma 3.1, we get that

P(u1) + P(u2) + P(usz) < P(v1) + P(v2) + P(v3),

or equivalently,
B1) 2 1) + (P(i2) — p(02)) + (b(uz) — p(v3))
This completes the proof. [J

The following theorem presents the reversed version of the previous one.
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Theorem 3.11. Leta, b >0, % < a < B < 1and ¢ be a strictly increasing convex function defined on (0, +00). Then
(o0
o wvan) - o (Lt
+ @(2Ro(aV(1 - p)(atab))) - ¢ (2Ro V(T = ) (aﬁl# b)),

where Ry = mm{} 5,1 %}.

¢ (aza +(1- a)zb)

\%

Proof. Notice that, if 5 <a<B<1lthen0<1-p<1-a< i Hence bychanging respectively ,b,a and p
by b,a,1 - and 1 — a in Theorem 3.10, we obtain the desired results. [

Now, by applying Theorems 3.10 and 3.11 on ¢(x) = x* for A > 1, we get the following result, refining the
corresponding results in [5, 13, 16, 19].

Corollary 3.12. Leta,b>0,0<a<pf<land A >1.
L IfO<a<p<1ithen

2

(zx%))\ ()" + (%)A ((aVﬁ ) (aﬂﬁb)A)
' ((ovatasiv)' - (VG (o) ) a6

\%

(aza +(1- oz)zb)A

+

where 1y = min{%, 1- F}'

2. If%Sa<ﬁ£1then
(avpp)" > (1+/\zlog2(§)) (atish) + (1 P ) ((aVab)" - (@tat))
+ @R (@ - piatab) - (VT Fatiscd) ), (37)

where Ry = min{%, 1- %’3}.

—_

)

4. Some refinements of matrix inequalities

In this section, we present some new matrix inequalities, that extend some known results in the literature.
We point out that the results in this section are valid for the algebra B(H) instead of M,,. However, our
discussion will be limited to M, only. A matrix A € M,, is called Hermitian if A = A*, where A" is the
adjoint of A. The notation A > 0 (A > 0) is used to mean that A is positive semi-definite (positive definite),
if A and B are Hermitian and A — B is positive semi-definite, then we write A > B. The set of all positive
semi-definite matrices is denoted by M, and the set of all definite matrices in M} is denoted by M;/*.

For A,B € M;}*, and a € [0,1] the operators arithmetic, geometric, means are defined respectively, by

AV,B := (1 -a)A +aB, Af,B := AY 2(A‘l/ 2BA~Y 2)aA” 2. The famous Young’s inequality for operators states
that
A#.B < AV,B where «a €[0,1].

For x > 1, the definition of A#,B = AY 2(A‘l/ 2ZBA7Y 2)xAl/ 2 is still well defined. We start this section by the
following Lemma quoted from [20, p. 3].
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Lemma 4.1. Let A € M,, be Hermitian. If f and g are both continuous real valued functions on an interval that
contains the spectrum of A, with f(t) > g(t) for t € Sp(A) (where Sp(A) stands for the spectrum of A), then

f(A) 2 g(A).
The following theorem presents the matrix version of Corollary 3.6.

Theorem 4.2. Let A,Be M}*,0 <a < B <1land A > 1. Then we have

(%)A(AﬂA(AvﬁB) ~ At14B)

+(2r0)A(A|.‘M (AV(A#:B)) - Al B) + VLATS(A\B)Af B
< Aﬂ)\ (AvaB) - Aﬁ/\aB/ (38)

where 1y = min{%, 1- %}, and A1 = min{@ﬁz,L (%),L(a)} . And

(%)A(AMA%B) - AﬂAaB)

+(2R0)A<Aﬁ,1 (BV(A#.B)) - Afia B) + V1A S(A\B)AlhysB
< Af\(AVgB) — A \sB, (39)

1-p
—a

where Ry = min{;=,1 - 1L}, and A, = min{@a —a)%, L(1L), L1 - 5)} .
Proof. Letb =1 and a = t in inequality (23), by using the following inequality

(1 +A1log?(t)* = 1+ Ay log?(t), t>0

we get

G (@-pepnt - #)

p
A
+(2ro)* [(1 ;tﬁ) - t?]
<((1-a)+at)* — (1 + A log? ()t (40)

The matrix X := A"2BA™? has a positive spectrum, then by Lemma 4.1 and inequality (40) we get

(%Y«a—ﬁﬂ+ﬁXV - xM)

A
+(2rp)" {(I +2Xﬁ) - XAZ/S]

< ((1 =)l +aX)! — X** — A1 1og(X) log(X)X*. (41)

Finally, multiply the inequality (41) by A? on the left and right hand sides we get
A
(E) (ABA(AVgB) — AfhisB)

+(2r0)/\(A]:tA (AV(A#sB)) - Ai:th) + VA1 A7'S(A\B)Ati 1. B
< A#A(AV,B) — Af1.B, (42)
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Using the same technique, we can obtain the other inequality. This completes the proof. [

The following theorem presents the matrix version of Corollary 3.12.

Theorem 4.3. Let A,Be M}}*,0 <a < B <1and A > 1. Then we have
L IfO<a<p<ithen

(%Z)A(Aﬂ,\(AV}gB) — AfB)

+(2r0)A(AﬂA (AVoz(AﬂﬁB)) - \/EAﬂgB)
< A\ ((1 — a)*A + a®B) — Ath1.B, (43)

where ry = min{%,l - %}.

1.If%§a<ﬂ£lthen

1- 2
“ _‘2 ) (Af:(AV, B) - A#,.B)
+(2R0)A(Am (BV(1 - B)(AlB)) — T~ BAf 1. B)
< AfA((1 - B)*A + B°B) — AtiysB, (44)
where Ry = min{}%ﬁ, 1- i_;i}.

Proof. Let b = 1 and a = t in the first inequality of Corollary (3.12), then

&) (@-ppr - )

B
A
)
<((1-a)*+a?)t — 1t (45)

By applying Lemma 4.1 and inequality (45) to X := A"1BA™: we get

(E) (@-prepot - x)

p
A
) o]
< ((1 - @)1+ a?X)* — X4, (46)

So, multiply the inequality (46) by A? on the left and right hand sides we find

(Q—Z)A(AﬁA(AVﬁB) — AtB)

B
+(2ro)A(A|:$A (AVa(AﬂﬁB)) - V&AﬁgB)
< A#1((1 — a)*A + a®B) — Ati1.B. (47)

Using the same technique we obtain the other inequality. This completes the proof. [
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5. Matrix norm inequalities

The singular values of a matrix A € M, are the eigenvalues of the positive semi-definite matrix |A| :=
(A*A)12, denoted by s(A) for j = 1,2,3,...,n; arranged in a non-increasing order. A unitarily invariant
norm ||| - ||| on M,, is a matrix norm that satisfies the invariance property: [|[UAV]|| = |||All| for every A € M,
and for all unitary matrices U, V € M,,. The trace norm is given by [|Al; := tr|A| = Z;’zl sj(A), where tr is
the usual trace. This norm is unitarily invariant. An important example of unitarily invariant norm is the
Hilbert-Schmidt norm || - ||, defined by

Al = tr(AA"): = () |a,-,j|2)%, (A = (@).
ij

Let A,Be M;}*, X € M, \ {0}. The classical Young inequality afi,b < aV,b has been extended to matrices
as follows

IA“XB" |l < alllAXIIl + (1 - &)lIXBIll, 0 < a < 1. (48)

Now, we use Corollary 3.6 to obtain the following refined version of the corresponding Young's inequal-
ity (48) for norms.

Theorem 5.1. Let A, Be M*, X e M, \{0},0 <a < B <1and A > 1. Then we have

IAXIII

A
IIIXBIII)) (lA*XBa )"

(IAXIIVAIIXBID* ~ (1 +M 1082(

A
> (%) (AIAXIIVSIXBIN® ~ (HAXIIgSIIXBIN')

A
+ (2r0)" ((|||XB|||V(|||AX|||ﬁ,3|||XB|||))A ~ (A x| ) (49)

where ry = min{%, 1- %} and A1 = min{@ﬁz,L(%),L(a)} . And

AXII

AXIVHIXBIN = (1+ A2 Tog?
(NAXIIVIIXBII) 28 \IxBIl

) anarxer-#iy
1—ﬁ A A A
> (m) (AIAXIIVLIIXBIN' — (IAXIIEIIXBID)

+ @) ((AXIVAIAXIZNIXBID) ~ (IAXIE: IXBI) ), (50)

a

where Ry = min{1=,1 — 1L} and A, = min{L(sz(l —a)?, L(:£),L(1 - ﬁ)}.
Proof. Using the first inequality in Corollary 3.6 with a = |||AX]|l, b = ||IXB||| and noting that the unitarily
invariant norm |||.||| satisfying (see, [2—4])
IIA*XBll < IIAXIIIIXBIII".
Hence, we obtain the desired results. [
The famous Young inequality for trace can be stated as follows:
tr(A*B7 ) <tr(1-a)A+aB), 0 <a<1. (51)

We have the following theorem which present two refining term of the corresponding Young’s inequality
(51) for trace of matrices.
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Corollary 5.2. Let A,Be M}, 0<a < B <1and A > 1. Then we have

A
tr* (AV,B) > (1 + A log2 (%)) trt (A"‘Bl_"‘)

A
’ (%) (i (AVsB) ~ (tr(A)tstr(B)))
A A
+ (2 ((tr(B)V(tr(A)ﬁﬁtr(B))) (o A)ﬂgtr(B)) ) .

where 1y = min{%,1 —

41— %) and Ay = min{@ﬁz,L(%),L(a)}.And
A
trt (AV;;B) > (1 + Ay log? (%)) tr! (AﬁBl_ﬁ)

1-8Y R )
(m) (tr (AVaB)—(tr(A)ﬁatr(B)))
+ (@n)’ ((tr(A)V(tr(A)ﬁatr(B)))A - (tr(A)ﬁ%tr(B))’\)’ )

1-B
where Ry = min{+=£,1 - 1=£} and 1, = min{@u — )2, L(E), L(1 - ﬁ)}.
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