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Abstract. Various families of such Special Functions as the hypergeometric functions of one, two and more
variables, and their associated summation, transformation and reduction formulas, are potentially useful
not only as solutions of ordinary and partial differential equations, but also in the widespread problems
in the mathematical, physical, engineering and statistical sciences. The main object of this paper is first to
establish four general double-series identities, which involve some suitably-bounded sequences of complex
numbers, by using zero-balanced terminating hypergeometric summation theorems for the generalized
hypergeometric series ,,1F,(1) (r = 1,2,3) in conjunction with the series rearrangement technique. The
sum (or difference) of two general double hypergeometric functions of the Kampé de Fériet type are then
obtained in terms of a generalized hypergeometric function under appropriate convergence conditions. A
closed form of the following Clausen hypergeometric function:
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3F (_ 41— z)3)

and a reduction formula for the Srivastava-Daoust double hypergeometric function with the arguments
(z,—%) are also derived. Many of the reduction formulas, which are established in this paper, are verified by
using the software program, Mathematica. Some potential directions for further researches along the lines
of this paper are also indicated.
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1. Introduction and Preliminaries

In our present investigation, we use the following standard notations:

Np :=INU {0} (N:=1{1,2,3,---}

and
Zy:=7Z U0} (Z :=1{-1,-2,-3,---}).

Moreover, as usual, we denote by C, R and Z the sets of complex numbers, real numbers and integers,
respectively.

The general Pochhammer symbol (or the shifted factorial) (1), (A,v € C) is defined, in terms of the
familiar (Euler’s) Gamma function, by (see, for example, [15] and [31])

1 (v=0, AeC\ {0}
n]:[l(/\+j) (v=nelN; 1eC)
=0
I'(A —1)k

Ay = (F(I)V) = ((nl_) k’;! A=-m v=k nkeNp 0Lk <n) 1
0 (A=-nm, v=k nkeNy k>n)
(-1 (v=-k ke N; A €C\Z)
(1—A_)k 4 7 7

where it is understood conventionally that (0)p := 1 and assumed tacitly that the Gamma quotient exists.

A natural generalization of the Gauss hypergeometric series »Fi[a,f;);z] , that is, the generalized
hypergeometric series ,F; with p numerator parameters «; (j = 1,---,p) € C and g denominator
parameters f; (j=1,---,q) € C is defined by
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provided that g; e C\Z; (j=1,---,9).
Assuming that none of the numerator and denominator parameters is zero or a negative integer, we
note that the ,F, series in (2):

(i) converges for |z| < o0, if p £ g;
(ii) converges for |z| <1,ifp=g+1;
(iii) converges absolutely for |z] = 1,if p = g+ 1 and R(w) > 0;
(iv) converges conditionally for |z| =1 (z# 1),ifp=g+1and -1 < R(w) £0;
(v) diverges forallz (z#0),ifp>q+1;
(vi) diverges for|z| =1,ifp =g+ 1and R(w) £ -1,

where w is given by

9
w = Zﬁj—zaj, (3)

P
= A

R(w) being the real part of the complex number w.
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In the case when w = 0, 441F,(2) is called a zero-balanced hypergeometric series.

Just as the Gauss function >F; was generalized to ,F; by increasing the number of the numerator
and denominator parameters, the four Appell functions Fy, F,, F3 and Fy (see [31, p. 53, Eqgs. (4), (5), (6)
and (7)]) and their seven confluent forms ®;, ®,, @3, ¥, ¥,, E; and E;, which were studied by Humbert
(see [10] and [11]), were unified and generalized by Kampé de Fériet (see [12] and [4, p. 150, Eq. (29)]; see
also [2] and [3]) who defined a general hypergeometric function of two variables. In the modified notation
introduced by Srivastava and Panda [32, p. 423, Eq. (26)] (see also [6, p. 112]), we recall here a more general
double hypergeometric function than the one defined by Kampé de Fériet) as follows:

9

14 k
(a,) : (b,); (cx); o H(ﬂj)ws H(bj)r [[(Cj)s .
Pk l S o y} = I x_' %/ 4)

Cmn -

t

(a{g) : (ﬁm)/ (Vn) 1,5=0 H(O(]')H.s 4m (,B])r l_nI(J/])s
j=1 j=1 j=1

where, for convergence,
)p+g<l+m+1 and p+k<l+n+1 when max{lx], |yl} < oo;

(ii)p+g=C+m+1 and p+k=£€+n+1 when

V=0 4 [y #-0 < 1 (p>0);

(5)
max{lx, [yl} < 1 (<0

Throughout this paper, we find it be convenient to abbreviate the parameters ay,--- ,a, by (a,),, b1, -+, b,
by (b;), , and so on.

For a detailed and systematic discussion of the absolute and conditional convergence of the Kampé de
Fériet double hypergeometric series in (4), the reader can refer to a beautiful research paper by Hai et al. [9,
pp. 106-107].

As long ago as 1969, Srivastava and Daoust [24, p. 199] defined a generalization of the Kampé de Fériet
function in (4) (see also [4, p. 150]) by means of the following double hypergeometric series (see also [25]
and [26]):

[(@a) : 9, 9] : [(B5) : Y1;[(B) : ']
FA:B;B’ Xy
C:D;D’ ’
[(cc) : &, €] : [(dp) : n);[(@),) : 7]

A B B

o oo H(aj)mSﬁmpj H(bj)nll/},' H(b})nlp’,
B Z Z j=1 j=1 j=1 !
- C D

Dl
m=0 n=0 H(Cj)méﬁnsj H(dj)mnj H(d;)nn;
j=1 j=1 j=1

n

Y

xm
m!

where the coefficients
‘91/"./‘914; @1/"'/@14; lpll".llpB; lpil".llngf; 61/'.'16C;

&1, ,€C, nlr"' /rID; n’ll ’T’b’
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arereal and positive. Also, for the sake of brevity, (a4) is taken to denote the set of A parametersas, as,- -+ ,aa,
with similar interpretations for (bs), (by,), and so on. Moreover, if we set

A B
A1:=1+25]~+Zm—29,~—2¢j ®)

and

then we have the following convergence requirements for the double power series in (6):
(i) If Ay > 0and A, > 0, then the double power series in (6) converges for all complex values of x and y;

(ii) If Ay = 0and 4, = 0, then the double power series in (6) is convergent for suitably constrained values
of |x| and |y| (see, for details, [26]);

(iii) If A1 < 0and A, < 0, then the double power series in (6) would diverge except when x = y = 0.

Next, from the following binomial theorem:

) A
1 _ Zn B 7 )
1-2" = ;(A)n = =1Fo B z] (larg(1-2) < m; 1 €C) (10)
it can be deduced that
A;
\Fo 11=0 (R(A)<0) (11)
and
A;
1Fo -1l=2* (A e€Q). (12)

We also have the following result for a terminating Gauss hypergeometric series:

oFy =  (Fean Zg). (13)

2

F 1 3A+2.
oz 1] 2 (3/\

3A.
2/

The series rearrangement technique, which we shall use in this article, is based upon the following
double-series identities [31, p. 100, Lemma 1, Egs. (1) and (2)]:

i i H(m,n) = i i HE(m —n,n) (14)
m=0 n=0 m=0 n=0

i H(n,m) = i i Z(n+m,m), (15)
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and also on the easily-derivable series identities given by

f E(m, n) = Z E(m, n) + Z E(m+n+1,n) (16)
m=0 m=0
and
co n+p 0 oo oo (p-1)
ZZ: =ZZE(m,n+m)+ZZE(m+n+1,n) (p € N). 17)
n=0 m=0 n=0 m=0 n=0 m=0

The following rather obvious decomposition formula will also be useful in our investigation here:

E(n i B(2n) + Z EQn+1). (18)

n=0 n=0

Mz

1l
o

n

In all of the above series identities, it is each of the series involved is absolutely convergent.
The following zero=balanced hypergeometric summation theorems will also be needed in our investi-
gation.

I. A Zero-Balanced Terminating Hypergeometric 3F, Series (see [14, p. 539, Entry 91])

-m,q, ﬁ/ m!
F = 19
P kpomek | OO P (19
(k,meNo; mzk a,pa—kp—m+keC\Zy).
II. A Zero-Balanced Terminating Hypergeometric 4F3 Series (see [14, p. 555, Entry 19])
-m,q, ﬁ/ )// m!
aF3 = ' (20)
[ Gk s,y — (m—k—5) ] (1= )@~ B~ Vs
(k,s,m €Ny, mzk+s, a,p,y,a-kp—-s,y-—m+k+s eC\Za).
ITI. A Unification and Generalization of the Zero-Balanced Series (19) and (20)
—m, ﬁl/ ﬁZI Tty ﬁr—ll ﬁi’/
r+1Fr 1
Bi—ki,Bo—ko, -, Br1 — k1, Br—(m =k — ko — ks — -+ —kr—1);
1
m! 1)

- (1 - ﬁl)kl (1 - ﬁz)kz e (1 - ﬁr—l)k,_l (]- - ,Br)m*h*kz*"-*k,_l
(ki ke, Koot m € No; m 2 ki + ko + - + ki),
the remaining numerator and denominator parameters being neither zero nor negative integers.

Remark 1. The unification and generalization (21) follows from the zero-balanced terminating hypergeo-
metric summations (19) and (20), which are recorded by Prudnikov et al. [14]. In fact, we have also verified
the general result (21) numerically by taking suitable values of the numerator and denominator parameters
and using the software, Mathematica. The analytic proof of the summation theorem (21) may be left as an
exercise for the interested readers.
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Our present investigation is motivated essentially by several interesting and widespread developments
on various families of zero-balanced hypergeometric functions by (for example) Anderson et al. [1], Bithring
and Srivastava [5], Evans and Stanton [8], Karp [13], Richards [16], Saigo and Srivastava [17], A. K. Srivas-
tava [18], Srivastava [19], Srivastava and Jain (see [27] and [28]), Wang et al. (see [36], [37], [38] and [39])
and Zhao et al. [40]. In particular, we express the sum (or difference) of two general double hypergeometric
functions of the Kampé de Fériet type in terms of a generalized hypergeometric function under appropriate
convergence conditions.

The article is organized as follows. In Section 2, we derive our first general double-series identity (22)
by using the zero-balanced terminating hypergeometric summation theorem (19) and the above-mentioned
series rearrangement technique. In Section 3, two new results (33) and (35) for the sum (or difference) of
two double hypergeometric functions of Kampé de Fériet type are derived by applying the first general
double-series identity (22). In Section 4, we establish the second general double-series identity (36) by using
the zero-balanced terminating hypergeometric summation theorem (19). In Section 5, we obtain a closed
form (40) of the Clausen hypergeometric function:

27z
2 (‘4(1 - z>3)

and a reduction formula (43) for the Srivastava-Daoust double hypergeometric function with the arguments
(z,—3%) in terms of the difference of two generalized hypergeometric functions of one variable with the same
argument 4°+1-E 22 by making use of the second general double-series identity (36). In Section 6, we prove
the third general double-series identity (44) by applying the zero-balanced terminating hypergeometric
summation theorem (20). In Section 7, the result (45) for the sum (or difference) of two double hypergeo-
metric functions of the Kampé de Fériet type is obtained by using the third general double-series identity
(44). In Section 8, a unification and generalization (47) of the first and the third double-series identities (22)
and (44) is established by using the above zero-balanced series (21). Finally, in Section 9, we present several
concluding remarks and observations.

Remark 2. Throughout this article, we assume that any values of parameters and arguments, which would
render the results in Sections 2 to 8 invalid or undefined, are tacitly excluded.

2. First Application of the Zero-Balanced Series (19)
Theorem 1. (First General Double-Series Identity) Let {@(y)}‘;’:O be a bounded sequence of essentially arbitrary
real or complex numbers such that ©(0) # 0. Then the following general double-series identity holds true:

(]

p! Z"
(1 -a)s (1_b)p—s ;6(71"'}7) (1_b+p_5)n

O (1=b+p—9)n(@)u)y 2" 2" pab
= @ -
Zémz:o T ) s p = (4 Pu@— sl @—5)0—p +39)
oo p-1
@+ Dpem(b + V(1 = P 2"
. nZ:O pr O +7) (1 +a=9)um@nim(L —b+p—8)u(L+b—p+8)u @)

(pgs; p,s€Ng; 1-a,1-ba-s,+x(b-p+s)eC\Z;; zeC),

provided that the single and double series involved in the assertion (22) are convergent.
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Proof. Let us consider

zP - z"
@)= Ty | Lo (1—b+P—S)n]
~ ke LM+p )
= 2,00+ G @)

which, upon replacing n by n — p, yields

- _ 24
o) ;@ ((1—a)s<1 B, ) 29
We now apply the zero-balanced hypergeometric summation theorem (19) in the equation (24). We thus
find that

0 7 —n,a, b/

Q@) = ) () = 3F 1 (25)
n!
n=p a-s,b—n+s;

If we now replace n by n + p in this last equation (25), we find that

0@ =Y O+ p) A “epabi
z—n:O n+p (n+p)'32 a—s,b_n_p_,.sl.
oo ntp
- (=11 = P)u(@) (D) 27
_;MZ:‘ Ot +p) (@=8)mb—n—p+s)y, (n+p)m!’ (26)

which, by virtue of the double-series identity (17), assumes the following form:

o] o] (_n —m - P)m(a)m(b)m Zl’l+m+p
Q@) = ZZ@(n+m+p) @=syuylb—n—m—-p+s), (n+m+p)m
n=0 m=0
co p— 1
(_n - P)m+n+1(ﬂ)m+n+l (b)m+n+1 Z"*P
’ Z MZ;) O D) =S area® =1 = p + Nrrens @uen (1 + P @7)

Finally, if we appropriately apply the following identities involving the Pochhammer symbols:

(=1 = Pmsnst1 = (—1)"+1P (r+1).(1- P)m (m < p- 1), (28)
_ (_1)m(1 + p)n+m
(—n—m—=p = BT (29)
D" =b+p = S)men
b-n-m—-p+s), = A=b+p—9), (30)

and

G-n=—p+s)ysn1 =()"O-—p+s)1-b+p—5)(1+b—p+5)y, (31)
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in the equation (27), we obtain

PSS (1= b+ p = 8)u(@)n(b) 2"
Q@) =13 ) O +m+p) (L =b+p = rm(L + Phuld — )y 1!

n=0 m=0
o p-1
pabzp -
O(n +p)

. (61 + 1)n+m(b + 1)n+m(1 - p)m z"
A+a=9)nsm@ueml =b+p—=95)(1+b—p+3s)y’

(32)

which leads us readily to the first general double-series identity (22) as asserted by Theorem 1. [J

Remark 3. For the precise convergence condition on z € C in the assertion (22) of Theorem 1, it is necessary
to know the actual form of the sequence {@(y)}ffzo. In this connection, for the convergence condition on

z € C, see the result (33) in which the value of ®(u) is known.

3. Application of the First General Double-Series Identity (22)

In this section, we apply Theorem 1 in order to establish the reducibility of the sum (or difference) of
two double hypergeometric functions of the Kampé de Fériet type.

Theorem 2. The following reduction formula holds true:

p!
A=ad=D D, p+1FE11

dp)+p,1; }
z

(ee)+p1-b+p-—s;

_ poaz dp)+p:1,1-b+p-s;a,b; e pab
1+E:1;1 () +p1—b+p—s:1+pa—s (@a=s)b—p+5s)
a+1,b+1:1,dp)+p;—-(p—-1),1;
2:14D;2
“Foaven z,1 (33)
1+a—-s2:(p)+p,1-b+p—s;1+b—-p+s;

(p 2s; p,s€Ny, 1-a,1-b,(er),a—s,+(b—p+s) e C\Za),
it being understood that D £ E when |z| < oo, and that D = E + 1 when |z| < 1.

Proof. If we set

(d1)u(d2)y -~ ([@dp)y
(e1)ue2)y -+~ (ep)y

O(u) = (4 € No)
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in both sides of the double-series identity (22), we find after simplification that

p! (d1)p -~ (dp)y . (di+p)u-(@dp +p)u (1) 2"
(1= a)s(L = b)p—s(er)p -~ (ee)p (&= (1 + Pln--- (e + PIu(l = b +p =), 1!
_ (d1)p -+ (dp)yp
(e1)p -~ (ee)p
Z Z : (d1 4+ P)uem - [@p + Plm (D (L= b+ p = 8)u(@)m (b)m 2™
e

1+ Pnm €+ Plnam(L =0+ p = )psm(L + p)u(a — s), n! m!

n=0 m=0

_ pab(dy), -+ - (dp)p N @+ D0+ Do
(a - S)(b -p+ S) (el)p e (eE)p HZ:; mZ:O (1 +a-— S)n+m (2)n+m
_ (@d1+p)n(dp+p)y W =Pl 1) 2" 1"
e +ph-(e+p)a(L=b+p—s)(l+b—p+s)ynm!’

(34)

By first applying the definition (2) in the left-hand side of the equation (34) and the definition (4) in
the right-hand side of the equation (34), and then simplifying the resulting equation, we get the reduction
formula (33). O

For s = 0, the reduction formula (33) yields the following corollary.

Corollary 1. The following reduction formula holds true:

| (dD) +pr 1/
———p+1FE41 z
(=0} () +p1-b+p;
(dp)+p:1,1-b+p;b;
D:2;1
=F %10 Z,z

(ee)+p1-b+p:1+p—

Pb\ 1102 b+1:1,@p)+p-(p-1 1L
(b p)F1;1+E;’1 z,1 (35)

2:(p)+p,1-b+pb—p+1;

(p € No; 1-b,(ee), (b - p) € C\ Z),
it being understood that D < E when |z| < oo, and that D = E + 1 when |z| < 1.

4. The Second Application of Zero-Balanced Series (19)

Theorem 3. (Second General Double-Series Identity) Let {\If(y)};":O be a bounded sequence of essentially
arbitrary real or complex numbers such that \W(0) # 0. Then the following general double-series identity holds true:

ii )m \Ij(l’l+ )(3a)n+3m Z"m

n=0 m=0 (3&) 1’[' m!
= W(0) — 22W(1) + 422 Z W(2n +2)(22)* - 873 Z W(2n + 3)(2z)*" (36)
n=0 n=0
(3aeC\Z;; zeC),

provided that the infinite series occurring on both sides of the assertion (36) are convergent. The right-hand side of
the assertion (36) is independent of the parameter a.
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Proof. We denote the left-hand side of the identity (36) by A(z) so that

A =YY (1) W+ m) CDrom 27 ) <), (37)

I !
n=0 m=0 (3a)2m n:m:

which, upon replacing n by n — m, followed by some simplications, yields

5 (—1) (30 + 1)
(3a)2m m!

A = Y Ba), W) 2
n=0

m=0
_n,

00 3a+n 3a+n+l.
2 7 2 7
= Y Ga), W) = - SFs 1}
=0 3a 3a+l
27 2 7/
-1 3a+2
7 2 7
= W(0) + 3azW(1) o F; 1]
3a.
2 4

-n, 2 7/ 2/

+ Y00 W) o [ 9)

30 3a+l.

3a+n 3a+n+l.
1]
2 7 2 7

The rest of our proof would require replacing n by n + 2 in the equation (38), and then appropriately
using the series decomposition identity (18), the terminating Gauss series (13) and the zero-balanced
hypergeometric summation theorem (19). This will eventually lead us to the following result:

(3a)2n+2 Z211+2

Az) = W(0) - 22W(1) + Z W(2n +2)

n=0 ( W)n+l (1 - 3ﬂ+%n+3 )n+1
- (30)us3 2273
+ HZ:(; W(2n + 3) (1 - M)m (1 - 3“%”4)%2. (39)

Finally, in the right-hand side of the equation (39), we apply some easily derivable Pochhammer
symbol identities from (1). Then, after some further simplification, the assertion (36) of Theorem 3 follows
readily. O

5. Application of the Second General Double-Series Identity (36)

In this section, we establish one more reducible case related with the Clausen hypergeometric function
3F>.

Theorem 4. The following reduction formula holds true for the Clausen hypergeometric function 3F,:

a,a+%,a+3%;
sF2

- 40
3 a1, 4(1-2)3 1+2z (40)
27 2 7

27z ] _a- z)3

1
(27|z| <41-2; Jarg(l -] <7 |2l <1; 2 # —3; 3a e €\ Zg).

Proof. Upon setting W(u) = 1 for all non-negative integer values of u in both sides of the double-series
identity (36), if we make use of the Taylor-Maclaurin expansion, that is, the case A = 1 of the binomial
theorem (10), we get

(41)
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which can be rewritten as follows:

oo § Ol o), () -

(3—“)’” (:’Lﬂ)m mt i L2

m=0 2

2

Finally, in view of the definition (2), the last equation (42) yields the required result (40). O

Remark 4. The (presumably new) reduction formula (40) has also been verified numerically by using the
software, Mathematica, in the interval -1 < R(z) < 1 and J(z) = 0.

Theorem 5. The following reduction formula holds true for a general Srivastava-Daoust double hypergeometric
function:

[(dD) : 1/ 1]/ [3[1 : 1/ 3] _/ ,
FD+1:0;0 _E
E:0;2 ’ 1
[(ee) : 1,1] :—;[% : 1][% : 1];
D D
[1(d)) [1(d)) (@p)+2 ()43 1.
j=1 j=1 2 72
=1-2z~ +42° E 20+1F2e o2 s 4b+1-E ;2
ep)+2  (ep)+
[1(e)) Hl(ej)z A
= i
D
[1d))s (dD2)+3 (dD2)+4 1
]‘:1 7 7L, B
- 87° : 2p+1F2e s s 4P+1-E 2 (43)
+ +
'1_‘[1(6j)3 EET/ KET/
]:

(e1,e2,+ -+ ,ep,3a € C\Z;).

Proof. In order to prove the reduction formula (43), we first put

D
diy
_ (d)u(d2)y -~ (dp)y j=Hl( 2

T ey | E
ey B e

W(u) (1 € No)

Then, by using the definition (6) in the left-hand side and the definition (2) in the right-hand side of the
resulting equation, we obtain the required reduction formula (43). O

Remark 5. In the case when 2D + 1 < 2E, both sides of the equation (43) are convergent for |z| < c0. As a
matter of fact, the reduction formula (43) has been numerically verified by using the software, Mathematica.
It is worth noting that the right-hand side of the equation (43) is independent of the parameter a.

6. Application of the Zero-Balanced Series (20)

Theorem 6. (Third General Double-Series Identity) Let {(ID(/J)};":O be a bounded sequence of essentially arbitrary
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real or complex numbers such that ®(0) # 0. Then the following general double-series identity holds true:

p' N
(1= @) = D)ol = poics ,;Oq’(”“”) (I—ctp—k=9),
Rehs (1=c+p—k—5)(@)n®)n(C)m Zmm
=L L) e =BGy
pabc > 1CD
(c—p+k+s)a—k)(b—s)nz‘amzvlO (n+p)

. @+ Db + Dy + Dy (1 = p)imz”
A +a—=B)nim(1 +b = 8)sm()nsm(l —c + p- k—s),(1+c— p+ k +8)u

(44)

(p 2k+s; ks,peNy; 1-a,1-b,1-ca-kb—-s, £(c—p+k+s)eC\Z;; ZEC),
provided that the infinite series occurring on both sides of the assertion (44) are convergent.
Proof. The demonstration of Theorem 6 follows the same lines as those of our derivation of Theorem 1.(22).
Use is made here of the zero-balanced series (20). O
7. Application of the Third General Double-Series Identity (44)

Theorem 7. Forp 2 k+s,k,s,p € Noand 1-a,1-b,1—c,(eg),a—k,b—s,£(c—p+k+s) € C\ Z;, the following
sum (or difference) of two double hypergeometric functions of the Kampé de Fériet type holds true:

pl (dD)+p/1r
p+1FE+1 z
1 -a)- b)s(l_c)pks T p)+pl—c+p—k—s;
@dp)+p:1-c+p—-k—-s,1;a,b,c
D:2;3
=Feiia zz
(ee)+pl—c+p—k—-s:1+pa-kb-s;
B pabc
@a-kb-s)c—p+k+s)
a+1,b+1,c+1:(dp)+p,L,-(p-1),1;
3:D+1;2
F 315:11 z,1{, (45)
a-k+1,b—s+1,2:(eg)+p,1—c+p—k-s;c—p+k+s+1;
provided that D £ E when |z| < co and that D = E + 1 when |z| < 1.
Proof. Just as in our demonstration of Theorem 5, we first set
1)
d)u(d) - @dp)e =1 H
D) = ( 1)#( z)y ( D); _/ 1 (€ Np) (46)

(e1)u(e2)y -~ (ep)y

E
H(e j)y
j=1
in both sides of the double-series identity (44) After some simplification, we obtain the hypergeometric

representation given on the right-hand side of the reduction formula (45). O

Corollary 2. The cases of the reduction formula (45) when k = 0 and k = s = 0 yield the corresponding results in
the forms of (33) and (35), respectively.
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8. Unification and Generalization of the Double-Series
Identities (22) and (44)

Theorem 8. (Fourth General Double-Series Identity) Let { V(y)};"zo be a bounded sequence of essentially arbi-
trary real or complex numbers such that v(0) # 0. Then the following general double-series identity holds true:

p! i o z"
(n+p)
r=1 1- r -k —k—"’_kr— n
(1= Bpokskr ks Hl(l — B, " A-Br+p—ki—k 1)
j=
o W +p=Br—ki—ky = —kr1)u ﬁ(ﬁj)m
:ZZV(n+m+p) ];_1
n=0 m=0 (1 + p)n(l +p- ,Br - kl - k2 - kr—l)n+m ]:[1(5] - k])m
j=
p ﬁ(ﬁj)
Zn+m ]:1
nlm! r-1
Br—p+kithka+ - +k-1) Hl(,Bj_kj)
j=
- j:ﬁl(l B~ (- D)
Z v(n+p) —
n=0 m=0 (2)n+m 1_[1(1 + ,Bj - kj)n+m
j=
: z , 47)
A+p-B-ki—-kr— k) (l=—p+B+ki+hkp+-- +k1)m

provided that z € C,
pzki+ky+---+k-1 (pkiky,- k-1 €Np),

1_ﬁ111_,82/”'/1_‘8}’—1/1_,3}'60:\26/

B1—ki,Bo—ko, -, Br-1 — k1 €C\ Z,

and
=B, —p+ki+k+---+k_) e C\Z,;.

The infinite series, which occur on both sides of the assertion (47), are also assumed to be convergent.

Proof. Consider the function O(z) given by

1

O(z) = r—1
(1 = Br)p—ti—ky—trs Hl(l — Bjk;
j=

ZVl+p

.Zv(nﬂ?) Q+p—Br—ki—ko—- —k1)n

n=0

(48)

Upon replacing n by n — p in the equation (48), if we make use of an elementary Pochhammer-symbol
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identity derivable from (1), we obtain

7380
O@) = ——— Zv(n) —Z
H(l—ﬁ])l ( ﬁr)n k1 —ky——ky_
j=1
=Y v A z (49)
"=p (1 = Br)n—ky—ky——ky_y Hl(l = B,
!

We now apply the generalized zero-balanced hypergeometric summation theorem (21) for ,.1F,(1) in
the equation (49), and replace n by n + p. We thus find that

i Z1+p

0@ =) v+p) o

o n+p)!

_(Tl + p)/ ﬁl/,82/ et /,8771/,87;
r+1Fr 1
Br—ki,Bo—=ko, B =k, fr—(m+p—ki—kp — - = k1);
i nty P
= vin+p) ——
n=0 m=0 (1/1 + P)'

(-=n— P)m(,Bl)m(ﬁZ)m .

. : (ﬁr—l)m(ﬁr)m
(B1 = k)m(B2 — k) - -

(ﬁr—l - kr—l)m(ﬁr -—n-—-p + kl + k2 +

ot kr—l)m m! ' (50)
Finally, we use the double-series identity (17) in the equation (50), and apply several Pochhammer-

symbol identities resulting easily from the definition (1), we are led eventually to the following result for
the function O(z) defined by (48):

U(z)—ziiiv(rz+m+p) Du+p=pr =k

ko= —=ke1)n
n=0 m=0 (1 +p_187_k1 _kZ_"'_kr—l)n+m(]-+p)n
1B 2" p2 T1(8))
j=1 j=1
=1 r—1
[1B) =k ntmt pl(Br=p+hy+ kot +ker) [1(B; ~ k)
]_ ]:
o oD 110+ Buen( = (7= 1), DO
. Z Z v(n+p) —
n=0 m=0 (2)n+m 1_[1(1+,8j_kj)n+m(1 +P_,Br_k1 _k2_"'
=

_krfl)n
7N (1)m
Q+Br—p+ki+thk+-

ot kp1)m n! m! (51)
The required identity (47), which is asserted by Theorem 8, would now follow upon multiplying the
right-hand sides of the equations (48) and (51) by —. O

Remark 6. By applying the fourth general double-series identity asserted by Theorem 8, one can derive
several further results, which are analogous to those in Section 3 and Section 7, involving the Kampé de
Fériet type double hypergeometric functions and the generalized hypergeometric function of one variable
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9. Concluding Remarks and Observations

In our present investigation is motivated essentially by the widely- and extensively-demonstrated
usefulness of various families of such Special Functions as the hypergeometric functions of one, two and
more variables, and their associated summation, transformation and reduction formulas, are potentially
useful not only as solutions of ordinary and partial differential equations, but also in the widespread
problems in the mathematical, physical, engineering and statistical sciences (see, for example, [29], [30];
see also [20]). Here, in this paper, we have established four general double-series identities by using some
zero-balanced terminating summation theorems for 3F»(1), 4F3(1) and ,+1F,(1). by using these general
double-series identities, we have deduced the sum (or difference) of two double hypergeometric functions
of the Kampé de Fériet type. We have also derived closed-form reduction formulas for the following
Clausen hypergeometric function:

27z )

32 (_ 4(1-z)3

and the Srivastava-Daoust double hypergeometric function with the arguments (z, —%). The various re-
sults, which we have presented in this article, are potentially useful in mathematical analysis and applied
mathematics.

With a view to encouraging and motivating further researches emerging from the present investigation,
we have chosen to draw the attention of the interested readers toward some related recent developments
(see, for example, [7], [20], [21], [22], [23], [33], [34] and [35]) on hypergeometric functions, hypergeometric
polynomials and other families of higher transcendental functions, and also various basic (or quantum or
g-) series and basic (or quantum or g-) polynomials.

Conflicts of Interests: The authors declare that there are no conflicts of interest.
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