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Existence of solutions for a delay singular high order fractional
boundary value problem with sign-changing nonlinearity

Erbil Çetina, Fatma Serap Topala

aEge University Faculty of Secience, Mathematics Department, 35100 Bornova, Izmir-Turkey

Abstract. This paper consider the existence of at least one positive solution of a Riemann-Liouville
fractional delay singular boundary value problem with sign-changing nonlinerty. To establish sufficient
conditions we use the Guo-Krasnosel’skii fixed point theorem.

1. Introduction

In the last decade, fractional analysis has become a growing field of study in mathematics due to its
effective application in different scientific fields such as mathematical biology, statistics, dynamics, control
theory, optimisation, and chaos theory. In recent years, fractional differential equations studies have been
in the field of interest of many scientists and important studies have been carried out in this field see [1-9].
In particular, we would like to mention some results which has been done to the existence of positive
solutions to Riemann -Liouvlle fractional boundary value problems involving singularity and delay terms
[11-14] and the references therein.
In [10], Henderson and Luca considered the existence of positive solutions for the following multi-point
Riemann-Liouville fractional boundary value problem with a sign-changing nonlinerity,

Dα0+u(t)) + λ f (t,u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = u′′(0) = ... = u(n−2)(0) = 0,

Dp
0+u(1) =

m∑
i=1

aiD
q
0+u(ξi),

where λ > 0 is a positive parameter, α ∈ R, α ∈ (n − 1,n], n ∈ N, n ≥ 3, ξi ∈ R for all i = 1, ...,m, m ∈ N,
0 < ξ1 < ξ2 < ... < ξm < 1, p, q ∈ R, p ∈ [1,n − 2], q ∈ [0, p] and the nonlinearity f may change sign and may
be singular at t = 0 or t = 1. By using the Guo-Krasnosel’skii fixed point theorem, some new results on the
existence of one positive solution were obtained.
In [11], Su was concerned with existence of one positive solution of the following boundary value problem

Dαx(t)) + f (t, x(t − τ) = 0, t ∈ (0, 1) \ {τ},
x(t) = η(t), t ∈ [−τ, 0]
x(1) = 0,
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where 1 < α ≤ 2, 0 < τ < 1, η ∈ C([−τ, 0]), η(t) > 0 for t ∈ [−τ, 0) and η(0) = 0 and f may be singular at t = 0,
t = 1 and x = 0 and may take negative values. By using Krasnosel’skii fixed point theorem, the existence of
at least one positive solution of the model was presented. In [12], Mu et al. studied the following singular
Reimann-Liouville fractional boundary value problem with delay

Dαx(t)) + λ f (t, x(t − τ) = 0, t ∈ (0, 1) \ {τ},
x(t) = η(t), t ∈ [−τ, 0]
x(1) = x′(0) = 0,

where 2 < α ≤ 3, λ > 0, 0 < τ < 1, η ∈ C([−τ, 0]), η(t) > 0 for t ∈ [−τ, 0) and η(0) = 0 and f may be singular
at t = 0, t = 1 and x = 0 and may change sign. By using Guo-Krasnosel’skii fixed point theorem, the
eigenvalue intervals for the existence of at least one positive solution were obtained.

In [13], Liu and Zhang obtained the existence of at least one positive solution for the following high
order fractional boundary value problem with delay and singularities including changing sign nonlinearity

Dα0+x(t)) + f (t, x(t − τ) = 0, t ∈ (0, 1),
x(t) = η(t), t ∈ [−τ, 0]

x′(0) = x′′(0) = ... = x(n−2)(0) = 0, n ≥ 3

x(n−2)(1) = 0

where n − 1 < α ≤ n and f may be singular at t = 0, t = 1 and x = 0 and may change sign. By the means
of the Guo-Krasnosel’skii fixed point theorem, Leray-Schauder’s nonlinear alternative theorem, existence
results of positive solutions were given.

Recently, numerous studies have been considered in nonlinear fractional differential equations (see
[14-28]).

Motivated by the articles mentioned above, we concentrate on the existence of positive solutions for the
following boundary value problem (BVP) of a fractional differential equation with delay term

Dα0+ y(t) + λh(t) f (t, y(t − τ)) = 0, t ∈ (0, 1) − {τ}, (1)
y(t) = η(t), t ∈ [−τ, 0],
y(0) = y′(0) = y′′(0) = ... = y(n−2)(0) = 0, n ≥ 3,
Dp

0+ y(1) =
∑m

i=1 aiD
q
0+ y(ξi), ,

(2)

where λ is a positive parameter, τ ∈ (0, 1), α ∈ R, α ∈ (n − 1,n], n ∈ N, n ≥ 3, ξi ∈ R for all i = 1, ...,m,
m ∈ N, 0 < ξ1 < ξ2 < ... < ξm < 1 and ξi , τ, p, q ∈ R, p ∈ [1,n − 2], q ∈ [0, p], h ∈ C([0, 1],R+),
f (t, y) ∈ C((0, 1) × R+,R), f (t, y) may change sign and be singular at t = 0, t = 1, y = 0 and η(t) > 0 for
t ∈ [−τ, 0), η(t) = 0 for t = 0. Dα,Dp and Dq are the standard Riemann-Liouville fractional derivatives.

The paper is structured in such a manner, in Section 2, we will give some necessary definitions and
lemmas which are used in the main results. We present the associated Green’s function with its properties.
For clarity, we also state Guo-Krasnosel’skii fixed point theorem. In Section 3, we present the existence
theorems for the positive solutions of the boundary value problem (1)-(2) with respect to a cone.

2. Basic Definitions and Preliminaries

We first introduce some necessary definitions and lemmas in this section. The following auxiliary
Lemmas are necessary to illustrate the existence of solutions for problem (1)-(2).

Definition 2.1. [29,30] The integral

Iβ1(t) =
∫ t

a

(t − s)β−1

Γ(β)
1(s)ds,

where β > 0, is the fractional integral of order β for a function 1(t).
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Definition 2.2. [29,30] For a function 1(t) the expression

Dβ0+1(t) =
1

Γ(n − β)

(
d
dt

)n ∫ t

0
(t − s)n−β−11(s)ds,

is called the Riemann-Liouville fractional derivative of order β, where n = [β] + 1, and [β] denotes the integer part of
number β.

Lemma 2.3. [31] Assume that 1 ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order β > 0 that belongs to
C(0, 1) ∩ L(0, 1). Then

IβDβ1(t) = 1(t) + c1tβ−1 + c2tβ−2 + · · · + cNtβ−N,

for some ci ∈ R, i = 1, 2, · · · ,N, where N is the smallest integer greater than or equal to β.

Lemma 2.4. [10] Let 1 ∈ C[0, 1]. Then the fractional differential equation

Dαy(t) + 1(t) = 0, t ∈ (0, 1)

y(0) = y′(0) = y′′(0) = ... = y(n−2)(0) = 0, n ≥ 3

Dp
0+y(1) =

m∑
i=1

aiD
q
0+ y(ξi),

has a unique solution which is given by

y(t) =
∫ 1

0
G(t, s)1(s)ds,

where

G(t, s) = 11(t, s) +
tα−1

∆

m∑
i=1

ai12(ξi, s), (3)

in which

11(t, s) =
1
Γ(α)

tα−1(1 − s)α−p−1
− (t − s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−p−1, 0 ≤ t ≤ s ≤ 1,

12(t, s) =
1

Γ(α − q)

tα−q−1(1 − s)α−p−1
− (t − s)α−q−1, 0 ≤ s ≤ t ≤ 1,

tα−q−1(1 − s)α−p−1, 0 ≤ t ≤ s ≤ 1,

∆ =
Γ(α)
Γ(α−p) −

Γ(α)
Γ(α−q)

∑m
i=1 aiξ

α−q−1
i , 0.

Lemma 2.5. [10] Let ∆ > 0 and ai ≥ 0 for all i = 1, 2, ...,m. Then the function G(t, s) given by (3) is continuous on
[0, 1] × [0, 1] and have the following inequalities:

(a) G(t, s) ≤ J(s) for all t, s ∈ [0, 1] where J(s) = h1(s) +
1
∆

m∑
i=1

ai12(ξi, s) and

h1(s) = (1−s)α−p−1(1−(1−s)p)
Γ(α) , s ∈ [0, 1];

(b) G(t, s) ≥ tα−1 J(s) for all t, s ∈ [0, 1];

(c) G(t, s) ≤ σtα−1 for all t, s ∈ [0, 1], where σ =
1
Γ(α)

+

∑m
i=1 aiξ

α−q−1
i

∆Γ(α − q)
.
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Remark 2.6. [15] The function G∗(t, s) = t2n−1−αG(t, s) satisfies the following condition:

J(s)t2n−2
≤ G∗(t, s) ≤ σt2n−2, t, s ∈ [0, 1].

The main tool used is the following well-known Guo-Krasnosel’skii fixed point theorem [32,33].

Theorem 2.7. Let X be a Banach space, P ⊆ X be a cone, and Ω1,Ω2 be two bounded open balls of X centred at the
origin with Ω1 ⊂ Ω2. Suppose that T : P ∩ (Ω2 \Ω1)→ P is a completely continuous operator such that either

i. ∥Ty∥ ≤ ∥y∥, y ∈ P ∩ ∂Ω1 and ∥Ty∥ ≥ ∥y∥, y ∈ P ∩ ∂Ω2 or

ii. ∥Ty∥ ≥ ∥y∥, y ∈ P ∩ ∂Ω1 and ∥Ty∥ ≤ ∥y∥, y ∈ P ∩ ∂Ω2 holds.

Then T has a fixed point in P ∩ (Ω2 \Ω1).

3. Main Results

In this section, we will try our best to discuss the existence of positive solutions for BVP (1)-(2). For
convenience, we will give some conditions, which will play important roles in this paper.
Throughout this paper, we always assume that ∆ > 0 and the following conditions hold:

(H1) There exists a nonnegative function ρ ∈ C(0, 1) ∩ L(0, 1) such that

f (t, y) > −ρ(t)

and
φ2(t)l2(y) ≤ f (t, ϑ(t)y) + ρ(t) ≤ φ1(t)(k(y) + l1(y))

for ∀(t, y) ∈ (0, 1) × R+, where φ1, φ2 ∈ L(0, 1) are nonnegative for t ∈ (0, 1), l1, l2 ∈ C(R+0 ,R
+) are

nondecreasing, k ∈ C(R+0 ,R
+) is nonincreasing where R+0 = [0,+∞) and

ϑ(t) =
{

1, t ∈ (0, τ];
(t − τ)α−2n+1, t ∈ (τ, 1).

When s ∈ [0, τ], we have−τ ≤ s−τ ≤ 0. Suppose there is a positive number A > 0, such that max
−τ≤s−τ≤0

η(s−τ) =

A, so η(s − τ) ≤ A and 0 < k(A) ≤ k(η(s − τ)) ≤ k(0).
Let Y = {y : y ∈ C[−τ, 1]}, then (Y, ∥ · ∥) is a Banach space with the maximum norm

∥y∥ = max
−τ≤t≤1

|y(t)|, for y ∈ Y.

And we set a cone K ⊂ Y by

K = {y ∈ Y|y(t) = 0 for t ∈ [−τ, 0], y(t) ≥ tα−1
∥y∥ for t ∈ [0, 1]}.

Define

η(t) =
{
η(t), t ∈ [−τ, 0];
0, t ∈ (0, 1],

and

w(t) =
{

0, t ∈ [−τ, 0];∫ 1

0 G(t, s)λh(s)ρ(s)ds, t ∈ (0, 1],

and a nonnegative function

y∗(t) = [y(t) + η(t) − w(t)]+

= max{y(t) + η(t) − w(t), 0}

=

{
η(t), t ∈ [−τ, 0];
max{y(t) − w(t), 0}, t ∈ (0, 1],

for any y ∈ K.
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Remark 3.1. We can derive from Lemma 2.4 that the restriction w|[0,1] of w on [0, 1] is the solution of

Dα0+ y(t)) + λh(t)ρ(t) = 0, t ∈ (0, 1),

y(0) = y′(0) = y′′(0) = ... = y(n−2)(0) = 0, n ≥ 3

Dp
0+ y(1) =

m∑
i=1

aiD
q
0+ y(ξi)

As f : [0, 1]×R+ → R is a continuous function, we can know that the function y is a solution of BVP (1)-(2)
if and only if it satisfies

y(t) =


∫ 1

0
G(t, s)λh(s) f (s, y(s − τ))ds, t ∈ (0, 1];

η(t), t ∈ [−τ, 0].

Considering the following operator;

Ty(t) =


∫ 1

0
G(t, s)λh(s)( f (s, y∗(s − τ)) + ρ(s))ds, t ∈ (0, 1];

0, t ∈ [−τ, 0].
(4)

Let

z(t) =
{

t2n−1−αy(t), t ∈ (0, 1];
0, t ∈ [−τ, 0]

and

z∗(t) =
{

max{t2n−1−αz(t) − w(t), 0}, t ∈ (0, 1];
η(t), t ∈ [−τ, 0].

Next (4) is equivalent to

Tz(t) =


∫ 1

0
G∗(t, s)λh(s)( f (s, z∗(s − τ)) + ρ(s))ds, t ∈ (0, 1];

0, t ∈ [−τ, 0].
(5)

Clearly, if z̃ is a fixed point of the operator T in (5), then

ỹ(t) =
{

tα−2n−1̃z(t), t ∈ (0, 1];
0, t ∈ [−τ, 0]

is a fixed point of the operator T defined in (4). By Lemma 2.4, we can obtain that

Dα0+ ỹ(t) + λh(t)( f (t, ỹ∗(t − τ)) + ρ(t)) = 0, t ∈ (0, 1) − {τ}, (6)
ỹ(t) = 0, t ∈ [−τ, 0],

ỹ′(0) = ỹ′′(0) = ... = ỹ(n−2)(0) = 0, n ≥ 3, (7)

Dp
0+ ỹ(1) =

m∑
i=1

aiD
q
0+ ỹ(ξi).

Therefore if

ỹ(t − τ) + η(t − τ) − w(t − τ) ≥ 0 for t ∈ [0, 1]

then ỹ∗(t − τ) = ỹ(t − τ) + η(t − τ) − w(t − τ) and y(t) = ỹ(t) + η(t) − w(t).
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Lemma 3.2. y is a positive solution of the BVP (1)-(2) if and only if ỹ(t) = y(t)+w(t)− η(t) is a positive solution of
the BVP (6)-(7) and inequality ỹ(t) + w(t) − η(t) ≥ 0 holds up when t ∈ (0, 1) − {τ}.

Proof. If y is a positive solution of the BVP (1)-(2), we shall prove it in two cases.
For t ∈ [−τ, 0]

ỹ(t) = y(t) + w(t) − η(t)
= y(t) − η(t)
= η(t) − η(t)
= 0

which implies that ỹ(t) = 0. It is easy to show that ỹ(t) satisfies the rest boundary conditions (7) when
t ∈ [−τ, 0].
For t ∈ (0, 1) − {τ}

Dα0+ (y(t) + w(t) − η(t)) = Dα0+ y(t) +Dα0+w(t) −Dα0+η(t)
= Dα0+ y(t) +Dα0+w(t)
= −λh(t) f (t, y(t − τ)) − λh(t)ρ(t)
= −λh(t)[ f (t, y(t − τ)) + ρ(t)]
= −λh(t)[ f (t, ỹ∗(t − τ)) + ρ(t)]

which implies that
Dα0+ ỹ(t) = −λh(t)[ f (t, ỹ∗(t − τ)) + ρ(t)].

Since y(t) is a positive solution, then ỹ(t) + η(t) − w(t) ≥ 0 holds when t ∈ (0, 1) − {τ}. It is easy to show that
ỹ(t) satisfies the boundary conditions (7). Therefore, ỹ(t) is a positive solution of BVP (6)-(7). On the other
hand, if ỹ(t) = y(t) +w(t) − η(t) is a positive solution of the BVP (6)-(7) and ỹ(t) + η(t) −w(t) ≥ 0 holds when
t ∈ (0, 1) − {τ}, as similar as the proof above, we can easily prove that y(t) is a positive solution of the BVP
(1)-(2).
As a result, we will concentrate our mind on finding the fixed points of operator T defined by (5). For the
existence results we need the following assumptions, too.

(H2) 0 <
∫ τ

0
J(s)φ1(s)k(η(s − τ))ds < +∞,

and there exists a constant l > 0 such that
∫ 1

τ
J(s)φ1(s)k( l

2 (s − τ)α−1)ds < +∞.

(H3) Let

lim
z→+∞

l1(z)
z
≤ ϕ, for ϕ > 0

such that ϕ satisfies λϕ
∫ 1

τ
σh(s)φ1(s)ds < 1.

In view of (H3), there exists an M > 0 such that l1(z) ≤ ϕz for all z >M.

(H4) There exists a subinterval [d1, d2] ⊂ (τ, 1) and a constant r1 ≥ max{l, 2c} such that

λξ2l2(
r1ξ1

2
)
∫ d2

d1

J(s)h(s)φ2(s)ds > r1

where ξ1 := min
t∈[d1,d2]

(t − τ)α−1 = (d1 − τ)α−1, ξ2 := min
t∈[d1,d2]

t2n−2 = d1
2n−2 and

c = λ
∫ 1

0 J(s)h(s)ρ(s)ds < +∞.
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Let define

δ1 :=

∫ τ
0 σh(s)φ1(s)(k(η(s − τ)) + l1(η(s − τ)))ds +

∫ 1

τ
σh(s)φ1(s)(k( l

2 (s − τ)α−1))ds

1
λ − ϕ

∫ 1

τ
σh(s)φ1(s)ds

> 0

and choose an r2 > {M + 1, r1 + 1, δ1}. Define the open balls

Ω1 = {y ∈ K : ∥y∥ < r1},

Ω2 = {y ∈ K : ∥y∥ < r2}.

Lemma 3.3. Let (H1)-(H2) hold. Then the operator T : K ∩ (Ω2 \Ω1)→ K is completely continuous.

Proof. First we show that T is well defined on K ∩ (Ω2 \ Ω1). For any z ∈ K ∩ (Ω2 \ Ω1), we know that
r1 ≤∥ z ∥≤ r2 and z(t) ≥ tα−1

∥z∥ ≥ tα−1r1 for t ∈ [0, 1]. Then, for t ∈ [0, 1],we get

t2n−1−αw(t) = t2n−1−α
∫ 1

0
G(t, s)λh(s)ρ(s)ds

≤ t2n−1−α
∫ 1

0
λJ(s)h(s)ρ(s)ds

≤ tα−1
∫ 1

0
λJ(s)h(s)ρ(s)ds

= tα−1c

where c =
∫ 1

0 λJ(s)h(s)ρ(s)ds < +∞. Thus, for t ∈ [0, 1],

z(t) − t2n−1−αw(t) ≥ tα−1(r1 − c) ≥
r1

2
tα−1.

In view of (H1), (H2) and Remark 3.1, we show

Tz(t) =
∫ τ

0
G∗(t, s)λh(s)( f (s, η(s − τ)) + ρ(s))ds

+

∫ 1

τ
G∗(t, s)λh(s)( f (s, (s − τ)α−2n+1z(s − τ) − w(s − τ)) + ρ(s))ds

≤ λt2n−1−α
∫ τ

0
J(s)h(s)φ1(s)[k(η(s − τ)) + l1(η(s − τ))]ds

+ λt2n−1−α
∫ 1

τ
J(s)h(s)φ1(s)[k(

r1

2
(s − τ)α−1) + l1(z(s − τ) − (s − τ)2n−1−αw(s − τ))]ds

≤ λt2n−1−α
∫ τ

0
J(s)h(s)φ1(s)[k(η(s − τ)) + l1(η(s − τ))]ds

+ λt2n−1−α
∫ 1

τ
J(s)h(s)φ1(s)[k(

r1

2
(s − τ)α−1) + l1(z(s − τ)]ds

≤ λt2n−1−α
∫ τ

0
J(s)h(s)φ1(s)[k(η(s − τ)) + l1(η(s − τ))]ds

+ λt2n−1−α
∫ 1

τ
J(s)h(s)φ1(s)[k(

l
2

(s − τ)α−1) + l1(r2)]ds

≤ λ

∫ τ

0
J(s)h(s)φ1(s)[k(η(s − τ)) + l1(η(s − τ))]ds

+ λ

∫ 1

τ
J(s)h(s)φ1(s)[k(

l
2

(s − τ)α−1) + l1(r2)]ds < +∞.
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Hence T is well defined and uniformly bounded.
In fact, for z ∈ K ∩ (Ω2 \Ω1), t ∈ [0, 1] in view of Remark 3.1, we have

Tz(t) ≤ λt2n−1−α
∫ 1

0
J(s)h(s)( f (s, z∗(s − τ)) + ρ(s))ds

and

Tz(t) =
∫ 1

0
G∗(t, s)λh(s)( f (s, z∗(s − τ)) + ρ(s))ds

≥ λt2n−2
∫ 1

0
J(s)h(s)( f (s, z∗(s − τ)) + ρ(s))ds

= λt2n−α−1tα−1
∫ 1

0
J(s)h(s)( f (s, z∗(s − τ)) + ρ(s))ds

= tα−1
∥Tz∥.

Hence T : K ∩ (Ω2 \Ω1)→ K.
Next we show T : K ∩ (Ω2 \Ω1) → K is continuous and compact. For any zn, z ∈ K ∩ (Ω2 \Ω1), n = 1, 2, ...
with ∥zn − z∥[−τ,1] → 0 as n→ +∞. Since r1 ≤ ∥zn∥ ≤ r2 and r1 ≤ ∥z∥ ≤ r2 for t ∈ [0, 1], we know

zn(t) − t2n−α−1w(t) ≥
r1

2
tα−1

and

z(t) − t2n−α−1w(t) ≥
r1

2
tα−1.

Then for t ∈ [0, 1],we know

|Tzn(t) − Tz(t)| =

∣∣∣∣∣∣
∫ 1

τ
λG∗(t, s)h(s)( f (s, (s − τ)α−2n+1zn(s − τ) − w(s − τ))

− f (s, (s − τ)α−2n+1z(s − τ) − w(s − τ)))ds
∣∣∣

≤ λ

∫ 1

τ
J(s)h(s)| f (s, (s − τ)α−2n+1zn(s − τ) − w(s − τ))

− f (s, (s − τ)α−2n+1z(s − τ) − w(s − τ)))|ds

≤ λ

∫ 1

τ
J(s)h(s)φ(s)(k(

l
2

(s − τ)α−1) + l1(r2))ds

< +∞.

This implies that |Tzn(t) − Tz(t)|[−τ,1] → 0 as n → +∞. Therefore T is continuous. Since G∗ is uniformly
continuous for t ∈ (0, 1), that is, for any ϵ > 0, there exists δ > 0,when t1, t2 ∈ [0, 1] and |t1 − t2| < δwe have

|G∗(t1, s) − G∗(t2, s)| <
ϵ
2

(∫ τ

0
λh(s)φ1(s)(k(η(s − τ)) + l1(η(s − τ)))ds

+

∫ 1

τ
λh(s)φ1(s)(k(

l
2

(s − τ)α−1) + l1(r2))ds
)−1

.
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Thus for any z ∈ K ∩ (Ω2 \Ω1),we get

|Tz(t1) − Tz(t2)| ≤
∫ τ

0
λ|G∗(t1, s) − G∗(t2, s)|h(s)φ1(s)(k(η(s − τ)) + l1(η(s − τ)))ds

+

∫ 1

τ
λ|G∗(t1, s) − G∗(t2, s)|h(s)φ1(s)(k(

l
2

(s − τ)α−1) + l1(r2))ds

<
ϵ
2
+
ϵ
2
= ϵ.

Thus T is equicontinuous. According to Arzela- Ascoli Theorem, T is completely continuous.

Now, we will prove the existence of positive solutions for the BVP (1)-(2) by using the Guo-Krasnoselskii
fixed point theorem.

Theorem 3.4. Assume that the conditions (H1)-(H4) hold. Then the BVP (1)-(2) has at least one positive solution.

Proof. Since r2 ≥ max{M + 1, r1 + 1, δ1}, then for z ∈ ∂Ω2, for t ∈ [0, 1] we obtain

z(t) − t2n−α−1w(t) ≥ tα−1(r2 − c) ≥
r2

2
tα−1 (8)

because of z(t) ≥ tα−1
∥z∥ = tα−1r2. Then from (H1)-(H3), (8) and Remark 2.4, we get

Tz(t) ≤ λt2n−2
∫ τ

0
σh(s)φ1(s)(k(η(s − τ)) + l1(η(s − τ)))ds

+ λt2n−2
∫ 1

τ
σh(s)φ1(s)(k(

r2

2
(s − τ)α−1) + l1(z(s − τ)))ds

≤ λ

∫ τ

0
σh(s)φ1(s)(k(η(s − τ)) + l1(η(s − τ)))ds

+ λ

∫ 1

τ
σh(s)φ1(s)(k(

l
2

(s − τ)α−1) + l1(r2))ds

≤ λ

∫ τ

0
σh(s)φ1(s)(k(η(s − τ)) + l1(η(s − τ)))ds

+ λ

∫ 1

τ
σh(s)φ1(s)(k(

l
2

(s − τ)α−1) + ϕr2)ds

< r2 = ∥z∥.

Therefore, for z ∈ ∂Ω2,we have ∥Tz∥ ≤ ∥z∥. On the other hand, for z ∈ ∂Ω1, and t ∈ [0, 1], we have

z(t) − t2n−α−1w(t) ≥ tα−1(r1 − c) ≥
r1

2
tα−1. (9)

Thus from (H1), (H4), (9) and Remark 2.4, we get

Tz(t) ≥ λ
∫ d2

d1

min
t∈[d1,d2]

G∗(t, s)h(s)( f (s, (s − τ)α−2n+1z(s − τ) − w(s − τ)) + ρ(s))ds

≥ λ

∫ d2

d1

min
t∈[d1,d2]

G∗(t, s)h(s)φ2(s)l2(
r1

2
(s − τ)α−1)ds

≥ λl2(
r1ξ1

2
)ξ2

∫ d2

d1

J(s)h(s)φ2(s)ds

> r1 = ∥z∥.
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Therefore, for z ∈ ∂Ω1,we have ∥Tz∥ ≥ ∥z∥.
Then T defined by (5) has a fixed point z̃ ∈ K ∩ (Ω2 \Ω1) from Theorem 2.7. In view of (9) we have

tα−2n+1̃z(t) − w(t) = tα−2n+1 (̃z(t) − t2n−α−1w(t)) ≥ tα−2n+1 r1

2
tα−1
≥

r1

2
t2α−2n =

r1

2
t2(α−n) > 0.

The proof is completed.
Now, we’ll present another result of this work, we give the following conditions:

(H5) There exists a subinterval [d3, d4] ⊂ (τ, 1) such that λ
∫ d4

d3
J(s)h(s)φ2(s)ds > 0 and let

lim
z→+∞

l2(z)
z
≥ N, for N > 0

such that N satisfies
λN
2
µ1µ2

∫ d4

d3

J(s)h(s)φ2(s)ds > 1

where µ1 := min
t∈[d3,d4]

(t − τ)α−1 = (d3 − τ)α−1, µ2 := min
t∈[d3,d4]

t2n−2 = d3
2n−2.

(H6) There exists an R1 ≥ max{l, 2c} such that

λ

∫ τ

0
σh(s)φ1(s)(k(η(s − τ)) + l1(η(s − τ)))ds + λ

∫ 1

τ
σh(s)φ1(s)(k(

l
2

(s − τ)α−1)) + l1(R1)ds ≤ R1

where l is in (H2) and c is in (H4).

Next we choose an R2 ≥ max{R1 + 1,N + 1} and define the open balls

Ω3 = {y ∈ K : ∥y∥ < R1},

Ω4 = {y ∈ K : ∥y∥ < R2}.

Lemma 3.5. Let (H1)-(H2) hold. Then the operator T : K ∩ (Ω4 \Ω3)→ K is completely continuous.

Proof. Similarly, as in Lemma 3.3, we can easily see that T is well defined and equicontinuous on K∩(Ω4\Ω3).
Thus, according to Arzela-Ascoli Theorem, T is completely continuous.

Theorem 3.6. Assume that the conditions (H1)-(H2), (H5) and (H6) hold. Then the BVP (1)-(2) has at least one
positive solution.

Proof. Since R2 ≥ max{R1 + 1,N + 1}, then for z ∈ ∂Ω4, for t ∈ [0, 1] we obtain

z(t) − t2n−α−1w(t) ≥ tα−1(R2 − c) ≥
R2

2
tα−1

because of z(t) ≥ tα−1
∥z∥ = tα−1R2.

As a result of this and (H1), (H2), (H5) and Remark 2.4, we have

Tz(t) ≥ λ
∫ d4

d3

min
t∈[d3,d4]

G∗(t, s)h(s)( f (s, (s − τ)α−2n+1z(s − τ) − w(s − τ)) + ρ(s))ds

≥ λ

∫ d4

d3

min
t∈[d3,d4]

G∗(t, s)h(s)φ2(s)l2(
R2

2
(s − τ)α−1)ds

≥ λ

∫ d4

d3

min
t∈[d3,d4]

G∗(t, s)h(s)φ2(s)l2(
R2

2
µ1)ds

≥ λN
R2

2
µ1µ2

∫ d4

d3

J(s)h(s)φ2(s)ds

> R2 = ∥z∥.
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Therefore, for z ∈ ∂Ω4,we have ∥Tz∥ ≥ ∥z∥.
On the other hand, for z ∈ ∂Ω4, for t ∈ [0, 1] we obtain

z(t) − t2n−α−1w(t) ≥ tα−1(R1 − c) ≥
R1

2
tα−1. (10)

With condition (H6) and (10), we get

Tz(t) ≤ λt2n−2
∫ τ

0
σh(s)φ1(s)(k(η(s − τ)) + l1(η(s − τ)))ds

+ λt2n−2
∫ 1

τ
σh(s)φ1(s)(k(

R1

2
(s − τ)α−1) + l1(z(s − τ)))ds

≤ λ

∫ τ

0
σh(s)φ1(s)(k(η(s − τ)) + l1(η(s − τ)))ds

+ λ

∫ 1

τ
σh(s)φ1(s)(k(

l
2

(s − τ)α−1) + l1(R1))ds

< R1 = ∥z∥.

Therefore, for z ∈ ∂Ω3, we have ∥Tz∥ ≤ ∥z∥. Thus, T has a fixed point in K ∩ (Ω4 \ Ω3) by Theorem 2.7.
Arguments similar to those at the end of the proof of Theorem 3.4 show that BVP (1)-(2) has a positive
solution.
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