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Commutators of parameter Marcinkiwicz integral with functions in
Campanato spaces on Orlicz-Morrey spaces

Heng Yang?, Jiang Zhou®”

?College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P. R. China

Abstract. In this paper, we consider the commutator Mg b generated by the locally integrable function b in

generalized Campanato spaces and the parameter Marcinkiwicz integral with the rough kernel M{, where
the rough kernel Q) satisfies certain log-type regularity. Meanwhile, a necessary and sufficient condition for
the boundedness of the commutator on Orlicz-Morrey spaces is established.

1. Introduction

Let R"(n > 2) be the n-dimensional Euclidean space and $"~! be the unit sphere in R" equipped with
the normalized Lebesgue measure do = do(-). Let Q2 be a homogeneous function of degree zero and have
mean value zero, namely,

Q(Ax’) = Q(x’) for any A € (0,0) and x’ € §"}, (1)
and
f Q')do (x') = 0. (2)
Snfl

In 1938, Marcinkiewicz[23] considered the operator M given by

27 %
M(f)(x) = ( fo Fr+ b+ Fx —1) - ZF(X)lzdt) , xel0,2n],

3

where F(x) = fox f(t)dt. For convenience, the operator M is called the Marcinkiewicz integral. In 1958, Stein
[38] generalized the preceding Marcinkiewicz integral M to the higher-dimensional case, which is defined

as follows:
re Okx-y)
Ma(f)(x) = (j; L—ylst Wf(y)dy
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And Stein showed that if Q € Lip“(S”’l) (0 < @ £ 1), then Mg, is bounded on the Lebesgue space L*(IR")
for 1 < p < 2. Later, some mapping properties of the Marcinkiewicz integral Mg are attentioned by many
authors. For example, Benedeck, Calderén and Panzone [4] obtained that if Q € CHS" ), then Mg is
bounded on LP(IR") for 1 < p < co. In 2002, Al-Salman, Al-Qassem, Cheng and Pan [2] proved that if
Q € L(logL)Z(3""), Mq is bounded on LP(IR") for 1 < p < co. Furthermore, many prominent results about
the Marcinkiewicz integral Mg, are also extensively investigated, we refer the readers to see [11, 35,40, 42, 43]
and therein references.
In 1965, Calderoén [5] first introduced the definition of the commutator

(b, T1f(x) = bT f(x) = T (0f)(x),

and proved that the commutator [b, H] generated by the Hilbert transform H and the function b € BMO(IR")
isbounded on the Lebesgue space L2 (R"). In 1976, Coifman, Rochberg and Weiss[10] stated that the function
b € BMO(R") if and only if the commutator [b, T|] generated by the classical singular integral operator T
and the locally integrable function b is bounded on LP(IR") for 1 < p < co. After that, the properties of many
commutators have received many attentions (see, for example,[6, 15, 31, 32]).

The parameter Marcinkiewicz integral was introduced by Hérmander [17]. Forany x € IR" and p € (0, o),
the parameter Marcinkiewicz integral MY, is defined by

Mo =( [ el T @

where

Q
=5 [ 2D s

byl [X = YI"P

The commutator Mg , generated by the parameter Marcinkiewicz integral Mf) and the function b is
defined by

A@mm{ﬁ

where

b, Fgy J()(x) )

&
IO = [ 10 - sy

If we take p = 1 as in (4), then the parameter Marcinkiewicz integral reduces to the classical Marcinkiewicz
integral as in (3). We denote M}, = Mg, Mg),b = Maqy-

In 1990, Torchinsky and Wang[39] proved that the boundedness of the commutator Mg on L”(IR") for
1<p<oo,if Qe Lipy(5"1) (0 < @ < 1). In 2015, Chen and Ding [8] also showed that b € BMO(RR") is
necessary for the boundedness of the commutator Mg, on LF(IR") for 1 < p < o0, if () satisfies the following
logarithm type regularity:

2
< [log _
x' —

-y
|Q(x') - y’|) forany x’,y" € §"1 and some y>1 (5)

Recently, the parameter Marcinkiewicz integral and its commutator are still widely studied in various
function spaces, we refer the readers to see [9, 12, 18, 21, 22, 33, 41] and therein references.

In 2012, Aliev and Guliyev [1] obtained that if b € BMO(IR") and Q € Lip,(§"™!) , then Mg is bounded
on generalized Morrey spaces. In 2021, Shi, Arai and Nakai [37] studied the commutator [b, T] generated
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by the Calderén-Zygmund singular integral operator T and the function b on the Orlicz-Morrey spaces and
showed that b is a function in generalized Campanato spaces (see Definition 1.7), which contain BMO(IR")
spaces and Lipschitz spaces as special examples, if and only if [b, T] is bounded on Orlicz-Morrey spaces
(see Definition 1.6). The corresponding result for the commutator of generalized fractional integrals was
also obtained.

In this paper, our main purpose is to address the mapping properties of the commutator Mf},b
Morrey spaces when b is a function in the generalized Campanato space. To state our main results, we first
recall generalized Young functions. Later, we recall the definitions of Orlicz and Orlicz-Morrey spaces with
generalized Young functions.

For an increasing (i.e. nondecreasing) function @ : [0, co] — [0, o0], let

on Orlicz-

a(®) = sup{t > 0: D) =0}, b(®P) = inflt > 0 : D(f) = oo}, (6)

with convention sup @ = 0 and inf@ = co. Then 0 < a(P) < b(P) < oo.
Let @ be the set of all increasing functions @ : [0, co] — [0, co] such that

0<a(®) <oo, 0<b(D)<oo, (7)
lim @(f) = ©(0) =0, 8)
@ is left continuous on [0, b(D)), )
if b(®) = oo, then }LI?Q D(t) = P(o0) = oo, (10)
if b(P) < oo, then t_)lbi(r(%;_o O(t) = DB(D)) (< 00). (11)

In what follows, if an increasing and left continuous function @ : [0,00) — [0, ) satisfies (8) and
tlim ®(t) = oo, then we always regard as ®(c0) = co and that © € P.

For ® € @, we recall the generalized inverse of @ in the sense of O’Neil [28, Definition 1.2].
Definition 1.1. For ® € ® and u € [0, co], let

O () = { inf{t >0: D) > u}, wuel0,o),

o0, U = oo.

Let ® € @. Then @' is finite, increasing and right continuous on [0, ) and positive on (0,0). If @ is
bijective from [0, co] to itself, then @~ is the usual inverse function of ®. Moreover, if ® € @, then

D@ N u) <u <O YD) forallu € [0, 0], (12)

which is a generalization in [28, Property 1.3], see also [36, Proposition 2.2].
For ®, W € ®, we write ® ~ W if there exists a positive constant C such that

O(C) < W(t) < D(Ct) forall t € [0, co].
For functions P, Q : [0, c0] — [0, o], we write P ~ Q if there exists a positive constant C such that
C'P(t) < Q(t) < CP(t) forallt € [0,00].
Then, for ®, W € @,
drV¥Y o Ol~wl (13)

see [36, Lemma 2.3].
Furthermore, we recall the definition of the Young function and its generalization in [24].
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Definition 1.2. A function ® € ® is called the Young function (or sometimes also called Orlicz function) if ® is

convex on [0, b(®)). Let Dy be the set of all Young functions. Let ®y be the set of all ® € ® such that ® ~ W for some
Y e Oy.

Definition 1.3. 1. A function ® € @ is said to satisfy the Ay-condition, denoted by ® € A,, if there exists a constant
C > 0 such that

D2t) < CP(t) forallt > 0.

2. A function ® € ® is said to satisfy the Va-condition, denoted by ® € V,, if there exists a constant k > 1 such that
1
D(t) < ﬁfb(kt) forallt > 0.

3. Let Ay = Oy nZZ and V, = @y ﬁ?z.

Remark 1.4. 1. Let ® € ®y. Then ® € A, if and only if ® ~ W for some W € Ay, and, ® € V, if and only if ® ~ W
for some W € V.
2. Let ® € ®y. Then ©~ satisfies the doubling condition by its concavity, that is,

O () < & 'Qu) <207 wu) forall u € [0,00].
3. Let @ € Oy. Then O € A, if and only if t — % is almost decreasing for some p € [1, o).

Let (X, 1) be a measure space, and let L°(X) be the set of all measurable functions on X. The Orlicz space is
first introduced by [29, 30], which is defined by the following.

Definition 1.5. (Orlicz spaces) For @ € Dy, let
LX) = {f e LX) : fq)(elf(x)l)dp(x) < oo for some € > O} ,
X

fllss ='1nf{/\ >0 fx @(V(Tx)l)dy(x) < 1}.

Then || - ||z»(x) is @ quasi-norm, thereby L®(X)isa quasi-Banach space. If ® € @y, then || - | o(x) is a norm and
thereby L?(X) is a Banach space. For ®, W € Oy, if ® ~ W, then L*(X) = L¥(X) with equivalent quasi-norms.
In the case X = R", we always write || - || o instead of || - || o(rn).

We denote by B(x, r) the open ball centered at x € R” and of radius . For the locally integrable function
f and a ball B, let

1
fi = Ji fdy = fB fiy,

where |B| is the Lebesgue measure of the ball B. Then, Orlicz-Morrey spaces are defined as follows.

Definition 1.6. [25, Definition 3.1] (Orlicz-Morrey spaces) For a Young function @ : [0, co] — [0, o0], a function
@ :(0,00) = (0, 00) and a ball B = B(x, ), let

A Lofife
||f||@,¢,3—mf{)\>o.W)Jiqa( ¢ )dxsl}.

Let L'®%) (IR") be the set of all functions f such that the following norm is finite:

IfllL@s = sup || fllop,s, (14)
B

where the supremum is taken over all balls B in R™.
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Then ||f|l;@ is a norm and thereby L(*#) (R") is a Banach space. If ¢(r) = L, then L®) (IR") coincides with
the Orlicz space L® (R") equipped with the norm

Hﬂhw:hﬁ{A>(ML[n®(M§@)dxsl}.

If O(t) = t,1 < p < oo, then L(®%) (R") coincides with the generalized Morrey space L¥#) (R") equipped
with the norm

e (L pd)f’
”f”L(W B:;I;r) ((p(?’) JCB|f(X)| x| .

The Orlicz-Morrey space L®#) (R") were investigated in [24-26]. For other kinds of Orlicz-Morrey
spaces(see, for example, [13, 14, 16, 34, 44]).
For @ € @y and ¢ : (0, 00) — (0, ), we define the Orlicz-Morrey space L(®%) (R") together with || - [| @
by (14). Let up = uaﬁ% . Then we have the following relation:
fllop,8 = 1 fllLo,us)- (15)

Since the relation (15), ||| @ is a quasi-norm, thereby L(®#) (R") is a quasi-Banach space. If ® € ®y, then
I| - Il @ is a norm and thereby L(®#)(R") is a Banach space. If ® ~ W and ¢ ~ ¢, then L®#)(R") = LY¥)(IR")
with equivalent quasi-norms.

Next, we recall the definition of generalized Campanato spaces (see, for example, [3, 37]).

Definition 1.7. For p € [1,00) and a function i : (0,00) — (0, c0), let L, y, (R") be the set of all functions f such
that the following functional is finite:

— l 4 %
Ifllz,, = sup 0 ( Jg [f) - fa dy) ,

B=B(x,r
where the supremum is taken over all balls B(x, r) in R".

Then [|fllz,, @) is @ norm modulo constant function and thereby £, ;, (R") is a Banach space. If p = 1 and
Y =1, then £, (R") = BMO (R"). If p = 1 and ¢(r) = r*(0 < a < 1), then £, y, (R") coincides with Lip , (R").
If ¢ is almost increasing, then £, ;, (R") = Ly 4 (R").
We say that a function 6 : (0,00) — (0, o0) satisfies the doubling condition if there exists a positive
constant C such that, for all r,s € (0, ),
1 6(r) 1
—_<——<C f=
C o -~ "2
We say that 0 is almost increasing (resp. almost decreasing) if there exists a positive constant C such
that, for all 7,s € (0, c0),

0(r) < CO(s) (resp. O(s) < CO(r)), ifr<s. 17)

sgsz (16)

In this paper, we also need the following condition (see [24, Definition 2.5]).

Definition 1.8. (1) Let G be the set of all functions ¢ : (0, 00) — (0, o) such that ¢ is almost decreasing and that
r = @(r)r" is almost increasing. That is, there exists a positive constant C such that, for all r,s € (0, o0),

Co(r) =2 p(s), @)1 < Cp(s)s", ifr<s.

(2) Let G be the set of all functions ¢ : (0, 00) — (0,00) such that ¢ is almost increasing and that r v @(r)/r is
almost decreasing. That is, there exists a positive constant C such that, for all r,s € (0, o0),

p(r) < Cp(s), Co()/r=q@(s)/s, ifr<s.
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If p € G or p € G, then ¢ satisfies the doubling condition (16). Let ¢ : (0,00) — (0, 0). If ¥ ~ ¢ for
some ¢ € G (resp.G™), then ¢ € G (resp.G™ )

Remark 1.9. Let ¢ € G%. Then there exists ¢ € G such that ¢ ~ ¢ and that ¢ is continuous and strictly
decreasing, see [25, Proposition 3.4]. Moreover, if

lin(} @) =00, lime(r) =0, (18)

then @ is bijective from (0, o) to itself.
Let @ € A, N V,. For f € L) (R"), we define MY (f) on each ball B by

Mé(f)(ao:( fo [F2, (fm)(x)+F"Q,t<fx@3)c><x>]2dt)z, x €B. (19)

Here, and in what follows, EC = R"\E denotes the complementary set of any measurable subset E of IR".
Then,

ME(HE) < MEFram)®) + MY (FX o) ().
Note that Mg (fx2p) is well defined since fx2p € L? (R"), and it easy to check that

MiFraow = [ T iromy

which converges absolutely. Moreover, Mg( f)(x) defined in (19) is independent of the choice of the ball
containing x. Furthermore, we can show that /\/(p is bounded on L®®) (R"). See Lemma 2.7 for the details.
For f € L% (R"), 1 < p < co, we define M, ,(f) on each ball B by

M) = ( [l

See Remark 2.11 for its well definedness. Then we have the following theorem.

[b, th](fXZB) x) + [b, F? ol (f)((ZB)C)(x)’2 dt)2 , Xx€B. (20)

Theorem 1.10. Let ®,W € Oy, ¢ € G¥ and Y € G". Let /\/(pQ be a parameter Marcinkiwicz integral with the
rough kernel satisfying (1), (2) and (5).
1. Let ®,W € Ay N V,. Assume that ¢ satisfies

f mdi.‘ < Co(r) (21)
r
and there exists a positive constant Cy such that, for all r € (0, c0),

YN~ () < CoP (7). (22)

Ifb € L1y (R"), then M) (f) in (20) is well defined for all f € L®% (R") and there exists a positive constant C,
independent of band f, such that

M, (Al < ClblLz Lo
2. Conwversely, assume that there exists a positive constant Co such that, for all v € (0, 00)
Cop (NP p() = W (p(r))- (23)

IfFM 0 (f) is bounded from L®#) (R") to L) (R"), then b is in Ly, (R") and there exists a positive constant C ,
zndependent of band f, such that

Ibllz,, < C“Mg,b||L(<Iw>_>L(w,(p>,

where ||MP ||, @e_ 1w is the operator norm of MPQ,b from L®#) (R") to L(Y#) (R™).

apl
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Remark 1.11. For b € L; (R") and p = 1, Chen and Ding [7] showed that, if Mgb is bounded on L? (IR") for

1 <p < oo, then b € BMO (R"), under the assumption of that C satisfies the logarithm iype reqularity condition (5).
ForbeL; (R") and p =1, Ku and Wu [20] obtained that, if b € LIV (R"), then Mg , is bounded from LP9) (R")

to L@9) (R"), under the same assumptions of Theorem 1.10. It is also interesting whether or not the corresponding
conclusions are still true if the regularity of Q) is weakened or removed. In addition, for b € L3 (R"), it is also worth
exploring the mapping properties of Mg , on weighted Orlicz-Morrey spaces, etc.

Finally, we make some conventions on notation. Throughout this paper, we always use C to denote a
positive constant that is independent of the main parameters involved but whose value may differ from
line to line. Constants with subscripts, such as C,, are dependent on the subscripts. We denote by f < g if

f<Cgand f ~gif f<g< f. Forl <p < oo, p’ is the conjugate index of p, that is rl—] + 1% =1

2. Preliminaries

To prove our results, some necessary lemmas and defnitions are given in this section.
For a function g : R"” X (0, 00) — (0, o), the generalized Hardy-Littlewood maximal operator is defined

by

My(F)x) = sup o(B) f Iy,

Bax

where the supremum is taken over all balls B in IR".
If o = 1, then M,(f)(x) is the Hardy-Littlewood maximal operator M, and if o(B) = |B|*/", then My(f)is
the fraction maximal operator M, defined by

Ma(F)@) = sup B f Fdy.
Bax B

For the generalized Hardy-Littlewood maximal operator M,, we have the following lemma.

Lemma 2.1. [37, Theorem 5.1] Let ®, WV € 5y,(p € G and ¢ : (0,00) — (0,00). Assume that lim o) =0or
WL(t)/D7Y(t) is almost decreasing on (0, o). If there exists a positive constant A such that, for all r € (0, ),

(Sup p(t)) D (p(r)) < AV (@(r)), (24)

o<t<r

then, for any positive constant Cy, there exists a positive constant Cy such that, for all f € L®%) (R") with f # 0

M, f() MF(x)
v (clufum) =@ (Co” Flliom

Consequently, if ® € V,, then M, is bounded from L®®) (R") to L&) (R").

), x e R".

Remark 2.2. If g is almost increasing or if \(gj ((f

implies (24).

)) is almost decreasing, then the inequality o(r)®(¢(r)) < W~ (p(r))

Lemma 2.3. [37, Lemma 4.1]Let ® € ®y and @ € G°. Then there exists a constant C > 1 such that, for any ball
B = B(x,1),

1 _ ¢
D (p(r)) DY p(r)

Lemma 2.4. [36, Lemma 4.4] If ® € Vs, then, for some 6 € (0, 1), D(()9) € Vs.

< lxsllpes <
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Lemma 2.5. [37, Lemma 4.3] Let ® € Oy, ¢ : (0,00) — (0,00) and B = B(x,r) CR" . Then

Ji @l < 207 (@) ko

Moreover, if ® € V,, then there exists p € (1, o) such that

( Jg lf ()P dy)p < COTH @ fllog,5/

where the constant C is independent of f and B = B(x, r).

Lemma 2.6. [37, Lemma 4.4] Let ® € Ay and ¢ € G. If @ satisfies (21), then there exists a positive constant C
such that, for all r € (0, 00),

00 Fy—1
f wdtsccb‘l((p(r)). (25)

Lemma2.7. Let D € ANV, @ € G . There exists a positive constant C such that, for all v € (0, c0),satisfy
f 20 4t < co.
.

Suppose that Q € L¥(S"). Then, MY, defined in (19) is bounded on L®9) (R"). That is, there exists a positive
constant C such that, for all f € L{®%) (R"),

Mg(f)”L(w)(]Rn) < C||f||L(‘D,w)(1Rn)-

Proof. For any x € R", applying (1), (2) and Minkowski’s inequality, we obtain that

, Q- =)

M= [ P p|f< o[ )
= g\

e[ ) a

< Cf If(y)li 1 dy
R X = YI"P |x — ylP

If ()l p
re X =yl
:= CT(f)(x).

With the boundedness of the operator T on Olicz-Morrey spaces by Nakai [26], we have the desired
result. [J

Next, we will prove that the commutator M , is well defined for all b € £; 4 (R") and f € L®®) (RM).
The following lemma is well known, we can see [3, 27] for example.

Lemma 2.8. Let ¢ € G". Then, for each p € (1, ), L,y (R") = Ly,y (R") with equivalent norms.

Lemma 2.9. [3, Lemma 4.7] Let p € [1,00) and ¢ € G . Then there exists a positive constant C dependent only on
n, p and 1 such that, for all f € L4,y (R") and for all x € R" and r,s € (0, o),

(JC [F@) = focon| dy) <Cf—dt||f||Lw, ifor <s,
B(x,s
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and

(Jg [f@) = fown| dy)p<C(log2 )yb(S)IIfIILM if 2r <s.

Lemma 2.10. Under the assumption of the part 1 of Theorem 3.1, there exists a positive constant C such that, for all
be L1y (R"),all f € L®%) (R") and all balls B = B(z,7),

i

Proof. For x € B, we have

15, F0 )0 dt)z dx

< CU @Bl £y, I fll -

“ 1Q(x — y)
(j(; b, Qt](f)((zg)c (x)| ) LB)C Wlb(X) —bg +bg = bW)IIf (¥)Idy
Q
<@ -l [ B

@Bt -y |”

Qe-yl,
; f(z . _—ylnlb(y) ballf (y)ldy

|x
= G1(x) + Ga(x).
If xe Band y ¢ 2B, we have =4 <|x |<3|Z Y Then
| (x -
G1(x) < |b(x) — bl o If(y)ldy
Rrn2B X y|

lf ()l f Fl

<|b(x)—-b dy =|b(x) - b
Ib(x) = bl re\2g 12 — Yl = 1b() lZ‘ 2B |2 = yl”

By Lemma 2.5, Holder’s inequality and the doubhng condition of ¢, we can see that

[ %< f i< o7 @@ il

2inp\2ig 12 — Y[
2/l 11
O~ (p(t))
< f — dtll fll e -

2ir t

Therefore,

00 cD—l
G1(x) < [b(x) — bg| fz wdtll fll o

Then, using (22) and (25), we have

JCGl(x)dx S JCV?(?C) — byl dx D~ (@()IIfl
B B
S YD (@M)IIblL 2y, |1 fll o
S W @O)IBILz,, I fllpom.
If x € Band y ¢ 2B, we have 5 < x — y| < 224 Then

b — b))
b(y) — b dy 1) = be)f ),
fR ) B) 2 Ly fR o

Z f (b(y) _bslf(y)l dy
2/+1B\2/B Iz =yl
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Using Lemma 2.5, we know that there exists p € (1, o) such that

(JC If(y)l"’dy) S O @@ )l
2/+1B
By Holder’s inequality and the doubling condition of i) and ¢, we obtain that

I(b(y) — be) f (W)l 1 f
dy ~ — b(y)-b d
fsz\zzB lz =yl Y @)t Jorpis (b0y) =)y

< ( f Ib(y) - bBV”dy)” ( f |f<y)|r’dy)p
2/+1B 2]+1B

2;+1 17[}( ) )
S — R CT 21 1 P [ P

r

2]+1 -1
fz ( f 0] dt) D dullblz, 1l
Therefore,

_ 9 ) 2 ewm)
[ ww-o S My < [ [ 200) D e,

00 q)—l
- f @ ( f *(p() du) dtlblLz,, I fll oo
r t u
By Lemma(21), (22) and (25), we have

0o 00 (D_l 00 q)—l 00 \I/—l

Using (26) and (27), it is easy to see that

(26)

Jg Ga)dx < W (@bl I fllom-

Thus, we complete the proof of Lemma 2.10. [J

Remark 2.11. Under the assumption in the part 1 of Theorem 1.10, let b € L34, (R") and f € L'®#) (R"). Since

<1> € Ay, there exists p € (1,00) such that t < ®(t) for t > 1, see the part 3 of Remark 1.4. Then L9 (R") c

Ioc (R") c Lloc (R™), which implies f € Lp (R") and bf € Lloc (R™) for all p; € (1,p) by Lemma 2.8. Hence,
M (fx2p) and ME (bf x28) are well deﬁned for any ball B = B(z,r). That is, /\/(Q , (fx2B) is well defined for any
ball B = B(z, 7).

In addition, it follows from the proof of Lemma 2.10 that /V(Q ,(fX (2B)C)) is well defined for any ball
B = B(z,r). By Minkowski’s inequality, we have

(L ’ Q t] (fXZB) (X) + [b Fp h](fX(2B)C)(x)| )
< M, (Fxam) @) + MP,  (FXope)(®),  x € B.

Therefore, we can write

M) = ( |

b,Fth] (fx2z) (x) + [b, F (fX(ZB)C)(X)'Z %)2 , X€B.
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Moreover, if x € By N By, then, taking Bz such that B; U B, C B, we have
( [b, Ff) ] (Fxan) (x) + [, m](fx(w @) = (16, Fg, 1 (Fxa,) () + [0, Fgy (X g 0) ()
—[b, th](fX2B3\ZB) x) + [b, F? ol (fxeses) () =0, =12,
which implies that
(16, F&, 1 (Faczm,) () + T, F 10X 5, 0 )®) = (1, Fy 1 (Fa28) () + T, Fy 10X ,0)®)) -

This shows that Mg ,(f) in (20) is independent of the choice of the ball B containing x.

3. Sharp maximal operator and pointwise estimate

In this section, we will establish a sharp maximal inequality of the commutator M, . For the locally
integrable function f, let

M f(x) = sup T [f(y) ~ feldy, x€R",

where the supremum is taken over all balls B containing x.
For sharp maximal operator, the following lemma is known.

Lemma 3.1. [37, Corollary 6.3] Let ® € ®y and ¢ € G*. Assume that ® € A, and that ¢ satisfies (21). Then
there exist a positive constant C such that, for any f € L®% (R") satisfying lim fp,) =0,
r—o0

lIfllz@n < CIME fllon.
Moreover, if © € V,, then

CUIfllos < IMF fll om < Clifllpos-

Proposition 3.2. Let MY be a parameter Marcinkiewicz integral. Let i € G™ . Assume that  satisfy the
same assumption in Theorem 1.10. Then, for any n € (1,00) , there exists a positive constant C such that, for all
beLiyR"), f e L®) (R")and x € R",

FME, (M) < Clibllg,, ((MW (IMEAM) @) + (Mg (1£17) (x))ﬁ)f
where C is a positive constant independent of b and f.

Proof. Using the vector-valued singular integral notation of Benedek, Calder6én and Panzone in [4], let H
be the Hilbert space defined by

~ 2 \1
H = {h Willye = (fo 'h(?' dt) < oo}

and Fp t(f)(x ), [b, F?

Q, J(f)(x) be as before. Then, we can write

MO = 1IFS,(NONlg, MG, (HE) = NI, FL IOl

For x € R, let B be a ball centered at x . Take B* = 2B. We decompose f = fxp + fX(p.c := f1 + f2 and
write

MEAW) = ot (AW = 0 = ba, E& IO 2= I (AWl
= 1) — b5 )ED (F)(y) — E (6 — b ) f) () = Ffy (0 = b))l
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LetCp = Mg ((b—-bg) f2)(x) = IIFfM (b —bg:) f2) (®¥)ll¢. Then, for y € B, we can see that

[Man(F)(w) — Cal =[IE " (£l — IFL,, (b = bs:) fo) ()l
<Ib(y) = be-IFG, (AWl + IFy , (b = be) 1) @)l
+IIFG,, (b= be) fay) = Ffy (b = by) f2) (@)l
=h(y) + L(y) + I(y).

Next, we estimate each term separately. For 1 < n < oo, by Holder’s inequality and Lemma 2.8, we have

f L (y)ldy = f (6(y) — b )M, (F)ldy
B(x,r) B(x,r)

1 Y )
b - b |7 d n P qd
SM&H@J@ Bl Q(Wbﬁmwwmwy)
< Bl oo (Mys (IMEOIT) )"

For the second term (), choose v € (1,n) and let 2 = 1 + ,1’ Then, by the boundedness of Mg on L? (R"),
Holder’s inequality and Lemma 2.8, we obtain that

f h(y)dy = f M, (6 bs) £2) ()dy
B(x,r) B
< ( Ji M, (0 = bi) £1) <y>|vdy)"”

1 5
< (7 [} 1600 -t )|

1

1 A7 ‘ .
< o5 f v -0 (v £ o)

< 1Bl o0 Mys (IF17) () 7.

1
n

Finally, for I3(y), it is easy to see that

L(y) = (f(;
Oy —z)

> (j()‘ jl;—z|<t§|x—z| (b(Z) - bB*) fZ(Z) |]/ - Zln—p 2

1

1 _ Qy-2), 1 . Q(y - 2)
to fw _let(b(z) bB*)fz(Z)|y_ Z|n_pdz m f|; _let(b(z) bB)fz(Z)ly_Z|n_de

2£ 3
t
Qx - z)

2 ar\'
«L—zl<tg|y_z| (b(z) - bB*)fZ(Z)mdz T)

+[f0
Qy-2) Q(x—z)]

’ (j; L—zlst,ly—zlst (ble) = bm:) fole) [Iy —z["P  |x—z"P dz
::Ill(y) + IIz(y) + Hg(y)

1

2£2
t

In what follows, we estimate II1(y), II,(y) and II3(y), respectively. Note that, forx,y € B,z € (B*)C, we have
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|x — z| ~ |y — z|. By Holder’s inequality and Lemma 2.8,

2

—2)|

1 1
mw < [ b - bl RS
B)C |

ly—zP  Jx—zP

f b - ba 1G] ]ﬁlu_w

x — 2|2

1
lx —yl2

< E b(z) = bp:|lf ()| ———dz
.LHB\z/B slf |x — z|"*2

< 1Bl g0 Myn (LF17) ()7

By the similar arguments as in estimating II;(y), we obtain that

IL(y) < 1l oo Mya (F17) ()7

For II3(y), by general Minkowski’s inequality, we have

m@<f m@bmwﬂ| jigm_”

IQ(x z)| 1 1
;waw bl I

|y =2 -2
mw—w—ﬂu—m

1
|x —z|

|x — z|n-1

+ﬁ;w@—@wml

x —z|"
=114 (y) + I (y).
As in estimating 11 (y), we have
< | b -b el
1(y) < (B*)CI (2) = bp:|If(2) —

ngﬁﬁwr@wwﬁ
j=1

s Z zi“b”z:(w)Mab” (1M x) !

-
Il
—_

< 1Bl My (IF17) ()7

For III5(y), invoking the condition (5), we obtain that

f@I (,  2k—z\"
L(y) < L*)C |b(z) — bg:| 2 (log =] ) dz

7267
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x 0\
<[ - L g )

p=) +1B\2/B lx — 2| Ix =yl
< ; 7y bl Mo (A1) (0

< 1Bl o Myn (|F17) (x) 7.
Summing up the estimates of II1(y), II»(y), I1I1(y) and III(y), we can see that

JC L(y)dy < Ibll cow Mya (If17) ()1
B(x,7)

This, together with the estimates for I1(y), I»(y), immediately yields that
1
1

MM < Bl (Myr (MM @)+ (M (D @) ),

which completes the proof of Proposition 3.2. [

4. Proof of main results

We note that, for 9 € (0, o)

191000 = (gl w0ren)” - (28)

Proof of the part 1 of Theorem 1.10. First, we know that MY is bounded on L®%) (R") by Lemma 2.7. We
can take 71 € (1, o0) such that ® ((-)%) eV, by Lemma 2.4. Then, using (22), it is easy to see that

V()10 (p(r)" < Co"WH ()"

1 1
By Lemma 2.1 with this condition we have the boundedness of My, from LI®OM#9)(R") to LY OD#)(R™).
Using this boundedness and (28), we have

H(Mw (IMf](f)ln))ﬁ L = (”M‘r”" (|Mg(f)|”) L(w((.)'ll,w)n
s(weorl )
= IME(Dllen < lIflles,
and
H(Ml,b'l (|f|n))ﬁ L(Vp) - (”M‘r”” (|f|n)|lyw(<.)'lnm)l7 s (H|f|n||m><(~)’l7),rp))q = fllep-

Then, using Proposition 3.2 , we obtain that

VB, (v 1Bl |l

Therefore, if we show that, for B, = B(0,r),

Ji, Mg/b(f) -0 as r— oo, (29)
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Then, by Lemma 3.2, we have
IIMg,b(f Mrewo < 16l 2y, lf I,

which is the conclusion.
It remains to show that (29) holds. Notice that

MG,y (A() < EIME () + MEBAE) = M(HE) + ME(F(x)

To prove (29), it suffices to show that

f M (f)(x)dx — 0 and f M (f)(x)dx — 0 as r — oo.
B, B,

In the following we show (29).

Case 1 First we show (29) for all f € L®#) (R") with compact support. Let supp f € Bs = B(0,s) with
s > 1. Then f € L” (R") and bf € LP* (R") for some 1 < p; < p < oo (see Remark 2.11). Since /\/(PQ is bounded
on Lebesgue spaces, we see that both M} (f)xs,, and MZ(f)xs,. are in L' (R") and that

Jg M (f)(x)xB,. (x)dx — 0 and Ji ME(F)(x)xB,, (x)dx — 0 as r — oo.

If x ¢ By and y € B(0, s), then |x|/2 < |x — y| < 3|x|/2. For x ¢ By;, we have

(- ) =t \?
MPE) < f |n plf( ( J ) tmp) dy

€2 — 1
S v _ dy < — (R,

, 1Q6x — y)| ( i )5
M (bf) )—f y|n pl ( )f )| *ﬁf—ﬂ H+2p

< —1b d < — b .
st |x_y|n | W f(y)ldy len|| Fllo ey

which yields that

and

£ MO, 0 f e (el

’
S o (log ) bflliwry — 0asr — oo,
and

b(x) - b
Mi (f)(x)X(BZS)C (¥)dx < 16(x) = b, |

5 5 | |n X(st)c (x)dx”f”Ll(]R”)

b, |
B, |x["

X g, c A flli ey =2 F1 + Fa.
For F», we can see that

1 1 r
Fz = Ibp,| Jg Kt O ey < ol (108 22 If ey = Oas v — .



H. Yang, ]. Zhou / Filomat 37:21 (2023), 72557273 7270

To estimate F; , we take ¢ € (0,1) such that1+1/g—1/p > € and letv = 1/(1 — ¢). Then, for r > 4s, Holder’s
inequality and Lemma 2.9 tell us that

T :
Fls(f bGx) = by, I dx) (f WX(BZS)C(XMX) 11
B, B,

T
P(t) 1
< f T I o gy 1l ey
2s t Vo

1
< (1) logriibllz,, pry 11l (rery

W (p(r)) 1

S — 1 bllg,, — 1Rn
() ogbllz,, ﬁIIfIIL (R")
logr‘I’ ()

T ())I|b||.£1,¢||f”Ll(H{")
logr p(r)'/?

< — bllz,, 1Rn
R DI 2y 11 f 1121 ey

logr

= —— bl Iy

7 ()7

— Qasr — oo.

Summing up the estimates of F; and F,, we obtain that

JC Mé(f)(x)dx —0asr — co.
B,

This completes the proof of Case 1.
Case 2 For any f € L(®%)(R"), using the result of Case 1, we have

M, e e < Wbl s liom < 1z, | fllon.

Then, by Lemma 2.5,we can see that

f Mo, () < U QOVIM, (Fis) o < ¥ @bl o

Combining this with Lemma 2.10, we have

£ Mo S Db, o,
B,

which implies (29). Therefore, we have (29) for all f € L‘®?)(IR"). The proof is completed. O
Proof of the part 2 of Theorem 1.10. We use the method given by Janson in [19]. Let K(x) := 5 I”‘ Choose

0 # zp € R" and 6 > 0, such that @ can be expressed in the neighborhood {z sz = zol < Vi 6} as a Fourier
series which is absolutely convergent, that is

K(z) Z e,

with Zo |au] < co. Letzy = 2. If |z — 21| < 2v/n, we have
n=

(e8]

1 n 10, Dz
X k@ =" 2

n=




H. Yang, ]. Zhou / Filomat 37:21 (2023), 72557273 7271

For any ball B = B (x, 7). Set yo = xo — rz1 and B’ = B(yo, 7). Then for x € B and y € B’, we have

X—=Y X — y X0 — Yo

r

<2vn.

—Z1

‘x xo ‘y Yo

We set s(x) = sgn (b(x) — bg'), then

flb(x) —bp/|dx = f(b(x) — bp/) s(x)dx
B B

1
- fB fB (b6x) = bl)s(x)dyx

= CLL (b(x) - b(y))K(x — y) Zanewn - S(x)XB(x)XB (y)d]/dx
n T

=c) [ 60 e = g oo

- b(y)K(x — y)fu

_C;:m”lﬂf (b0 = by )

where

fy) = xp(y) and  ga(x) = 7S @)xa(E).

In addition, since Q) satisfies (1), (2), (5), then there exists a positive constant A with0 < A <1, for x,y € R"
with x # y, we have

_ <
(log(%))

Q(x—y)=Q(x:;)=n<<x—y>'>z

x (30)

Using Minkowski’s inequality, Holder’s inequality and (30), we obtain that

I}
:fB (b(x)—b(l/))mpc yIP

flx YolP fn(b() b(y))l I” ~fr
_ (log(3))
B (IOg(%))Vf x — y0|P f (b(x) - b(y)) |n o

1
: fz; Ix = yol° Ln (log(%)))’ (bx) = b(y)) Ix — |n pfn(]/)dy

1
(06) = b = o

R"

fa(y)dy| dx
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[} ow-rnB
IRYI,
O

mfn(y)d ‘(L:[)l tliip)(

fn(b(x) b(y ))l Q- — pfn(y)X{yeRn [x—yl<t) 1 (y)dy

1

d]2

<),
<L(L.
U

- [ Mo

Combining preceding estimates, we have

fB Ib(x) — bg ldx < ; | fB M, (F) ().

By Lemma 2.3, we know that || f,ll @n = lIxp llpen ~

1

<dt \?
L_yo t1+2p) dx
dt dt \ p
t1+2p =yl t1+2p X

(b(x) = b(y))
R?

1 Qx —
7 [ 00— r

—cD o) Then

flb(X) bp|dx < CZIanIIBI‘I’ HeOIME,, Fllew

[ee)
-1
< CIMY, oo ool B @) Y laalllfull oo

n=0
¥~ (p(B))
D(p(B))

S M, yliLen spewm Bl T oB)

By (23), we obtain that

1 2
5 ACRLE 5 1660 = bl <INl e

That is ||b|| Ly S IIMg/hIIL@,(,;)_)L(w,m). Thus, we have the conclusion. O
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