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Abstract. This paper investigates the problem of finding a point lying in the intersection of the set of
solutions of a system of generalized nonlinear variational-like inclusions and the set of fixed points of a
total asymptotically nonexpansive mapping. To achieve this aim, a new iterative algorithm is suggested.
Finally, the strong convergence and stability of the sequence generated by our proposed iterative algorithm
to a common point of the above two sets are proved. The results presented in this paper are new, and
improve and generalize many known corresponding results.

1. Introduction

The study of variational inequality theory is due primarily to Stampacchia [61] and Fichera [29] which
made their works independently in 1964. Initially, one of the attractions of this theory was its applications
to many questions of physical interest, but during the last decades, variational inequalities were shown to
be very useful across a wide of subjects, ranging from nonsmooth mechanics, physics, and engineering to
economics. For this reason, a large number of problems arising in diverse branches of pure and applied
sciences can be found which lead to mathematical models expressed in terms of variational inequalities. Be-
cause of the importance and active impact of variational inequalities, the mathematical literature dedicated
to this field is extensive, and the progress made in the past five decades is impressive. It is worthwhile to
stress that variational inequalities cannot be used as a suitable mathematical model for dealing with many
problems arising in different fields of science and engineering. In fact, to deal with such problems, it needs
that variational inequalities to be generalized and extended. This fact was one of the main incentives of
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researchers to develop and generalize various classes of variational inequalities in many different direc-
tions using novel and innovative techniques. For a detailed description of these generalizations along with
relevant commentaries, the reader is referred to [7, 8] and the references therein.

Among the generalizations, variational inclusion has been recognized as a very effective and powerful
tool for studying a wide class of linear and nonlinear problems arising in many diverse fields of science
and engineering. This is the reason why in the last twenty years, there has been an increasing interest in
studying a wide class of variational inclusion problems in the setting of Hilbert and Banach spaces. This
field still continues to be an active topic for research motivated by numerous applications to problems in
optimization and control, economics and transportation equilibrium, engineering science, etc.

In parallel to the study of variational inequalities and variational inclusions, considerable research
efforts have been devoted to the design of methods to approximate the solutions of the variational inequal-
ities/inclusions and related optimization problems in the setting of different spaces. Among the methods
that have appeared in the literature, the method based on the resolvent operator technique, which is a
generalization of projection method, is of interest and importance and has been the focus of much research
in the past several decades. For more related details, we refer the readers to [4, 9, 10, 25–28, 37, 47, 57, 66]
and the references therein.

Browder [14] and Minty [54, 55] are known as the initiators of the study of problems with monotone op-
erators. Of course, it should be pointed out that the term monotone operator was first coined by Kačurovskiĭ
[41], who proved that the subdifferential of a convex function on a Hilbert space is monotone. Maximal
monotone operators appear in several branches of applied mathematics such as optimization, partial dif-
ferential equations, and variational analysis. The introduction of the concept of accretive mapping was first
made independently by Browder [15] and Kato [42]. The motivation for studying m-accretive mappings,
those accretive ones which satisfy the range condition, comes from the study of nonlinear semigroups,
differential equations in Banach spaces, and fully nonlinear partial differential equations. Thanks to their
extraordinary utility and broad applicability in science and engineering, in the last decades, much attention
has been given to develop and generalize the notions of maximal monotone operators and m-accretive
mappings. By the same taken, the class of P-η-accretive mappings was initially introduced by Kazmi and
Khan [44] in the setting of real q-uniformly smooth Banach space, and can be viewed as a unifying frame-
work for the classes of maximal η-monotone operators [35], η-subdifferential operators [24, 48], generalized
m-accretive mappings [34], H-monotone operators [25], general H-monotone operators [67], H-accretive
mappings [26] and (H, η)-monotone operators [28]. They defined the resolvent operator (P-η-proximal-
point mapping) associated with a P-η-accretive mapping and derived some properties in connection with
it. Unfortunately, some errors occurred in the proofs of their preliminaries results, in particular, in the proof
of the theorem concerning the Lipschitz continuity of the resolvent operator associated with a P-η-accretive
mapping. These errors have resolved one year later in a work due to Peng and Zhu [57], who reviewed
the class of P-η-accretive mappings and presented the correct versions of relevant assertions. The authors
considered a system of variational inclusions involving P-η-accretive mappings in real q-uniformly smooth
Banach spaces and verified the existence and uniqueness of its solution under some appropriate condi-
tions. With the aim of approximating this unique solution, they proposed a Mann iterative algorithm and
discussed its convergence under some suitable assumptions.

On the other hand, it is well known that many problems in topology, nonlinear analysis, mathematical
economics, differential equations, control theory, optimization problem and game theory give rise to fixed
point problems for some suitable (uni-valued or set-valued) mappings. This is why fixed point theory
became one of the most interesting area of research in the last fifty years. During the past few decades,
considerable effort has been aimed to develop efficient iterative algorithms to compute approximate fixed
points of a nonexpansive mapping, see, for example, [1, 22, 40, 60, 63] and the references therein. At the same
time, as we know, the study of nonexpansive mappings is closely connected with concepts of monotone and
accretive mappings, two classes of operators which arise naturally in the theory of differential equations.
Due to the important role and many diverse applications of nonexpansive mappins in the theory of fixed
points, within the past 50 years or so, many authors devoted their attention to introducing and presenting
several interesting generalized nonexpansive mappings in different contexts and to study the appropriate
conditions for existence of fixed points of them.
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It can be claimed that the class of asymptotically nonexpansive mappings which its study was initiated
by Goebel and Kirk [30] in 1972, is one of the most important and well known generalizations of nonexpan-
sive mappings. Later, Sahu [58] succeeded to introduce the class of nearly asymptotically nonexpansive
mappings as an extension of the class of asymptotically nonexpansive mappings. Another successfully
attempt was made one year later by Alber et al. [3], who introduced a more general class than the class of
nearly asymptotically nonexpansive mappings the so-called total asymptotically nonexpansive mappings.
The efforts in this direction have been continued and several other interesting classes of generalized non-
expansive mappings have been appeared in the literature. For more details and further information about
these generalizations, we refer the reader to [3, 9, 12, 18, 20, 30, 39, 56, 58] and the references contained
therein. Besides, the existence of a deep and close relation between the variational inequality (inclusion)
problems and the fixed point problems motivated many researchers in recent years to investigate the prob-
lem of approximating the solution of a variational inequality (inclusion) problem which is also fixed point
of a given operator. For details, an interested reader is referred to [5, 6, 9, 11–13, 16, 17, 21, 38, 59, 62, 64, 69]
and the references therein.

The remainder of this paper is organised as follows. In Sect. 2, we resume basic definitions and facts
about P-η-accretive mappings and provide some concrete interesting examples relating to them. In Sect. 3,
a system of generalized nonlinear variational-like inclusions (for short, SGNVLI) involving P-η-accretive
mappings is considered and under some suitable conditions, the existence and uniqueness of the solution of
the SGNVLI is proved. In Sect. 4, our main attention is paid to the investigation of the problem of finding a
common element of the solutions set of the SGNVLI and the fixed points set of a given total asymptotically
nonexpansive mapping. With the aim of approximating such a point, a new iterative algorithm is suggested.
In the end, Sect. 4 is closed with a theorem in which the strong convergence and stability of the sequence
of generated by our proposed iterative algorithm to a common point of the two sets mentioned above is
demonstrated.

2. Basic Definitions and Properties

In what follows, unless otherwise stated, we always let E be a real Banach space with a norm ∥.∥, E∗ be
the topological dual space of E, ⟨., .⟩ be the dual pair between E and E∗, and 2E denote the family of all the
nonempty subsets of E. As usual, x∗ will stand for the weak star topology in E∗ and the value of a functional
x∗ ∈ E∗ at x ∈ E will denote by either ⟨x, x∗⟩ or x∗(x), as is convenient. For the sake of simplicity, the norms
of E and E∗ will denote by the symbol ∥.∥. For a given multi-valued mapping M : E→ 2E,

(i) the set Range(M) given by the formula

Range(M) := {y ∈ E : ∃x ∈ E : (x, y) ∈M} =
⋃
x∈E

M(x)

is called the range of M;
(ii) the set Graph(M) defined by

Graph(M) := {(x,u) ∈ E × E : u ∈M(x)},

is called the graph of M.

Recall that a normed space E is said to be strictly convex if the unit sphere in E is strictly convex, that
is, the inequality ∥x + y∥ < 2 holds for all distinct unit vectors x and y in E. It is called smooth if for every
unit vector x in E there exists a unique x∗ ∈ E∗ such that ∥x∥ = ⟨x, x∗⟩ = 1. It is a well known truth that E is
smooth if E∗ is strictly convex, and that E is strictly convex if E∗ is smooth.

Definition 2.1. A normed space E is said to be uniformly convex if, for each ε > 0, there is a δ > 0 such that if x and
y are unit vectors in E with ∥x − y∥ ≥ 2ε, then the average (x + y)/2 has norm at most 1 − δ.
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The function δE : [0, 2]→ [0, 1] given by the formula

δE(ε) = inf{1 −
1
2
∥x + y∥ : x, y ∈ E, ∥x∥ = ∥y∥ = 1, ∥x − y∥ = ε}

is called the modulus of convexity of E.
It is significant to emphasize that in the definition of δE(ε) we can as well take the infimum over all

vectors x, y ∈ E with ∥x∥, ∥y∥ ≤ 1 and ∥x − y∥ ≥ ε.
The function δE is continuous and increasing on the interval [0, 2] and δE(0) = 0. Obviously, thanks to

the definition of the function δE, a normed space E is uniformly convex if and only if δE(ε) > 0 for every
ε ∈ (0, 2].

Definition 2.2. A normed space E is said to be uniformly smooth if, for all ε > 0 there is a τ > 0 such that if x and y
are unit vectors in E with ∥x − y∥ ≤ 2τ, then the average (x + y)/2 has norm at least 1 − ετ.

The function ρE : [0,+∞)→ [0,+∞) given by

ρE(τ) = sup{
1
2

(∥x + τy∥ + ∥x − τy∥) − 1 : x, y ∈ E, ∥x∥ = ∥y∥ = 1}

is called the modulus of smoothness of E. It is to be noted that the function ρE is convex, continuous and
increasing on the interval [0,+∞) and ρE(0) = 0. In addition, ρE(τ) ≤ τ for all τ ≥ 0. In the light of the
definition of the function ρE, a normed space E is uniformly smooth if and only if lim

τ→0

ρE(τ)
τ = 0.

It is also remarkable that in the definition of ρE(τ), we can as well take the supremum over all vectors
x, y ∈ E with ∥x∥, ∥y∥ ≤ 1. Note, in particular, that any uniformly convex and any uniformly smooth Banach
space is reflexive. A Banach space E is uniformly convex (resp., uniformly smooth) if and only if E∗ is
uniformly smooth (resp., uniformly convex). The spaces lp, Lp and Wp

m, 1 < p < ∞, m ∈ N, are uniformly
convex as well as uniformly smooth, see [23, 32, 49]. At the same time, the modulus of convexity and
smoothness of a Hilbert space and the spaces lp, Lp and Wp

m, 1 < p < ∞, m ∈N, can be found in [23, 32, 49].
For an arbitrary but fixed real number q > 1, the multi-valued mapping Jq : E→ 2E∗ given by

Jq(x) := {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥q, ∥x∗∥ = ∥x∥q−1
}, ∀x ∈ E,

is called the generalized duality mapping of E. In particular, J2 is the usual normalized duality mapping. It
is known that, in general, Jq(x) = ∥x∥q−2 J2(x), for all x , 0. Note that Jq is single-valued if E is uniformly
smooth or equivalently E∗ is strictly convex. If E is a Hilbert space, then J2 becomes the identity mapping
on E.

For a real constant q > 1, a Banach space E is called q-uniformly smooth if there exists a constant C > 0
such that ρE(t) ≤ Ctq for all t ∈ R+. It is well known that (see e.g. [68]) Lq (or lq) is q-uniformly smooth for
1 < q ≤ 2 and is 2-uniformly smooth if q ≥ 2.

In the study of characteristic inequalities in q-uniformly smooth Banach spaces, Xu [68] proved the
following result.

Lemma 2.3. Let E be a real uniformly smooth Banach space. For a real constant q > 1, E is q-uniformly smooth if
and only if there exists a constant cq > 0 such that for all x, y ∈ E,

∥x + y∥q ≤ ∥x∥q + q⟨y, Jq(x)⟩ + cq∥y∥q.

In order to proceed our next step, we also recall the following basic important concepts and some known
results which will be used in this work.

Definition 2.4. Let E be a real q-uniformly smooth Banach space and let P : E → E and η : E × E → E be the
mappings. Then P is said to be

(i) η-accretive if

⟨P(x) − P(y), Jq(η(x, y))⟩ ≥ 0, ∀x, y ∈ E;
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(ii) strictly η-accretive if P is η-accretive and equality holds if and only if x = y;
(iii) γ-strongly η-accretive (or strongly η-accretive with a constant γ > 0) if there exists a constant γ > 0 such that

⟨P(x) − P(y), Jq(η(x, y))⟩ ≥ γ∥x − y∥q, ∀x, y ∈ E;

(iv) µ-Lipschitz continuous if there exists a constant µ > 0 such that

∥P(x) − P(y)∥ ≤ µ∥x − y∥, ∀x, y ∈ E.

It should be pointed out that if η(x, y) = x− y, for all x, y ∈ E, then parts (i) to (iii) of Definition 2.4 reduce
to the definitions of accretivity, strict accretivity and strong accretivity of the mapping P, respectively.

Definition 2.5 ([26, 57]). Let E be a real q-uniformly smooth Banach space, P : E→ E be a single-valued mapping
and M : E→ 2E be a multi-valued mapping. Then M is said to be

(i) accretive if

⟨u − v, Jq(x − y)⟩ ≥ 0, ∀(x,u), (y, v) ∈ Graph(M);

(ii) m-accretive if M is accretive and (I + λM)(E) = E holds for every real constant λ > 0, where I denotes the
identity mapping on E;

(iii) P-accretive if M is accretive and (P + λM)(E) = E holds for every λ > 0.

In 2001, Huang and Fang [34] were the first to introduce and study the notion of generalized m-accretive
(also referred to as m-η-accretive and also η-m-accretive [19]) mappings as a generalization of m-accretive
mappings as follows.

Definition 2.6 ([19, 34]). Let E be a real q-uniformly smooth Banach space, η : E × E → E be a vector-valued
mapping and M : E→ 2E be a multi-valued mapping. M is said to be

(i) η-accretive if

⟨u − v, Jq(η(x, y))⟩ ≥ 0, ∀(x,u), (y, v) ∈ Graph(M);

(ii) generalized m-accretive if M is η-accretive and (I + λM)(E) = E holds for every real constant λ > 0.

It is worthwhile to stress that M is a generalized m-accretive mapping if and only if M is η-accretive
and there is no other η-accretive mapping whose graph contains strictly Graph(M). The generalized m-
accretivity is to be understood in terms of inclusion of graphs. If M : E → 2E is a generalized m-accretive
mapping, then adding anything to its graph so as to obtain the graph of a new multi-valued mapping,
destroys the η-accretivity. In fact, the extended mapping is no longer η-accretive. In other words, for every
pair (x, u) ∈ E × E\Graph(M) there exists (y, v) ∈ Graph(M) such that ⟨u − v, Jq(η(x, y))⟩ < 0. In view of the
arguments mentioned above, a necessary and sufficient condition for a multi-valued mapping M : E→ 2E

to be generalized m-accretive is that the property

⟨u − v, Jq(η(x, y))⟩ ≥ 0, ∀(y, v) ∈ Graph(M)

is equivalent to (x,u) ∈ Graph(M). The above characterization of generalized m-accretive mappings pro-
vides a useful and manageable way for recognizing that an element u belongs to M(x).

The introduction of the notion of P-η-accretive (which also referred to as (H, η)-accretive) mappings was
first made by Peng and Zhu [57], and Kazmi and Khan [44] which provides a unifying framework for H-
accretive (P-accretive) mappings, (H, η)-monotone operators [28], H-monotone operators [25], generalized
m-accretive mappings, m-accretive mappings, maximal η-monotone operators [34], and maximal monotone
operators.

Definition 2.7 ([44, 57]). Let E be a real q-uniformly smooth Banach space, P : E → E and η : E × E → E be
single-valued mappings and M : E→ 2E be a multi-valued mapping. M is said to be P-η-accretive if M is η-accretive
and (P + λM)(E) = E holds for every λ > 0.
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The following new example illustrates that for given mappings η : E × E → E and P : E → E, a
P-η-accretive mapping may be neither P-accretive nor generalized m-accretive.

Example 2.8. Let ϕ : Z → (0,+∞) and consider the complex linear space l2ϕ(Z), the weighted l2(Z) space,

consisting of all bi-infinite complex sequences {zn}
∞
n=−∞ such that

∞∑
n=−∞

|zn|
2ϕ(n) < ∞. It is known that

l2ϕ(Z) = {z = {zn}
∞

n=−∞ :
∞∑

n=−∞

|zn|
2ϕ(n) < ∞, zn ∈ C}

with respect to the inner product ⟨., .⟩ : l2ϕ(Z) × l2ϕ(Z)→ C defined by

⟨z,w⟩ =
∞∑

n=−∞

znwnϕ(n), ∀z = {zn}
∞

n=−∞,w = {wn}
∞

n=−∞ ∈ l2ϕ(Z),

is a Hilbert space. The above inner product induces a norm on l2ϕ(Z) as follows:

∥z∥l2ϕ(Z) =
√
⟨z, z⟩ = (

∞∑
n=−∞

|zn|
2ϕ(n))

1
2 , ∀z = {zn}

∞

n=−∞ ∈ l2ϕ(Z).

Thereby, (l2ϕ(Z), ∥.∥l2ϕ(Z)) is a 2-uniformly smooth Banach space.

Any element z = {zn}
∞
n=−∞ = {xn + iyn}

∞
n=−∞ ∈ l2ϕ(Z) can be written as

z =
∑

s∈{±1,±3,... }

[
(. . . , 0, 0, . . . , 0, x2s−1 + iy2s−1, 0, x2s+1 + iy2s+1, 0, 0, . . . )

+ (. . . , 0, 0, . . . , 0, x2s + iy2s, 0, x2s+2 + iy2s+2, 0, 0, . . . )
]

=
∑

s∈{±1,±3,... }

[ y2s−1 + y2s+1 − i(x2s−1 + x2s+1)
2

(. . . , 0, 0, . . . , 0, i2s−1, 0, i2s+1, 0, 0, . . . )

+
y2s−1 − y2s+1 − i(x2s−1 − x2s+1)

2
(. . . , 0, 0, . . . , 0, i2s−1, 0,−i2s+1, 0, 0, . . . )

+
y2s + y2s+2 − i(x2s + x2s+2)

2
(. . . , 0, 0, . . . , 0, i2s, 0, i2s+2, 0, 0, . . . )

+
y2s − y2s+2 − i(x2s − x2s+2)

2
(. . . , 0, 0, . . . , 0, i2s, 0,−i2s+2, 0, 0, . . . )

]
=

∑
s∈{±1,±3,... }

[ y2s−1 + y2s+1 − i(x2s−1 + x2s+1)
2

δ2s−1,2s+1 +
y2s−1 − y2s+1 − i(x2s−1 − x2s+1)

2
δ′2s−1,2s+1

+
y2s + y2s+2 − i(x2s + x2s+2)

2
δ2k,2k+2 +

y2s − y2s+2 − i(x2s − x2s+2)
2

δ′2s,2s+2

]
,

where for each s ∈ {±1,±3, . . . }, δ2s−1,2s+1 = (. . . , 0, 0, . . . , 0, i2s−1, 0, i2s+1, 0, 0, . . . ), with i in the (2s − 1)th
and (2s + 1)th positions and 0’s elsewhere, δ′2s−1,2s+1 = (. . . , 0, 0, . . . , 0, i2s−1, 0, −i2s+1, 0, 0, . . . ), i and −i
at the (2s − 1)th and (2s + 1)th coordinates, respectively, and all other coordinates are zero, δ2s,2s+2 =
(. . . , 0, 0, . . . , 0, i2s, 0, i2s+2, 0, 0, . . . ), i at the (2s)th and (2s+2)th coordinates, and all other coordinates are zero,
and δ′2s,2s+2 = (. . . , 0, 0, . . . , 0, i2s, 0,−i2s+2, 0, 0, . . . ), with i and−i at the (2s)th and (2s+2)th places, respectively,
and 0’s everywhere else. Thus, the set

B = {δ2s−1,2s+1, δ
′

2s−1,2s+1, δ2s,2s+2, δ
′

2s,2s+2 : s = ±1,±3, . . . }
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spans the Banach space l2ϕ(Z). It can be easily checked that the set B is linearly independent and so it is a
basis for l2ϕ(Z). For each s ∈ {±1,±3, . . . }, let use now take

ϱ2s−1,2s+1 = (. . . , 0, 0, . . . , 0,
1√

2ϕ(2s − 1)
i2s−1, 0,

1√
2ϕ(2s + 1)

i2s+1, 0, 0, . . . )

ϱ′2s−1,2s+1 = (. . . , 0, 0, . . . , 0,
1√

2ϕ(2s − 1)
i2s−1, 0,−

1√
2ϕ(2s + 1)

i2s+1, 0, 0, . . . )

ϱ2s,2s+2 = (. . . , 0, 0, . . . , 0,
1√

2ϕ(2s)
i2s, 0,

1√
2ϕ(2s + 2)

i2s+2, 0, 0, . . . )

and

ϱ′2s,2s+2 = (. . . , 0, 0, . . . , 0,
1√

2ϕ(2s)
i2s, 0,−

1√
2ϕ(2s + 2)

i2s+2, 0, 0, . . . ).

Evidently, the set

{ϱ2s−1,2s+1, ϱ
′

2s−1,2s+1, ϱ2s,2s+2, ϱ
′

2s,2s+2 : s = ±1,±3, . . . }

is linearly independent and

∥ϱ2s−1,2s+1∥l2
ϕ(Z)
= ∥ϱ′2s−1,2s+1∥l2ϕ(Z)

= ∥ϱ2s,2s+2∥l2
ϕ(Z)
= ∥ϱ′2s,2s+2∥l2ϕ(Z)

= 1,

that is, it is orthonormal. Let the mappings M : l2ϕ(Z)→ 2l2ϕ(Z), η : l2ϕ(Z)×l2ϕ(Z)→ l2ϕ(Z) and P : l2ϕ(Z)→ l2ϕ(Z)
be defined, respectively, as

M(z) =

 Θ, z = ϱ2t,2t+2,

−z +
{

n2

2
√

en2ϕ(n)
+ i n2

2
√

en2ϕ(n)

}∞
n=−∞

, z , ϱ2t,2t+2,

η(z,w) =
{
α(w − z), z,w , ϱ2t,2t+2,
0, otherwise,

and P(z) = βz + γ
{

n2

2
√

en2ϕ(n)
+ i n2

2
√

en2ϕ(n)

}∞
n=−∞

, for all z,w ∈ l2ϕ(Z), where

Θ = {ϱ2s−1,2s+1 − ϱ2t,2t+2, ϱ
′

2s−1,2s+1 − ϱ2t,2t+2, ϱ2s,2s+2 − ϱ2t,2t+2, ϱ
′

2s,2s+2 − ϱ2t,2t+2 : s = ±1,±3, . . . },

α, β, γ ∈ R are arbitrary constants such that β < 0 < α, t ∈ {±1,±3, . . . } is chosen arbitrarily but fixed, and

0 is the zero vector of the space l2ϕ(Z). Taking into account that
∞∑

n=−∞
n4e−n2

= 2
∞∑

n=1
n4e−n2

and
∞∑

n=1
n4e−n2

is convergent, it follows that
∞∑

n=−∞
n4e−n2

< ∞, and so
{

n2

2
√

en2ϕ(n)
+ i n2

2
√

en2ϕ(n)

}∞
n=−∞

∈ l2ϕ(Z). Then, for all

z,w ∈ l2ϕ(Z), z , w , ϱ2t,2t+2, yields

⟨M(z) −M(w), J2(z − w)⟩ = ⟨M(z) −M(w), z − w⟩

= ⟨−z +
{ n2

2
√

en2ϕ(n)
+ i

n2

2
√

en2ϕ(n)

}∞
n=−∞

+ w −
{ n2

2
√

en2ϕ(n)
+ i

n2

2
√

en2ϕ(n)

}∞
n=−∞

, z − w⟩

= ⟨w − z, z − w⟩ = −∥z − w∥2l2ϕ(Z)

= −(
∞∑

n=−∞

|zn − wn|
2ϕ(n))

1
2 < 0,
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which means that M is not accretive and so it is not a P-accretive mapping. For any given z,w ∈ l2ϕ(Z),
z , w , ϱ2t,2t+2, we have

⟨M(z) −M(w), J2(η(z,w))⟩ = ⟨M(z) −M(w), η(z,w)⟩

= ⟨−z +
{ n2

2
√

en2ϕ(n)
+ i

n2

2
√

en2ϕ(n)

}∞
n=−∞

+ w −
{ n2

2
√

en2ϕ(n)
+ i

n2

2
√

en2ϕ(n)

}∞
n=−∞

, α(w − z)⟩

= α∥z − w∥2l2ϕ(Z) = α(
∞∑

n=−∞

|zn − wn|
2ϕ(n))

1
2 > 0.

For each of the cases when z , w = ϱ2t,2t+2, w , z = ϱ2t,2t+2 and z = w = ϱ2t,2t+2, due to the fact that η(z,w) = 0,
we conclude that

⟨u − v, J2(η(z,w))⟩ = ⟨u − v, η(z,w)⟩ = 0, ∀(x,u), (y, v) ∈ Graph(M).

Hence, M is an η-accretive mapping. Taking into account that for any ϱ2t,2t+2 , z ∈ l2ϕ(Z),

∥(I +M)(z)∥2l2ϕ(Z) = ∥
{ n2

2
√

en2ϕ(n)
+ i

n2

2
√

en2ϕ(n)

}∞
n=−∞

∥
2
l2ϕ(Z) =

∞∑
n=−∞

n4e−n2

2
> 0

and

(I +M)(ϱ2t,2t+2) = {ϱ2s−1,2s+1, ϱ
′

2s−1,2s+1, ϱ2s,2s+2, ϱ
′

2s,2s+2 : s = ±1,±3, . . . },

where I is the identity mapping on E = l2ϕ(Z), it follows that 0 < (I +M)(l2ϕ(Z)). Therefore, I +M is not
surjective which ensures that M is not a generalized m-accretive (m-η-accretive) mapping. For any λ > 0
and z ∈ l2ϕ(Z), taking w = 1

β−λz +
{ (γ+λ)n2

2(λ−β)
√

en2ϕ(n)
+ i (γ+λ)n2

2(λ−β)
√

en2ϕ(n)

}∞
n=−∞

(λ , β, because β < 0), we obtain

(P + λM)(w) = (P + λM)
( 1
β − λ

z +
{ (γ + λ)n2

2(λ − β)
√

en2ϕ(n)
+ i

(γ + λ)n2

2(λ − β)
√

en2ϕ(n)

}∞
n=−∞

)
= z.

Hence, for every λ > 0, the mapping P + λM is surjective and so M is a P-η-accretive mapping.

For given mappings η : E × E → E and P : E → E, a generalized m-accretive mapping need not be
P-η-accretive. This fact is shown in the following example.

Example 2.9. Let n be an arbitrary but fixed natural number, and E = Rn be a real Hilbert space together
with the standard linear product on E = Rn defined by

⟨x, y⟩ =
n∑

i=1

xiyi, ∀x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn.

The inner product defined above induces a norm on E = Rn as follows:

∥x∥ =
√
⟨x, x⟩ =

√√
n∑

i=1

|xi|
2, ∀x = (x1, x2, . . . , xn) ∈ Rn.

Taking into account that every finite dimensional normed space is a Banach space, it follows that (Rn, ∥.∥)
is a Hilbert space and so it is a 2-uniformly smooth Banach space.
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Suppose that the mappings M : E→ E, η : E × E→ E and P : E→ E are defined, respectively, as

M(x) =M((xi)n
i=1) =

( αi

βi + γi sinqi mixi

)n

i=1
,

η(x, y) = η((xi)n
i=1, (yi)n

i=1) = (θi cospi nixi cospi tiyi(sinqi miyi − sinqi mixi)
)n

i=1

and P(x) = P((xi)n
i=1) = (ςi + ξi sinki lixi

)n

i=1
, for all x = (xi)n

i=1, y = (yi)n
i=1 ∈ E, where for i = 1, 2, . . . ,n, ςi are

arbitrary real constants, αi, βi, γi, θi, ξi,mi,ni, ti, li are arbitrary positive real constants and pi, qi and ki are
arbitrary but fixed even natural numbers. Then, for any x = (xi)n

i=1, y = (yi)n
i=1 ∈ E, we have

⟨M(x) −M(y), J2(η(x, y))⟩ = ⟨M(x) −M(y), η(x, y)⟩

= ⟨
( αi

βi + γi sinqi mixi

)n

i=1
−

( αi

βi + γi sinqi miyi

)n

i=1
,(

θi cospi nixi cospi tiyi(sinqi miyi − sinqi mixi)
)n

i=1
⟩

=

n∑
i=1

αiγiθi cospi nixi cospi tiyi(sinqi miyi − sinqi mixi)2

(βi + γi sinqi mixi)(βi + γi sinqi miyi)
≥ 0,

which implies that M is anη-accretive mapping. Let us now define the functions fi : R→ R, for i = 1, 2, . . . ,n,
as fi(ω) = ςi + ξi sinki liω + αi

βi+γi sinqi miω
for all ω ∈ R. Then, for any x = (xi)n

i=1 ∈ E = Rn, we have

(P +M)(x) = (P +M)((xi)n
i=1) =

(
ςi + ξi sinki lixi +

αi

βi + γi sinqi mixi

)n

i=1
=

(
fi(xi)

)n

i=1
.

In the light of the fact that for each i ∈ {1, 2, . . . ,n},

fi(ω) = ςi + ξi sinki liω +
αi

βi + γi sinqi miω
≥ ςi +

αi

βi + γi
, ∀ω ∈ R,

we infer that for each i ∈ {1, 2, . . . ,n}, fi(R) = [ ςi(βi+γi)+αi

βi+γi
,+∞) , R. This fact guarantees that (P +M)(E) , E,

i.e., the mapping P +M is not surjective, consequently M is not a P-η-accretive mapping. Now, let λ be an
arbitrary positive real constant and assume that for i = 1, 2, . . . ,n, the functions 1i : R → R are defined by
1i(ω) = ω + λαi

βi+γi sinqi miω
for all ω ∈ R. Then, for any x = (xi)n

i=1 ∈ E, we have

(I + λM)(x) = (I + λM)((xi)n
i=1) =

(
xi +

λαi

βi + γi sinqi mixi

)n

i=1
=

(
1i(xi)

)n

i=1
,

where I is the identity mapping on E. Since for each i ∈ {1, 2, . . . ,n}, 1i(R) = R, we deduce that (I+λM)(E) = E,
i.e., the mapping I + λM is surjective. Since λ > 0 was an arbitrary real constant, it follows that M is a
generalized m-accretive mapping.

Example 2.10. Assume that H2(C) is the set of all Hermitian matrices with complex entries. Let us recall
that a square matrix A is said to be Hermitian (or self-adjoint) if it is equal to its own Hermitian conjugate,
i.e., A∗ = At = A. In the light of the definition of a Hermitian 2× 2 matrix, the condition A∗ = A implies that

the 2 × 2 matrix A =
(

a b
c d

)
is Hermitian if and only if a, d ∈ R and b = c̄. Hence,

H2(C) =
{ ( z x − iy

x + iy w

)
|x, y, z,w ∈ R

}
and it is a subspace of M2(C), the space of all 2 × 2 matrices with complex entries, with respect to the
operations of addition and scalar multiplication defined on M2(C), when M2(C) is considered as a real
vector space. Considering the scalar product on H2(C) as ⟨A,B⟩ := 1

2 tr(AB), for all A,B ∈ H2(C), it can
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be easily observed that ⟨., .⟩ is an inner product, that is, (H2(C), ⟨., .⟩) is an inner product space. The inner
product defined above induces a norm on H2(C) as follows:

∥A∥ =
√
⟨A,A⟩ =

√
1
2

tr(AA) =
{1
2

tr
( ( x2 + y2 + z2 (z + w)(x − iy)

(z + w)(x + iy) x2 + y2 + w2

) )} 1
2

=

√
x2 + y2 +

1
2

(z2 + w2), ∀A ∈ H2(C).

The finite dimensional normed space (H2(C), ∥.∥) is a Hilbert space and so it is a 2-uniformly smooth Banach
space. Suppose that the mappings P1,P2,M : H2(C) → H2(C) and η : H2(C) × H2(C) → H2(C) are defined,
respectively, by

P1(A) = P1

( ( z x − iy
x + iy w

) )
=

(
z2 + 1

z2+α − ϱ
m
√

z x2l
− iy2l

x2l + iy2l 2|w| + wk
− θwn + σ

)
,

P2(A) = P2

( ( z x − iy
x + iy w

) )
=

(
|z − a| + |z − b| + zδ x − iy

x + iy w + ew

ew+1

)
,

M(A) =M
( ( z x − iy

x + iy w

) )
=

(
ϱ m
√

z xl
− iyl

xl + iyl θwn

)
and

η(A,B) = η
( ( z x − iy

x + iy w

)
,

(
ẑ x̂ − iŷ

x̂ + iŷ ŵ

) )
=

(
β|ẑz|( r

√
z −

r√

ẑ) x − x̂ − i(y − ŷ)
x − x̂ + i(y − ŷ) γewŵ(wp

− ŵp)

)
,

for all A =
(

z x − iy
x + iy w

)
,B =

(
ẑ x̂ − iŷ

x̂ + iŷ ŵ

)
∈ H2(C), where α > 1 and β, γ, ϱ, θ > 0 and a, b, σ ∈ R

are arbitrary constants, m,n, p, l, r, δ are arbitrary but fixed odd natural numbers and k is an arbitrary but
fixed even natural number.

Then, for any A =
(

z x − iy
x + iy w

)
,B =

(
ẑ x̂ − iŷ

x̂ + iŷ ŵ

)
∈ H2(C), yields

⟨M(A) −M(B), J2(η(A,B))⟩ = ⟨M(A) −M(B), η(A,B)⟩

=
〈 (

ϱ( m
√

z −
m√

ẑ) xl
− x̂l
− i(yl

− ŷl)
xl
− x̂l + i(yl

− ŷl) θ(wn
− ŵn)

)
,

(
β|ẑz|( r

√
z −

r√

ẑ) x − x̂ − i(y − ŷ)
x − x̂ + i(y − ŷ) γewŵ(wp

− ŵp)

) 〉
=

1
2

tr
( ( ϑ11(x, x̂, y, ŷ, z, ẑ) ϑ12(x, x̂, y, ŷ, z, ẑ)
ϑ21(x, x̂, y, ŷ, z, ẑ) ϑ22(x, x̂, y, ŷ, z, ẑ)

) )
=
ϱβ

2
|ẑz|( m√z −

m
√̂

z)( r√z −
r
√̂

z) +
γθ

2
ewŵ(wn

− ŵn)(wp
− ŵp)

+ (x − x̂)(xl
− x̂l) + (y − ŷ)(yl

− ŷl)

=
ϱβ

2
|ẑz|( m√z −

m
√̂

z)( r√z −
r
√̂

z) +
γθ

2
ewŵ(w − ŵ)2

n∑
j=1

wn− jŵ j−1
p∑
ν=1

wp−νŵδ−1

+ (x − x̂)2
l∑

j′=1

xl− j′ x̂ j′−1 + (y − ŷ)2
t∑

j′′=1

yl− j′′ ŷ j′′−1,

(1)
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where

ϑ11(x, x̂, y, ŷ, z, ẑ) = ϱβ|ẑz|( m√z −
m
√̂

z)( r√z −
r
√̂

z) + (x − x̂)(xl
− x̂l) + (y − ŷ)(yl

− ŷl)

+ i(y − ŷ)(xl
− x̂l) − i(yl

− ŷl)(x − x̂),

ϑ12(x, x̂, y, ŷ, z, ẑ) = β|ẑz|( r√z −
r
√̂

z)(x − x̂ − i(y − ŷ)) + θ(wn
− ŵn)(x − x̂ + i(y − ŷ)),

ϑ21(x, x̂, y, ŷ, z, ẑ) = ϱ( m√z −
m
√̂

z)(x − x̂ − i(y − ŷ)) + γ(xl
− x̂l
− i(yl

− ŷl))ewŵ(wp
− ŵp),

ϑ22(x, x̂, y, ŷ, z, ẑ) = (x − x̂)(xl
− x̂l) + (y − ŷ)(yl

− ŷl) + i(yl
− ŷl)(x − x̂)

− i(y − ŷ)(xl
− x̂l) + γθewŵ(wn

− ŵn)(wp
− ŵp).

If z = ẑ = 0 then ( m
√

z −
m√

ẑ)( r
√

z −
r√

ẑ) = 0 and when z , 0 = ẑ, we have

( m√z −
m
√̂

z)( r√z −
r
√̂

z) = m√z r√z =
mr√

zm+r.

By arguing similarly as above, in the case where z = 0 , ẑ, we deduce that

( m√z −
m
√̂

z)( r√z −
r
√̂

z) =
m
√̂

z
r
√̂

z =
mr
√̂

zm+r.

Taking into account that m and r are odd natural numbers, in last both cases, it follows that

( m√z −
m
√̂

z)( r√z −
r
√̂

z) > 0.

For the case when z, ẑ , 0, we get

m√z −
m
√̂

z =
z − ẑ

m∑
j=1

m√

zm− ĵz j−1
and r√z −

r
√̂

z =
z − ẑ

r∑
ς=1

r√

zr−ς̂zς−1
.

Since m and r are odd natural numbers, we have
m∑

j=1

m√

zm− ĵz j−1 > 0 and
r∑
ς=1

r√

zr−ς̂zς−1 > 0, which imply that

( m√z −
m
√̂

z)( r√z −
r
√̂

z) =
(z − ẑ)2( m∑

j=1

m√

zm− ĵz j−1
)( r∑
ς=1

r√

zr−ς̂zς−1
) > 0.

Owing to the fact that n, p and l are odd natural numbers, it can be easily seen that
p∑

j=1
wn− jŵ j−1

≥ 0,

p∑
δ=1

wp−δŵδ−1
≥ 0,

l∑
j′=1

xl− j′ x̂ j′−1
≥ 0 and

l∑
j′′=1

yl− j′′ ŷ j′′−1
≥ 0. In virtue of the fact that ϱ, β, γ, θ > 0, thanks to the

above-mentioned arguments and making use of (1), it follows that

⟨M(A) −M(B), J2(η(A,B))⟩ ≥ 0, ∀A,B ∈ H2(C),

which means that M is an η-accretive mapping.
Let us define the functions f , 1, h : R→ R by

f (u) := u2 +
1

u2 + α
, 1(u) := 2|u| + uk + σ and h(u) := u2l + ul, ∀u ∈ R,

respectively. Then, for any A =
(

z x − iy
x + iy w

)
∈ H2(C), we yeild
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(P1 +M)(A) = (P1 +M)
( ( z x − iy

x + iy w

) )
=

(
z2 + 1

z2+α x2l + xl
− i(y2l + yl)

x2l + xl + i(y2l + yl) 2|w| + wk + σ

)
=

(
f (z) h(x) − ih(y)

h(x) + ih(y) 1(w)

)
.

It can be easily observed that Range( f ) = (0,+∞) and Range(1) = [σ,+∞) because of the constant k is an
even natural number. In the meanwhile, in the light of the fact that

u2l + ul = (ul +
1
2

)2
−

1
4
≥ −

1
4
, ∀u ∈ R,

we deduce that Range(h) = [− 1
4 ,+∞). In view of these facts, it follows that (P1 +M)(H2(C)) , H2(C), which

guarantees that the mapping P1 +M is not surjective and so M is not a P1-η-accretive mapping. Now, let
λ > 0 be chosen arbitrarily but fixed and assume that the functions f̃ , 1̃, h̃ : R→ R are defined, respectively,
by

f̃ (u) := |u − a| + |u − b| + uδ + λϱ m√u, 1̃(u) := u +
eu

eu + 1
+ λθun and h̃(u) := u + λul,

for all u ∈ R. Then, for any A =
(

z x − iy
x + iy w

)
∈ H2(C), yields

(P2 + λM)(A) = (P2 + λM)
( ( z x − iy

x + iy w

) )
=

(
|z − a| + |z − b| + zδ + λϱ m

√
z x + λxl

− i(y + λyl)
x + λxl + i(y + λyl) w + ew

ew+1 + λθwn

)
=

 f̃ (z) h̃(x) − ĩh(y)
h̃(x) + ĩh(y) 1̃(w)

 .
Considering the fact that m,n, l and δ are odd natural numbers, it is easy to see that Range( f̂ ) = Range(1̂) =
Range(̂h) = R, which implies that (P2 + λM)(H2(C)) = H2(C), that is, the mapping P2 + λM is surjective.
Taking into account the arbitrariness in the choice of λ > 0, we conclude that M is a P2-η-accretive mapping.

It is important to emphasize that if P = I, the identity mapping on E, then the definition of P-η-accretive
mapping is that of generalized m-accretive mapping. In fact, the class of P-η-accretive mappings has close
relation with that of generalized m-accretive mappings in the framework of Banach spaces. On the other
hand, as we have seen from Example 2.8, for given mappings P : E → E and η : E × E → E, a P-η-
accretive mapping need not be generalized m-accretive. The following conclusion provides us the sufficient
conditions for a P-η-accretive mapping M to be generalized m-accretive.

Lemma 2.11 ([57]). Let E be a real q-uniformly smooth Banach space, η : E × E → E be a vector-valued mapping,
P : E → E be a strictly η-accretive mapping, M : E → 2E be a P-η-accretive mapping, and let x,u ∈ E be two given
points. If ⟨u − v, Jq(η(x, y))⟩ ≥ 0 holds for all (y, v) ∈ Graph(M), then (x,u) ∈ Graph(M).

In the light of Example 2.9, for given mappings P : E→ E and η : E × E→ E, a generalized m-accretive
mapping may not be P-η-accretive. A natural question to ask is under which conditions a generalized m-
accretive mapping is P-η-accretive. Before giving an answer to this question, we need to recall the following
notions.
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Definition 2.12. Let E be a real q-uniformly smooth Banach space. A mapping P : E→ E is said to be coercive if

lim
∥x∥→+∞

⟨P(x), Jq(x)⟩
∥x∥

= +∞.

Definition 2.13. Let E be a real q-uniformly smooth Banach space and P : E→ E be a single-valued mapping. P is
said to be

(i) bounded, if P(A) is a bounded subset of E, for every bounded subset A of E.
(ii) hemi-continuous if for any fixed points x, y, z ∈ E, the function t 7−→ ⟨P(x + ty), Jq(z)⟩ is continuous at 0+.

Theorem 2.14. Let E be a real q-uniformly smooth Banach space, η : E × E → E be a vector-valued mapping, and
P : E → E be a bounded, coercive, hemi-continuous and η-accretive mapping. If M : E → 2E is a generalized
m-accretive mapping, then M is P-η-accretive.

Proof. Taking into account that the mapping P is bounded, coercive, hemi-continuous and η-accretive, from
Theorem 3.1 of Guo [31, P.401], it follows that P+λM is surjective for every λ > 0, i.e., Range(P+λM)(E) = E
holds for every λ > 0. Accordingly, M is a P-η-accretive mapping. The proof is finished.

Theorem 2.15. Suppose that E is a real q-uniformly smooth Banach space, η : E × E → E is a vector-valued
mapping, P : E→ E is a strictly η-accretive mapping, and M : E→ 2E is an η-accretive mapping. Then, the mapping
(P + λM)−1 : Range(P + λM)→ E is single-valued for every constant λ > 0.

Proof. Choose constant λ > 0 and point u ∈ Range(P + λM) arbitrarily but fixed. Then for any x, y ∈
(P + λM)−1(u), we have u = (P + λM)(x) = (P + λM)(y), from which we deduce that

λ−1(u − P(x)) ∈M(x) and λ−1(u − P(y)) ∈M(y).

Since M is η-accretive, it follows that

0 ≤ ⟨λ−1(u − P(x)) − λ−1(u − P(y)), Jq(η(x, y))⟩ = λ−1
⟨P(x) − P(y), Jq(η(x, y))⟩.

Thanks to the fact that the mapping P is strictly η-accretive, the preceding inequality ensures that x = y and
so the mapping (P + λM)−1 from Range(P + λM) into E is single-valued. This gives the desired result.

The following assertion due to Kazmi and Khan [44] is an immediate consequence of the above theorem.

Lemma 2.16 ([57]). Let E be a real q-uniformly smooth Banach space, η : E × E → E be a vector-valued mapping,
P : E → E be a strictly η-accretive mapping, and M : E → 2E be a P-η-accretive mapping. Then, the mapping
(P + λM)−1 : E→ E is single-valued for every real constant λ > 0.

The resolvent operator RP,η
M,λ associated with P, η,M and given constant λ > 0 is defined based on Lemma

2.16 as follows.

Definition 2.17 ([44, 57]). Let E be a real q-uniformly smooth Banach space, η : E × E → E be a single-valued
mapping, P : E → E be a strictly η-accretive mapping, M : E → 2E be a P-η-accretive mapping, and λ > 0 be an
arbitrary real constant. The resolvent operator RP,η

M,λ : E→ E associated with P, η,M and λ is defined by

RP,η
M,λ(u) = (P + λM)−1(u), ∀u ∈ E.

We conclude this section with an important result due to Peng and Zhu [57] related to the Lipschitz
continuity of the resolvent operator RP,η

M,λ. Before proceeding to it, let us recall the following concept.

Definition 2.18. A vector-valued mapping η : E × E → E is said to be τ-Lipschitz continuous if there exists a
constant τ > 0 such that ∥η(x, y)∥ ≤ τ∥x − y∥, for all x, y ∈ E.

Lemma 2.19 ([57]). Let E be a real q-uniformly smooth Banach space, η : E × E → E be a τ-Lipschitz continuous
mapping, P : E→ E be a γ-strongly η-accretive mapping, M : E→ 2E be a P-η-accretive mapping, and λ > 0 be an
arbitrary real constant. Then, the resolvent operator RP,η

M,λ : E→ E is Lipschitz continuous with a constant τ
q−1

γ , i.e.,

∥RP,η
M,λ(u) − RP,η

M,λ(v)∥ ≤
τq−1

γ
∥u − v∥, ∀u, v ∈ E.
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3. System of Generalized Variational-like Inclusions: Existence and Uniqueness of Solution

This section is concerned with the introduction of a new system of variational-like inclusions involving
P-η-accretive mappings in the setting of real q-uniformly smooth Banach spaces. At the same time, with
the help of the resolvent operator technique, under some suitable conditions, the existence and uniqueness
of solution for our considered system is proved.

Let for each i ∈ {1, 2}, Ei be a real qi-uniformly smooth Banach space with a norm ∥.∥i and qi > 1,
Pi, fi, 1i : Ei → Ei, ηi : Ei × Ei → Ei, F : E1 × E2 → E1, G : E1 × E2 → E2, S : E2 × E1 → E1 and
T : E1 × E2 → E2 be nonlinear mappings. Suppose further that M : E1 × E1 → 2E1 and N : E2 × E2 → 2E2

are two multi-valued nonlinear mappings such that for each z ∈ E1, M(., z) : E1 → 2E1 is a P1-η1-accretive
mapping with 11(E1)∩ domM(., z) , ∅, and N(., t) : E2 → 2E2 is a P2-η2-accretive mapping for all t ∈ E2 with
12(E2) ∩ domN(., t) , ∅. We consider the problem of finding (x, y) ∈ E1 × E2 such that{

0 ∈ F(x, y) + S(y, x − f1(x)) +M(11(x), x),
0 ∈ G(x, y) + T(x, y − f2(y)) +N(12(y), y), (2)

which is called a system of generalized nonlinear variational-like inclusions (SGNVLI) with P-η-accretive map-
pings.

If for i = 1, 2, 1i ≡ Ii, the identity mapping on Ei, fi = S = T ≡ 0, M : E1 → 2E1 and N : E2 → 2E2 are
two univariate multi-valued nonlinear mappings, then the SGNVLI (2) reduces to the problem of finding
(x, y) ∈ E1 × E2 such that{

0 ∈ F(x, y) +M(x),
0 ∈ G(x, y) +N(y), (3)

which was introduced and studied by Peng and Zhu [57].
It should be remarked that for suitable choices of the mappings Pi, ηi, fi, 1i,F,G,S,T, M,N and the

underlying spaces Ei (i = 1, 2), the SGNVLI (2) collapses to various classes of variational inclusions and
variational inequalities, see, for example, [27, 37, 53, 65, 67, 70] and the references therein.

The following conclusion which tells the SGNVLI (2) is equivalent to a fixed point problem and follows
directly from Definition 2.17 and some simple arguments, provides us a characterization of the solution of
the SGNVLI (2).

Lemma 3.1. Let Ei,Pi, ηi, fi, 1i,F,G,S,T,M,N (i = 1, 2) be the same as in the SGNVLI (2) such that for each
i ∈ {1, 2}, Pi is a strictly ηi-accretive mapping with dom(Pi) ∩ 1i(Ei) , ∅. Then (x, y) ∈ E1 × E2 is a solution of the
SGNVLI (2) if and only if 11(x) = RP1,η1

M(.,x),λ[P1(11(x)) − λ(F(x, y) + S(y, x − f1(x)))],

12(y) = RP2,η2

N(.,y),ρ[P2(12(y)) − ρ(G(x, y) + T(x, y − f2(y)))],
(4)

where RP1,η1

M(.,x),λ = (P1 + λM(., x))−1, RP2,η2

N(.,y),ρ = (P2 + ρN(., y))−1, and λ, ρ > 0 are two constants.

In order to present the main result of this section, we need to define the following concepts.

Definition 3.2. Let E be a real q-uniformly smooth Banach space. A mapping T : E→ E is said to be (γ, µ)-relaxed
cocoercive if there exist two constants γ, µ > 0 such that

⟨T(x) − T(y), Jq(x − y)⟩ ≥ −γ∥T(x) − T(y)∥q + µ∥x − y∥q, ∀x, y ∈ E.

Definition 3.3. Suppose that E is a real q-uniformly smooth Banach space and let F : E × E→ E and T : E→ E be
two nonlinear mappings. For a given point (a, b) ∈ E × E, the mapping

(i) F(a, .) is said to be k-strongly accretive with respect to T (or T-strongly accretive with constant k) if there exists
a constant k > 0 such that

⟨F(a, x) − F(a, y), Jq(T(x) − T(y))⟩ ≥ k∥x − y∥q, ∀x, y ∈ E;
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(ii) F(., b) is said to be r-strongly accretive with respect to T (or T-strongly accretive with constant r) if there exists
a constant r > 0 such that

⟨F(x, b) − F(y, b), Jq(T(x) − T(y))⟩ ≥ r∥x − y∥q, ∀x, y ∈ E;

(iii) F(a, .) is said to be ϱ-Lipschitz continuous if there exists a constant ϱ > 0 such that

∥F(a, x) − F(a, y)∥ ≤ ϱ∥x − y∥, ∀x, y ∈ E;

(iv) F(., b) is said to be δ-Lipschitz continuous if there exists a constant δ > 0 such that

∥F(x, b) − F(y, b)∥ ≤ δ∥x − y∥, ∀x, y ∈ E;

(v) F(., .) is said to be (ξ, ς)-mixed Lipschitz continuous in the first and second arguments if there exist two constants
ξ, ς > 0 such that

∥F(x, y) − F(x′, y′)∥ ≤ ξ∥x − x′∥ + ς∥y − y′∥, ∀x, x′, y, y′ ∈ E.

Theorem 3.4. Let for each i ∈ {1, 2}, Ei be a real qi-uniformly smooth Banach space with qi > 1 and a norm ∥.∥i.
Suppose that for each i ∈ {1, 2}, ηi : Ei × Ei → Ei is a τi-Lipschitz continuous mapping, Pi : Ei → Ei is a γi-strongly
ηi-accretive and δi-Lipschitz continuous mapping, fi : Ei → Ei is a (ϖi, ϱi)-relaxed cocoercive and ζi-Lipschitz
continuous mapping, and 1i : Ei → Ei is a (σi, πi)-relaxed cocoercive and θi-Lipschitz continuous mapping such that
dom(Pi) ∩ 1i(Ei) , ∅. Let F : E1 × E2 → E1 and G : E1 × E2 → E2 be two nonlinear mappings such that for any
given point (a, b) ∈ E1 × E2, F(., b) is r1-strongly accretive with respect to P1 ◦ 11 and s1-Lipschitz continuous, F(a, .)
is ξ1-Lipschitz continuous, G(a, .) is r2-strongly accretive with respect to P2 ◦ 12 and s2-Lipschitz continuous and
G(., b) is ξ2-Lipschitz continuous. Assume that S : E2 × E1 → E1 and T : E1 × E2 → E2 are (µ1, ν1)-mixed Lipschitz
and (µ2, ν2)-mixed Lipschitz continuous in the first and second arguments. Suppose that M : E1 × E1 → 2E1 and
N : E2 × E2 → 2E2 are two multi-valued nonlinear mappings such that for each z ∈ E1, M(., z) : E1 → 2E1 is a
P1-η1-accretive mapping with 11(E1) ∩ domM(., z) , ∅, and N(., t) : E2 → 2E2 is a P2-η2-accretive mapping for all
t ∈ E2 with 12(E2) ∩ domN(., t) , ∅. Assume further that there exist constants ςi > 0 (i = 1, 2) such that

∥RP1,η1

M(.,u),λ(w) − RP1,η1

M(.,v),λ(w)∥ ≤ ς1∥u − v∥1, ∀u, v,w ∈ E1, (5)

∥RP2,η2

N(.,u),ρ(w) − RP2,η2

N(.,v),ρ(w)∥ ≤ ς2∥u − v∥2, ∀u, v,w ∈ E2. (6)

If there exist two constants λ, ρ > 0 such that

ς1 +
q1

√
1 − q1π1 + (cq1 + q1σ1)θq1

1 +
τq1−1

1

γ1

(
q1

√
δq1

1 θ
q1

1 − q1λr1 + λq1 cq1 sq1

1

+ λν1
q1

√
1 − q1ϱ1 + (cq1 + q1ϖ1)ζq1

1

)
+
ρτq2−1

2

γ2
(ξ2 + µ2) < 1,

(7)

and

ς2 +
q2

√
1 − q2π2 + (cq2 + q2σ2)θq2

2 +
τq2−1

2

γ2

(
q2

√
δq2

2 θ
q2

2 − q2ρr2 + ρq2 cq2 sq2

2

+ ρν2
q2

√
1 − q2ϱ2 + (cq2 + q2ϖ2)ζq2

2

)
+
λτq1−1

1

γ1
(ξ1 + µ1) < 1,

(8)

where cq1 and cq2 are constants guaranteed by Lemma 2.3, and for the case when q1 and q2 are even natural numbers,
in addition to (7) and (8), the following conditions hold:

qiπi < 1 + (cqi + qiσi)θ
qi

i , (i = 1, 2),
qiϱi < 1 + (cqi + qiϖi)ζ

qi

i , (i = 1, 2),
q1λr1 < δ

q1

1 θ
q1

1 + λ
q1 cq1 sq1

1 ,
q2ρr2 < δ

q2

2 θ
q2

2 + ρ
q2 cq2 sq2

2 ,

(9)

then the SGNVLI (2) admits a unique solution.
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Proof. For any given λ, ρ > 0, define the mappings Ψλ : E1 × E2 → E1 and Φρ : E1 × E2 → E2, respectively,
by

Ψλ(x, y) = x − 11(x) + RP1,η1

M(.,x),λ[P1(11(x)) − λ(F(x, y) + S(y, x − f1(x)))] (10)

and

Φρ(x, y) = y − 12(y) + RP2,η2

N(.,y),ρ[P2(12(y)) − ρ(G(x, y) + T(x, y − f2(y)))], (11)

for all (x, y) ∈ E1 × E2. Moreover, for any λ, ρ > 0, define a mapping Qλ,ρ : E1 × E2 → E1 × E2 by

Qλ,ρ(x, y) = (Ψλ(x, y),Φρ(x, y)), ∀(x, y) ∈ E1 × E2. (12)

It follows from Lemma 2.19 and (5) that for all (x, y), (x′, y′) ∈ E1 × E2,

∥Ψλ(x, y) −Ψλ(x′, y′)∥1 = ∥x − 11(x) + RP1,η1

M(.,x),λ[P1(11(x)) − λ(F(x, y) + S(y, x − f1(x)))] − (x′ − 11(x′)

+ RP1,η1

M(.,x′),λ[P1(11(x′)) − λ(F(x′, y′) + S(y′, x′ − f1(x′)))]
)
∥1

≤ ∥x − x′ − (11(x) − 11(x′))∥1 + ∥R
P1,η1

M(.,x),λ[P1(11(x)) − λ(F(x, y) + S(y, x − f1(x)))]

− RP1,η1

M(.,x′),λ[P1(11(x)) − λ(F(x, y) + S(y, x − f1(x)))]∥1

+ ∥RP1,η1

M(.,x′),λ[P1(11(x)) − λ(F(x, y) + S(y, x − f1(x)))]

− RP1,η1

M(.,x′),λ[P1(11(x′)) − λ(F(x′, y′) + S(y′, x′ − f1(x′)))]∥1

≤ ∥x − x′ − (11(x) − 11(x′))∥1 + ς1∥x − x′∥1 +
τq1−1

1

γ1

(
∥P1(11(x)) − P1(11(x′))

− λ(F(x, y) − F(x′, y′))∥1 + λ∥S(y, x − f1(x)) − S(y′, x′ − f1(x′))∥1
)

≤ ∥x − x′ − (11(x) − 11(x′))∥1 + ς1∥x − x′∥1

+
τq1−1

1

γ1

(
∥P1(11(x)) − P1(11(x′)) − λ(F(x, y) − F(x′, y))∥1

+ λ∥F(x′, y) − F(x′, y′)∥1 + λ∥S(y, x − f1(x)) − S(y′, x′ − f1(x′))∥1
)
.

(13)

Invoking Lemma 2.3, there exists a constant cq1 > 0 such that

∥x − x′ − (11(x) − 11(x′))∥q1

1 ≤ ∥x − x′∥q1

1 − q1⟨11(x) − 11(x′), Jq1 (x − x′)⟩ + cq1∥11(x) − 11(x′)∥q1

1 .

From (σ1, π1)-relaxed cocoercivity and θ1-Lipschitz continuity of 11, it follows that

∥x − x′ − (11(x) − 11(x′))∥q1

1 ≤ ∥x − x′∥q1

1 − q1π1∥x − x′∥q1

1 + (cq1 + q1σ1)θq1

1 ∥x − x′∥q1

1

= (1 − q1π1 + (cq1 + q1σ1)θq1

1 )∥x − x′∥q1

1 ,

whence we deduce that

∥x − x′ − (11(x) − 11(x′))∥1 ≤
q1

√
1 − q1π1 + (cq1 + q1σ1)θq1

1 ∥x − x′∥1. (14)

By using Lemma 2.3 and in virtue of the facts that the mappings P1 and 11 are δ1-Lipschitz continuous and
θ1-Lipschitz continuous, respectively, and the mapping F is r1-strongly accretive with respect to P1 ◦ 11 and
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s1-Lipschitz continuous in the first argument, we obtain

∥P1(11(x)) − P1(11(x′)) − λ(F(x, y) − F(x′, y))∥q1

1

≤ ∥P1(11(x)) − P1(11(x′))∥q1

1 − q1λ⟨F(x, y) − F(x′, y), Jq1 (P1(11(x)) − P1(11(x′)))⟩

+ λq1 cq1∥F(x, y) − F(x′, y)∥q1

1

≤ δq1

1 ∥11(x) − 11(x′)∥q1

1 − q1λr1∥x − x′∥q1

1 + λ
q1 cq1 sq1

1 ∥x − x′∥q1

1

≤ (δq1

1 θ
q1

1 − q1λr1 + λ
q1 cq1 sq1

1 )∥x − x′∥q1

1 ,

which implies that

∥P1(11(x)) − P1(11(x′)) − λ(F(x, y) − F(x′, y))∥1 ≤
q1

√
δq1

1 θ
q1

1 − q1λr1 + λq1 cq1 sq1

1 ∥x − x′∥1. (15)

Since F is ξ1-Lipschitz continuous in the second argument and S is (µ1, ν1)-mixed Lipschitz continuous in
the first and second arguments, it follows that

∥F(x′, y) − F(x′, y′)∥1 ≤ ξ1∥y − y′∥2 (16)

and

∥S(y, x − f1(x)) − S(y′, x′ − f1(x′))∥1 ≤ µ1∥y − y′∥2 + ν1∥x − x′ − ( f1(x) − f1(x′))∥1. (17)

Making use of Lemma 2.3 and taking into account of the assumptions, in a similar way to the proof of (14),
we get

∥x − x′ − ( f1(x) − f1(x′))∥1 ≤
q1

√
1 − q1ϱ1 + (cq1 + q1ϖ1)ζq1

1 ∥x − x′∥1. (18)

Substituting (14)–(18) into (13), we yield

∥Ψλ(x, y) −Ψλ(x′, y′)∥1 ≤
q1

√
1 − q1π1 + (cq1 + q1σ1)θq1

1 ∥x − x′∥1 + ς1∥x − x′∥1

+
τq1−1

1

γ1

(
q1

√
δq1

1 θ
q1

1 − q1λr1 + λq1 cq1 sq1

1 ∥x − x′∥1

+ λξ1∥y − y′∥2 + λµ1∥y − y′∥2

+ λν1
q1

√
1 − q1ϱ1 + (cq1 + q1ϖ1)ζq1

1 ∥x − x′∥1
)

= φ1∥x − x′∥1 + ϑ1∥y − y′∥2,

(19)

where

φ1 = ς1 +
q1

√
1 − q1π1 + (cq1 + q1σ1)θq1

1 +
τq1−1

1

γ1

(
q1

√
δq1

1 θ
q1

1 − q1λr1 + λq1 cq1 sq1

1 + λν1
q1

√
1 − q1ϱ1 + (cq1 + q1ϖ1)ζq1

1

)
and ϑ1 =

λτ
q1−1
1
γ1

(ξ1 + µ1). By an argument analogous to the previous inequality (19), one can prove that

∥Φρ(x, y) −Φρ(x′, y′)∥2 ≤ φ2∥x − x′∥1 + ϑ2∥y − y′∥2, (20)

where

ϑ2 = ς2 +
q2

√
1 − q2π2 + (cq2 + q2σ2)θq2

2 +
τq2−1

2

γ2

(
q2

√
δq2

2 θ
q2

2 − q2ρr2 + ρq2 cq2 sq2

2 + ρν2
q2

√
1 − q2ϱ2 + (cq2 + q2ϖ2)ζq2

2

)
and φ2 =

ρτ
q2−1
2
γ2

(ξ2 + µ2). Let us define a norm ∥.∥∗ on E1 × E2 by

∥(x, y)∥∗ = ∥x∥1 + ∥y∥2, ∀(x, y) ∈ E1 × E2. (21)
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It can be easily seen that (E1 × E2, ∥.∥∗) is a Banach space. Employing (19) and (20), we infer that

∥Ψλ(x, y) −Ψλ(x′, y′)∥1 + ∥Φρ(x, y) −Φρ(x′, y′)∥2 ≤ (φ1 + φ2)∥x − x′∥1 + (ϑ1 + ϑ2)∥y − y′∥2
≤ k∥(x, y) − (x′, y′)∥∗,

(22)

where k = max{φ1+φ2, ϑ1+ϑ2}. Clearly, (7) and (8) imply that k ∈ (0, 1) and it follows from (20) that Qλ,ρ is a
contraction mapping. According to Banach fixed point theorem, there exists a unique point (x∗, y∗) ∈ E1×E2
such that Qλ,ρ(x∗, y∗) = (x∗, y∗). Applying (10)–(??), we conclude that 11(x∗) = RP1,η1

M(.,x∗),λ[P1(11(x∗)) − λ(F(x∗, y∗) + S(y∗, x∗ − f1(x∗)))],

12(y∗) = RP2,η2

N(.,y∗),ρ[P2(12(y∗)) − ρ(G(x∗, y∗) + T(x∗, y∗ − f2(y∗)))].

Now, Lemma 3.1 guarantees that (x∗, y∗) is the unique solution of the SGNVLI (2). This completes the
proof.

Corollary 3.5. [57, Theorem 4.1] Let E1 and E2 be real q-uniformly smooth Banach spaces. For each i ∈ {1, 2}, let
ηi : Ei × Ei → Ei be Lipschitz continuous with constant τi, and Pi : Ei → Ei be strongly ηi-accretive and Lipschitz
continuous with constants γi and δi, respectively. Let F : E1 × E2 → E1 be a nonlinear operator such that for any
given (a, b) ∈ E1 ×E2, F(., b) is P1-strongly accretive and Lipschitz continuous with constants r1 and s1, respectively,
and F(a, .) is Lipschitz continuous with constant ξ1. Let G : E1 × E2 → E2 be a nonlinear operator such that for any
given (x, y) ∈ E1×E2, G(x, .) is P2-strongly accretive and Lipschitz continuous with constants r2 and s2, respectively,
and G(., y) is Lipschitz continuous with constant ξ2. Assume that M : E1 → 2E1 is a P1-η1-accretive operator and
N : E2 → 2E2 is a P2-η2-accretive operator. If there exist constants λ, ρ > 0 such that

τq−1
1

γ1

q
√
δq

1 − qλr1 + cqλqsq
1 +
ξ2ρτ

q−1
2

γ2
< 1, (23)

and

τq−1
2

γ2

q
√
δq

2 − qρr2 + cqρqsq
2 +
ξ1λτ

q−1
1

γ1
< 1, (24)

where cq is a constant guaranteed by Lemma 2.3, and for the case when q is an even natural number, in addition to
(23) and (24), the following conditions hold:

qλr1 < δ
q
1 + cqλ

qsq
1 and qρr2 ≤ δ

q
2 + cqρ

qsq
2, (25)

then the problem (3) admits a unique solution.

Proof. Since for i = 1, 2, 1i ≡ Ii, the identity mapping on Ei, it follows that for i = 1, 2, θi = 1 and

∥x − x′ − (11(x) − 11(x′))∥1 = ∥y − y′ − (12(y) − 12(y′))∥2 = 0.

In the light of the assumptions, taking qi = q, fi = S = T ≡ 0 and ϖi = ϱi = ζi = µi = νi = ςi = 0 for i = 1, 2,
(7) and (8) reduce to (23) and (24), respectively. Now, the statement follows immediately using Theorem
3.4.

Remark 3.6. It is significant to mention that by a careful reading the proof of Theorem 4.1 in [57], we noted
that the conditions mentioned in the context of [57, Theorem 4.1] do not guarantee the existence of a unique
solution for the problem (3). Indeed, for the case when q is an even natural number, then in addition to (23)
and (24), conditions (25) must be also added to the context of [57, Theorem 4.1], as we have done in the
context of Corollary 3.5.
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For a given real normed space E with a norm ∥.∥, let us recall that a nonlinear mapping T : E→ E is said
to be nonexpansive if ∥T(x)−T(y)∥ ≤ ∥x− y∥ for all x, y ∈ E. Due to the existence of a deep and close relation
between the class of nonexpansive mappings and the classes of monotone and accretive operators, since
the appearance of the theory of nonexpansive mapping in sixties, it has been intensively studied by many
mathematicians. Because of its many diverse applications in the theory of fixed points, in recent decades,
several interesting generalizations of the notion of nonexpansive mapping in the setting of different spaces
have been appeared in the literature. Some classes of generalized nonexpansive mappings appeared in the
literature are recalled in the following.

Definition 3.7. A nonlinear mapping T : E→ E is said to be

(i) L-Lipschitzian if there exists a constant L > 0 such that

∥T(x) − T(y)∥ ≤ L∥x − y∥, ∀x, y ∈ E;

(ii) uniformly L-Lipschitzian if there exists a constant L > 0 such that for each n ∈N,

∥Tn(x) − Tn(y)∥ ≤ L∥x − y∥, ∀x, y ∈ E;

(iii) asymptotically nonexpansive [30] if there exists a sequence {an} ⊂ (0,+∞) with lim
n→∞

an = 0 such that for each
n ∈N,

∥Tn(x) − Tn(y)∥ ≤ (1 + an)∥x − y∥, ∀x, y ∈ E.

Equivalently, T is called asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,+∞) with lim
n→∞

kn = 1

such that for each n ∈N,

∥Tn(x) − Tn(y)∥ ≤ kn∥x − y∥, ∀x, y ∈ E;

(iv) total asymptotically nonexpansive (also referred to as ({an}, {bn}, ϕ)-total asymptotically nonexpansive) [3] if
there exist nonnegative real sequences {an} and {bn} with an, bn → 0 as n → ∞ and a strictly increasing
continuous function ϕ : R+ → R+ with ϕ(0) = 0 such that for all x, y ∈ E,

∥Tn(x) − Tn(y)∥ ≤ ∥x − y∥ + anϕ(∥x − y∥) + bn, ∀n ∈N.

It is significant to emphasize that every uniformly L-Lipschitzian mapping is L-Lipschitzian, but the
converse is not true necessarily. In other words, the class of L-Lipschitzian mappings is broader than the
class of uniformly L-Lipschitzian mappings. For illustration this fact, the following example is provided.

Example 3.8. Let k < 0 be an arbitrary constant and consider E = [k,+∞) with the Euclidean norm ∥.∥ = |.|
defined on R. Suppose further that the self-mapping T of E is defined by

T(x) =
{

x, if x ∈ [k, 0),
lx, if x ∈ [0,+∞),

where l > 1 is an arbitrary constant. In the light of the facts that

(i) for all x, y ∈ [k, 0],

|T(x) − T(y)| = |x − y| < l|x − y|;

(ii) for all x, y ∈ [0,+∞),

|Tx − T(y)| = |lx − ly| ≤ l|x − y|;

(iii) for all x ∈ [k, 0] and y ∈ [0,+∞)

|T(x) − T(y)| = |x − ly| < l|x − y|,
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it follows that T is an l-Lipschitzian mapping. But, in virtue of the fact that l > 1 we infer that for all
n ∈N\{1},

|Tn(x) − Tn(y)| = ln|x − y| > l|x − y|, ∀x, y ∈ [0,+∞).

This fact ensures that T is not a uniformly l-Lipschitzian mapping.

It is also remarkable that every asymptotically nonexpansive mapping is total asymptotically nonex-
pansive with bn = 0 (or equivalently bn = 0 and an = kn − 1) for all n ∈ N and ϕ(t) = t for all t ≥ 0, but the
converse need not be true. The following example shows that the class of total asymptotically nonexpansive
mappings is essentially wider than the class of asymptotically nonexpansive mappings.

Example 3.9. For 1 ≤ p < ∞, consider the classical space

lp =
{
x = {xn}n∈N :

∞∑
n=1

|xn|
p < ∞, xn ∈ F = R or C

}
,

consisting of all p-power summable sequences, with the p-norm ∥.∥p defined on it by

∥x∥p =
( ∞∑

n=1

|xn|
p
) 1

p , ∀x = {xn}n∈N ∈ lp.

Moreover, let B denote the closed unit ball in the real Banach space lp and consider the subset E := [α, β]×B
ofR× lp with the norm ∥.∥E = |.|R + ∥.∥p defined onR× lp, where α < 0 and β ≥ 1 are arbitrary real constants.
Let further that the self-mapping T of E be defined by

T(u, x) =


(u, x̂), if u ∈ [α, 0),
(ϱ, x̂), if u = 0,
(ϱu, x̂), if u ∈ (0, β],

where

x̂ = (0, 0, . . . , 0︸     ︷︷     ︸
σ times

, γ sin |x1|
t1 , 0,

γ
p√

2p+1
(sin |x2|

q1 − |x2|
s1 ), 0,

γ
p√

2p+1
(|x3|

λ1 − sink1 |x3|),

0, γ sin |x4|
t2 , 0,

γ
p√

2p+1
(sin |x5|

q2 − |x5|
s2 ), 0,

γ
p√

2p+1
(|x6|

λ2 − sink2 |x6|), . . . , 0,

γ sin |xm|
t m+2

3 , 0,
γ

p√

2p+1
(sin |xm+1|

q m+2
3 − |xm+1|

s m+2
3 ), 0,

γ
p√

2p+1
(|xm+2|

λ m+2
3

− sin
k m+2

3 |xm+2|), 0, γxm+3, 0, γxm+4, . . . ),

γ, ϱ ∈ (0, 1) are arbitrary real constants, m ∈ {3ν−2|ν ∈N}, σ ≥ m+2 andλi, ki, si, ti, qi ∈N\{1} (i = 1, 2, . . . , m+2
3 )

are arbitrary but fixed natural numbers. Indeed, the element x̂ of lp can be written as x̂ = {̂xn}
∞

n=1, where
x̂i = x̂σ+2 j = 0 for all 1 ≤ i ≤ σ and j ∈N,

x̂σ+2i−1 =


γ sin |xi|

t i+2
3 , if i ∈ {3r − 2|r = 1, 2, . . . , m+2

3 },
γ

p√
2p+1

(sin |xi|
q i+1

3 − |xi|
s i+1

3 ), if i ∈ {3r − 1|r = 1, 2, . . . , m+2
3 },

γ
p√

2p+1
(|xi|

λ i
3 − sin

k i
3 |xi|), if i ∈ {3r|r = 1, 2, . . . , m+2

3 },

and x̂σ+2m+ j = γxm+ j+1
2

for all j ∈ {2δ+3|δ ∈N}. In virtue of the fact that the mapping T is discontinuous at the
points (0, x) for all x ∈ B, it follows that T is not Lipschitzian and so it is not an asymptotically nonexpansive
mapping.
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It can be easily proved that for all (u, x), (v, y) ∈ [α, 0) × B,

∥T(u, x) − T(v, y)∥E = ∥(u − v, (0, 0, . . . , 0︸     ︷︷     ︸
σ times

, γ(sin |x1|
t1 − sin |y1|

t1 ),

0,
γ

p√

2p+1
(sin |x2|

q1 − sin |y2|
q1 − (|x2|

s1 − |y2|
s1 )), 0,

γ
p√

2p+1
(|x3|

λ1 − |y3|
λ1

− (sink1 |x3| − sink1 |y3|)), 0, γ(sin |x4|
t2 − sin |y4|

t2 ), 0,
γ

p√

2p+1
(sin |x5|

q2 − sin |y5|
q2

− (|x5|
s2 − |y5|

s2 )), 0,
γ

p√

2p+1
(|x6|

λ2 − |y6|
λ2 − (sink2 |x6| − sink2 |y6|)), . . . , 0,

γ(sin |xm|
t m+2

3 − sin |ym|
t m+2

3 ), 0,
γ

p√

2p+1
(sin |xm+1|

q m+2
3 − sin |ym+1|

q m+2
3

− (|xm+1|
s m+2

3 − |ym+1|
s m+2

3 )), 0,
γ

p√

2p+1
(|xm+2|

λ m+2
3 − |ym+2|

λ m+2
3

− (sin
k m+2

3 |xm+2| − sin
k m+2

3 |ym+2|)), 0, γ(xm+3 − ym+3), 0, γ(xm+4 − ym+4), . . . ))∥X

= |u − v| +
(
γp

m+2
3∑

i=1

∣∣∣ sin |x3i−2|
ti − sin |y3i−2|

ti
∣∣∣p + (

γ
p√

2p+1
)p

m+2
3∑

i=1

∣∣∣ sin |x3i−1|
qi − sin |y3i−1|

qi

− (|x3i−1|
si − |y3i−1|

si )
∣∣∣p + (

γ
p√

2p+1
)p

m+2
3∑

i=1

∣∣∣|x3i|
λi − |y3i|

λi − (sinki |x3i| − sinki |y3i|)
∣∣∣p + γp

∞∑
i=m+3

|xi − yi|
p
) 1

p

≤ |u − v| + γmax
{ ti∑

r′′=1

|x3i−2|
ti−r′′
|y3i−2|

r′′−1,

qi∑
s′=1

|x3i−1|
qi−s′
|y3i−1|

s′−1,
si∑

j=1

|x3i−1|
si− j
|y3i−1|

j−1,

λi∑
r=1

|x3i|
λi−r
|y3i|

r−1,
ki∑

r′=1

|x3i|
ki−r′
|y3i|

r′−1, 1 : i = 1, 2, . . . ,
m + 2

3

}
∥x − y∥p.

(26)

Taking into account that x, y ∈ B, it follows that 0 ≤ |x3i−2|
ti−r′′ , |y3i−2|

r′′−1
≤ 1 for each r′′ ∈ {1, 2, . . . , ti},

0 ≤ |x3i−1|
qi−s′ , |y3i−1|

s′−1
≤ 1 for each s′ ∈ {1, 2, . . . , qi}, 0 ≤ |x3i−1|

si− j, |y3i−1|
j−1
≤ 1 for each j ∈ {1, 2, . . . , si},

0 ≤ |x3i|
λi−r, |y3i|

r−1
≤ 1 for each r ∈ {1, 2, . . . , λi}, and 0 ≤ |x3i|

ki−r′ , |y3i|
r′−1
≤ 1 for each r′ ∈ {1, 2, . . . , ki} and

i ∈ {1, 2, . . . , m+2
3 }. Relying on these facts, we deduce that

0 ≤
ti∑

r′′=1

|x3i−2|
ti−r′′
|y3i−2|

r′′−1
≤ ti, 0 ≤

qi∑
s′=1

|x3i−1|
qi−s′
|y3i−1|

s′−1
≤ qi,

0 ≤
si∑

j=1

|x3i−1|
si− j
|y3i−1|

j−1
≤ si, 0 ≤

λi∑
r=1

|x3i|
λi−r
|y3i|

r−1
≤ λi

and

0 ≤
ki∑

r′=1

|x3i|
ki−r′
|y3i|

r′−1
≤ ki,

for each i ∈ {1, 2, . . . , m+2
3 }. These facts and (26) imply that for all (u, x), (v, y) ∈ [α, 0] × B,

∥T(u, x) − T(v, y)∥E ≤ |u − v| + γξ∥x − y∥p, (27)

where ξ = max{λi, ki, qi, si, ti : i = 1, 2, . . . , m+2
3 }. Using the same arguments as for (26) and (27), on can prove

that
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(i) for all (u, x), (v, y) ∈ {0} × B,

∥T(u, x) − T(v, y)∥E ≤ γξ∥x − y∥p
≤ |u − v| + γξ∥x − y∥p;

(28)

(ii) for all (u, x), (v, y) ∈ (0, β] × B,

∥T(u, x) − T(v, y)∥E = ∥(ϱ(u − v), x̂ − ŷ)∥E
≤ ϱ|u − v| + γξ∥x − y∥p
≤ |u − v| + γξ∥x − y∥p + ϱβ;

(29)

(iii) for the case when (u, x) ∈ [α, 0) × B and (v, y) ∈ (0, β] × B,

∥T(u, x) − T(v, y)∥E = ∥(u − ϱv, x̂ − ŷ)∥E
≤ |u − ϱv| + γξ∥x − y∥p
≤ |u| + ϱ|v| + γξ∥x − y∥p
≤ |u − v| + γξ∥x − y∥p + ϱβ;

(30)

(iv) if (u, x) ∈ [α, 0) × B and (v, y) ∈ {0} × B, then

∥T(u, x) − T(v, y)∥E = ∥(u − ϱ, x̂ − ŷ)∥E
≤ |u − ϱ| + γξ∥x − y∥p
≤ |u| + γξ∥x − y∥p + ϱ
= |u − v| + γξ∥x − y∥p + ϱ;

(31)

(v) for all (u, x) ∈ {0} × B and (v, y) ∈ (0, β] × B,

∥T(u, x) − T(v, y)∥E = ∥(ϱ − ϱv, x̂ − ŷ)∥E
≤ |ϱ − ϱv| + γξ∥x − y∥p
≤ ϱ + ϱ|v| + γξ∥x − y∥p
= ϱ|u − v| + γξ∥x − y∥p + ϱ
< |u − v| + γξ∥x − y∥p + ϱ.

(32)

Making use of (27)–(32) and taking into account that ϱ > 0 and β ≥ 1, it follows that for all (u, x), (v, y) ∈ E,

∥T(u, x) − T(v, y)∥E ≤ |u − v| + γξ∥x − y∥p + ϱβ
≤ |u − v| + ∥x − y∥p + γξ(|u − v| + ∥x − y∥p) + ϱβ.

(33)

For all (u, x) ∈ [α, 0) × B and n ≥ 2, we have Tn(u, x) = (u, x̂), where

x̂ =
(

0, 0, . . . , 0︸     ︷︷     ︸
(2n−1)σ times

, γn sin |x1|
t1 , 0, 0, . . . , 0︸     ︷︷     ︸

(2n−1) times

, (
γ

p√

2p+1
)n(sin |x2|

q1 − |x2|
s1 ), 0, 0, . . . , 0︸     ︷︷     ︸

(2n−1) times

,

(
γ

p√

2p+1
)n(|x3|

λ1 − sink1 |x3|), 0, 0, . . . , 0︸     ︷︷     ︸
(2n−1) times

, γn sin |x4|
t2 , 0, 0, . . . , 0︸     ︷︷     ︸

(2n−1) times

, (
γ

p√

2p+1
)n(sin |x5|

q2

− |x5|
s2 ), 0, 0, . . . , 0︸     ︷︷     ︸

(2n−1) times

, (
γ

p√

2p+1
)n(|x6|

λ2 − sink2 |x6|), . . . , 0, 0, . . . , 0︸     ︷︷     ︸
(2n−1) times

, γn sin |xm|
t m+2

3 ,

0, 0, . . . , 0︸     ︷︷     ︸
(2n−1) times

, (
γ

p√

2p+1
)n(sin |xm+1|

q m+2
3 − |xm+1|

s m+2
3 ), 0, 0, . . . , 0︸     ︷︷     ︸

(2n−1) times

, (
γ

p√

2p+1
)n(|xm+2|

λ m+2
3

− sin
k m+2

3 |xm+2|), 0, 0, . . . , 0︸     ︷︷     ︸
(2n−1) times

, γnxm+3, 0, 0, . . . , 0︸     ︷︷     ︸
(2n−1) times

, γnxm+4, . . .
)
.
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At the same time, for each n ∈ N, Tn(u, x) = (ϱn, x̂) and Tn(u, x) = (ϱnu, x̂) for all (u, x) ∈ {0} × B and
(u, x) ∈ (0, β] × B, respectively. Then, by an argument analogous to those of (26)–(32), one can show that for
all (u, x), (v, y) ∈ E and n ≥ 2,

∥Tn(u, x) − Tn(v, y)∥E ≤ |u − v| + γnξ∥x − y∥p + ϱnβ

≤ |u − v| + ∥x − y∥p + γnξ(|u − v| + ∥x − y∥p) + ϱnβ.
(34)

Utilizing (33) and (34), for all (u, x), (v, y) ∈ E and n ∈N, we yield

∥Tn(u, x) − Tn(v, y)∥E ≤ |u − v| + ∥x − y∥p + γnξ(|u − v| + ∥x − y∥p) + ϱnβ

= ∥(u, x) − (v, y)∥E + γnξ∥(u, x) − (v, y)∥E + ϱnβ.
(35)

Let us now take µn = γn and bn = ϱnβ for each n ∈N. Then the fact that γ, ϱ ∈ (0, 1) implies that µn, bn → 0,
as n→∞. Defining the mapping ϕ : [0,+∞)→ [0,+∞) as ϕ(w) = ξw for all w ∈ [0,+∞), from (35) it follows
that for all (u, x), (v, y) ∈ E and n ∈N,

∥Tn(u, x) − Tn(v, y)∥E ≤ ∥(u, x) − (v, y)∥E + µnϕ(∥(u, x) − (v, y)∥E) + bn,

i.e., T is a ({γn
}, {ϱnβ}, ϕ)-total asymptotically nonexpansive mapping.

Lemma 3.10. Let, for each i ∈
{
1, 2}, Ei be a real Banach space with the norm ∥.∥i, and let Si : Ei → Ei be an(

{an,i}
∞

n=1, {bn,i}
∞

n=1, ϕi

)
-total asymptotically nonexpansive mapping. Suppose further that Q and ϕ are self-mappings

of E1 × E2 and R+, respectively, defined by

Q(x1, x2) = (S1x1,S2x2), ∀(x1, x2) ∈ E1 × E2 (36)

and

ϕ(t) = max{ϕi(t) : i = 1, 2}, ∀t ∈ R+. (37)

Then Q is an
(
{an,1 + an,2}

∞

n=1, {bn,1 + bn,2}
∞

n=1, ϕ
)
-total asymptotically nonexpansive mapping.

Proof. In virtue of the fact that for each i ∈ {1, 2}, Si is an
(
{an,i}

∞

n=1, {bn,i}
∞

n=1, ϕi

)
-total asymptotically nonex-

pansive mapping and ϕi : R+ → R+ is a strictly increasing function, for all (x, x′), (y, y′) ∈ E1×E2 and n ∈N,
we yield

∥Qn(x, x′) −Qn(y, y′)∥∗ = ∥(Sn
1x,Sn

2x′) − (Sn
1 y,Sn

2 y′)∥∗
= ∥(Sn

1x − Sn
1 y,Sn

2x′ − Sn
2 y′)∥∗

= ∥Sn
1x − Sn

1 y∥1 + ∥Sn
2x′ − Sn

2 y′∥2
≤ ∥x − y∥1 + an,1ϕ1(∥x − y∥1) + bn,1 + ∥x′ − y′∥2 + an,2ϕ2(∥x′ − y′∥2) + bn,2

≤ ∥x − y∥1 + ∥x′ − y′∥2 + an,1ϕ1(∥x − y∥1 + ∥x′ − y′∥2)
+ an,2ϕ2(∥x − y∥1 + ∥x′ − y′∥2) + bn,1 + bn,2

≤ ∥(x, x′) − (y, y′)∥∗ + (an,1 + an,2)ϕ(∥(x, x′) − (y, y′)∥∗) + bn,1 + bn,2,

(38)

where ∥.∥∗ is a norm on E1×E2 defined as (21). From (38) it follows that Q is an
(
{an,1+an,2}

∞

n=1, {bn,1+bn,2}
∞

n=1, ϕ
)
-

total asymptotically nonexpansive mapping. The proof is finished.

4. Iterative Algorithm and Convergence Analysis

In this section, applying two total asymptotically nonexpansive mappings S1 and S2 and by using the
resolvent operator technique associated with P-η-accretive mappings, a new perturbed p-step iterative
algorithm with mixed errors for finding an element of the set of the fixed points of the total asymptotically
nonexpansive mapping Q = (S1,S2) which is the unique solution of the SGNVLI (2) is constructed. The



J. Balooee et al. / Filomat 37:21 (2023), 7149–7180 7172

convergence and stability of the iterative sequence generated by our proposed iterative algorithm under
some suitable conditions are also proved.

Assume that for each i ∈ {1, 2}, Ei is a real qi-uniformly smooth Banach space with qi > 1 and the norm
∥.∥i, and Si : Ei → Ei is an ({an,i}

∞

n=0, {bn,i}
∞

n=0, ϕi)-total asymptotically nonexpansive mapping. Moreover, let
Q be a self-mapping of E1 ×E2 defined as (36). Denote by Fix(Si) (i = 1, 2) and Fix(Q) the sets of all the fixed
points of Si (i = 1, 2) and Q, respectively. Denote further by Ω the set of all the solutions of the SGNVLI (2)
where for each i ∈ {1, 2}, the nonlinear mapping Pi is a strictly ηi-accretive mapping with dom(Pi)∩1i(Ei) , ∅.
Utilizing (36), we infer that for any (x1, x2) ∈ E1 × E2, (x1, x2) ∈ Fix(Q) if and only if xi ∈ Fix(Si) for each
i ∈ {1, 2}, that is, Fix(Q) = Fix(S1,S2) = Fix(S1) × Fix(S2). If (x, y) ∈ Fix(Q) ∩Ω, then making use of Lemma
3.1, it can be easily observed that for each n ∈N,

x = Sn
1x = x − 11(x) + RP1,η1

M(.,x),λ[P1(11(x)) − λ(F(x, y) + S(y, x − f1(x)))]

= Sn
1

(
x − 11(x) + RP1,η1

M(.,x),λ[P1(11(x)) − λ(F(x, y) + S(y, x − f1(x)))]
)
,

y = Sn
2 y = y − 12(y) + RP2,η2

N(.,y),ρ[P2(12(y)) − ρ(G(x, y) + T(x, y − f2(y)))]

= Sn
2

(
y − 12(y) + RP2,η2

N(.,y),ρ[P2(12(y)) − ρ(G(x, y) + T(x, y − f2(y)))]
)
.

(39)

With the help of the fixed point formulation (39), we are able to construct an iterative algorithm for
finding a common element of the two sets of Fix(Q) = Fix(S1,S2) and Ω as follows.

Algorithm 4.1. Let Ei,Pi, ηi, fi, 1i,F,G,S,T,M,N (i = 1, 2) be the same as in the SGNVLI (2) such that for each
i ∈ {1, 2}, Pi is a strictly ηi-accretive mapping with dom(Pi) ∩ 1i(Ei) , ∅. Suppose further that for each i ∈ {1, 2},
Si : Ei → Ei is an ({an,i}

∞

n=0, {bn,i}
∞

n=0, ϕi)-total asymptotically nonexpansive mapping. For any given (x0, y0) ∈ E1×E2,
define the iterative sequence {(xn, yn)}∞n=0 in E1 × E2 in the following way:

xn+1 = αn,1xn + (1 − αn,1)Sn
1{zn,1 − 11(zn,1) + RP1,η1

M(.,zn,1),λ(∆(zn,1, tn,1))} + αn,1en,1 + ln,1,

yn+1 = αn,1yn + (1 − αn,1)Sn
2{tn,1 − 12(tn,1) + RP2,η2

N(.,tn,1),ρ(Ψ(zn,1, tn,1))} + αn,1ên,1 + l̂n,1,

zn,i = αn,i+1xn + (1 − αn,i+1)Sn
1{zn,i+1 − 11(zn,i+1) + RP1,η1

M(.,zn,i+1),λ(∆(zn,i+1, tn,i+1))} + αn,i+1en,i+1 + ln,i+1,

tn,i = αn,i+1yn + (1 − αn,i+1)Sn
2{tn,i+1 − 12(tn,i+1) + RP2,η2

N(.,tn,i+1),ρ(Ψ(zn,i+1, tn,i+1))} + αn,i+1ên,i+1 + l̂n,i+1,

. . .

zn,p−1 = αn,pxn + (1 − αn,p)Sn
1{xn − 11(xn) + RP1,η1

M(.,xn),λ(∆(xn, yn))} + αn,pen,p + ln,p,

tn,p−1 = αn,pyn + (1 − αn,p)Sn
2{yn − 12(yn) + RP2,η2

N(.,yn),ρ(Ψ(xn, yn))} + αn,pên,p + l̂n,p,

(40)

where i = 1, 2, . . . , p − 2; for all n ∈N ∪ {0} and i = 1, 2, . . . , p − 1,

∆(zn,i, tn,i) = P1(11(zn,i)) − λ(F(zn,i, tn,i) + S(tn,i, zn,i − f1(zn,i))),
Ψ(zn,i, tn,i) = P2(12(tn,i)) − ρ(G(zn,i, tn,i) + T(zn,i, tn,i − f2(tn,i))),
∆(xn, yn) = P1(11(xn)) − λ(F(xn, yn) + S(yn, xn − f1(xn))),
Ψ(xn, yn) = P2(12(yn)) − ρ(G(xn, yn) + T(xn, yn − f2(yn))),

λ, ρ > 0 are two constants, {αn,i}
∞

n=0 (i = 1, 2, . . . , p) are sequences in [0, 1) such that
∞∑

n=0

p∏
i=1

(1 − αn,i) = ∞, and

{en,i}
∞

n=0, {ên,i}
∞

n=0, {ln,i}
∞

n=0 and {l̂n,i}∞n=0 (i = 1, 2, . . . , p) are 4p sequences to take into account a possible inexact
computation of the resolvent operator point satisfying the following conditions: For i = 1, 2, . . . , p, {(en,i, ên,i)}∞n=0 and
{(ln,i, l̂n,i)}∞n=0 are 2p sequences in E1 × E2 such that for all n ∈N ∪ {0} and i = 1, 2, . . . , p,

en,i = e′n,i + e′′n,i, ên,i = ê′n,i + ê′′n,i,
lim
n→∞
∥(e′n,i, ê

′

n,i)∥∗ = 0,
∞∑

n=0
∥(e′′n,i, ê

′′

n,i)∥∗ < ∞,
∞∑

n=0
∥(ln,i, l̂n,i)∥∗ < ∞.

(41)
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Let {(un, vn)}∞n=0 be any sequence in E1 × E2 and define {ϵn}∞n=0 by

ϵn = ∥(un+1, vn+1) − (Ln,Dn)∥∗,
Ln = αn,1un + (1 − αn,1)Sn

1{νn,1 − 11(νn,1) + RP1,η1

M(.,νn,1),λ(∆(νn,1, ωn,1))} + αn,1en,1 + ln,1,

Dn = αn,1vn + (1 − αn,1)Sn
2{ωn,1 − 12(ωn,1) + RP2,η2

N(.,ωn,1),ρ(Ψ(νn,1, ωn,1))} + αn,1ên,1 + l̂n,1,

νn,1 = αn,2un + (1 − αn,2)Sn
1{νn,2 − 11(νn,2) + RP1,η1

M(.,νn,2),λ(∆(νn,2, ωn,2))} + αn,2en,2 + ln,2,

ωn,1 = αn,2vn + (1 − αn,2)Sn
2{ωn,2 − 12(ωn,2) + RP2,η2

N(.,ωn,2),ρ(Ψ(νn,2, ωn,2))} + αn,2ên,2 + l̂n,2,
. . .
νn,p−2 = αn,p−1un + (1 − αn,p−1)Sn

1{νn,p−1 − 11(νn,p−1)
+RP1,η1

M(.,νn,p−1),λ(∆(νn,p−1, ωn,p−1))} + αn,p−1en,p−1 + ln,p−1,

ωn,p−2 = αn,p−1vn + (1 − αn,p−1)Sn
2{ωn,p−1 − 12(ωn,p−1)

+RP2,η2

N(.,ωn,p−1),ρ(Ψ(νn,p−1, ωn,p−1))} + αn,p−1ên,p−1 + l̂n,p−1,

νn,p−1 = αn,pun + (1 − αn,p)Sn
1{un − 11(un)

+RP1,η1

M(.,un),λ(∆(un, vn))} + αn,pen,p + ln,p,
ωn,p−1 = αn,pvn + (1 − αn,p)Sn

2{vn − 12(vn)
+RP2,η2

N(.,vn),ρ(Ψ(un, vn))} + αn,pên,p + l̂n,p,

(42)

where for all n ∈N ∪ {0} and i = 1, 2, . . . , p − 1,

∆(νn,i, ωn,i) = P1(11(νn,i)) − λ(F(νn,i, ωn,i) + S(ωn,i, νn,i − f1(νn,i))),
Ψ(νn,i, ωn,i) = P2(12(ωn,i)) − ρ(G(νn,i, ωn,i) + T(νn,i, ωn,i − f2(ωn,i))),
∆(un, vn) = P1(11(un)) − λ(F(un, vn) + S(vn,un − f1(un))),
Ψ(un, vn) = P2(12(vn)) − ρ(G(un, vn) + T(un, vn − f2(vn))).

Definition 4.2. Let Ei (i = 1, 2) be real Banach spaces and T a self-mapping of E1×E2. Suppose that (x0, y0) ∈ E1×E2
and (xn+1, yn+1) = f (T, xn, yn) defines an iterative procedure which yields a sequence of points {(xn, yn)}∞n=0 in E1×E2.
Assume that Fix(T) = {(x, y) ∈ E1 × E2 : (x, y) = T(x, y)} , ∅ and {(xn, yn)}∞n=0 converges to some (x∗, y∗) ∈ Fix(T).
Furthermore, let {(zn,wn)}∞n=0 be an arbitrary sequence in E1 × E2 and ϵn = ∥(zn+1,wn+1) − f (T, zn,wn)∥ for each
n ∈N ∪ {0}. If lim

n→∞
ϵn = 0 implies that lim

n→∞
(zn,wn) = (x∗, y∗), then the iterative procedure defined by (xn+1, yn+1) =

f (T, xn, yn) is said to be T-stable or stable with respect to T.

Remark 4.3. It should be pointed out that in the last twenty years, there has been an increasing interest
in establishing some stability results of the iteration procedures for variational inequalities and variational
inclusions, see, for example, [2, 4, 9, 11, 33, 36, 43, 45, 46, 50, 52] and the references therein.

We are ready to prove the convergence and stability of the iterative sequence generated by our suggested
perturbed p-step iterative algorithm under some appropriate conditions. Before dealing with it, let us recall
the following lemma which follows directly from Lemma 2 in [51].

Lemma 4.4. Let {an}, {bn} and {cn} be three nonnegative real sequences satisfying the following conditions: there
exists a natural number n0 such that

an+1 ≤ (1 − tn)an + bntn + cn, ∀n ≥ n0,

where tn ∈ [0, 1],
∞∑

n=0
tn = ∞, lim

n→∞
bn = 0 and

∞∑
n=0

cn < ∞.

Then lim
n→∞

an = 0.

Theorem 4.5. For i = 1, 2, let Ei, ηi,Pi, fi, 1i,F,G,S,T,M,N be the same as in Theorem 3.4 and let all the conditions
of Theorem 3.4 hold. Suppose that there exist constants ςi, λ, ρ > 0 (i = 1, 2) such that (5)–(8) hold and for the cases
when q1 and q2 are even natural numbers, in addition to (5)–(8), (9) holds. Assume further that for each i ∈ {1, 2},
Si : Ei → Ei is an ({an,i}

∞

n=0, {bn,i}
∞

n=0, ϕi)-total asymptotically nonexpansive mapping and Q is a self-mapping of
E1 × E2 defined by (36) such that Fix(Q) ∩Ω , ∅. Then
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(i) the iterative sequence {(xn, yn)}∞n=0 generated by Algorithm 4.1, converges strongly to the only element (x, y) of
Fix(Q) ∩Ω.

(ii) If, in addition, there exists a constant α > 0 such that
p∏

i=1
(1 − αn,i) ≥ α for all n ∈N ∪ {0}, then lim

n→∞
(un, vn) =

(x, y) if and only if lim
n→∞
ϵn = 0, where {(un, vn)}∞n=0 is any sequence in E1 × E2 defined by (42).

Proof. Taking into account that all the conditions of Theorem 3.4 hold, the existence of a unique solution
(x, y) ∈ E1 × E2 for the SGNVLI (2) follows from Theorem 3.4. In the light of Lemma 3.1, we obtain x = x − 11(x) + RP1,η1

M(.,x),λ[P1(11(x)) − λ(F(x, y) + S(y, x − f1(x)))],

y = y − 12(y) + RP2,η2

N(.,y),ρ[P2(12(y)) − ρ(G(x, y) + T(x, y − f2(y)))].
(43)

SinceΩ is a singleton set and Fix(Q)∪Ω , ∅, we infer that x ∈ Fix(S1) and y ∈ Fix(S2). Thus, making use of
(43), for each n ≥ 0, one can write x = Sn

1x = Sn
1

(
x − 11(x) + RP1,η1

M(.,x),λ[P1(11(x)) − λ(F(x, y) + S(y, x − f1(x)))]
)
,

y = Sn
2 y = Sn

2

(
y − 12(y) + RP2,η2

N(.,y),ρ[P2(12(y)) − ρ(G(x, y) + T(x, y − f2(y)))]
)
.

(44)

Using (40), (44), Lemma 2.19 and the assumptions, it follows that

∥xn+1 − x∥1 ≤ αn,1∥xn − x∥1 + (1 − αn,1)∥Sn
1(zn,1 − 11(zn,1) + RP1,η1

M(.,zn,1),λ(∆(zn,1, tn,1)))

− Sn
1(x − 11(x) + RP1,η1

M(.,x),λ(∆(x, y)))∥1 + αn,1∥en,1∥1 + ∥ln,1∥1

≤ αn,1∥xn − x∥1 + (1 − αn,1)
(
φ1∥zn,1 − x∥1 + ϑ1∥tn,1 − y∥2 + an,1ϕ1

(
φ1∥zn,1 − x∥1

+ ϑ1∥tn,1 − y∥2
)
+ bn,1

)
+ αn,1∥e′n,1∥1 + ∥e

′′

n,1∥1 + ∥ln,1∥1,

(45)

where φ1 and ϑ1 are the same as in (19) and for all (x, y) ∈ E1 × E2,

∆(x, y) = P1(11(x)) − λ(F(x, y) + S(y, x − f1(x)).

In a similar way, employing (40), (44), Lemma 2.19 and the assumptions, one can prove that for all n ≥ 0,

∥yn+1 − y∥2 ≤ αn,1∥yn − y∥2 + (1 − αn,1)
(
φ2∥zn,1 − x∥1 + ϑ2∥tn,1 − y∥2 + an,2ϕ2

(
φ2∥zn,1 − x∥1

+ ϑ2∥tn,1 − y∥2
)
+ bn,2

)
+ αn,1∥ê′n,1∥2 + ∥ê

′′

n,1∥2 + ∥l̂n,1∥2,
(46)

where φ2 and ϑ2 are the same as in (20). Making use of (45) and (46), we obtain

∥(xn+1, yn+1) − (x, y)∥∗ ≤ αn,1∥(xn, yn) − (x, y)∥∗ + (1 − αn,1)
(
(φ1 + φ2)∥zn,1 − x∥1

+ (ϑ1 + ϑ2)∥tn,1 − y∥2 + an,1ϕ1

(
φ1∥zn,1 − x∥1 + ϑ1∥tn,1 − y∥2

)
+ an,2ϕ2

(
φ2∥zn,1 − x∥1 + ϑ2∥tn,1 − y∥2

)
+ bn,1 + bn,2

)
+ αn,1∥(e′n,1, ê

′

n,1)∥∗ + ∥(e′′n,1, ê
′′

n,1)∥∗ + ∥(ln,1, l̂n,1)∥∗

≤ αn,1∥(xn, yn) − (x, y)∥∗ + (1 − αn)
(
k∥(zn,1, tn,1) − (x, y)∥∗

+ an,1ϕ(k∥(zn,1, tn,1) − (x, y)∥∗) + an,2ϕ(k∥(zn,1, tn,1) − (x, y)∥∗)

+ bn,1 + bn,2

)
+ αn,1∥(e′n,1, ê

′

n,1)∥∗ + ∥(e′′n,1, ê
′′

n,1)∥∗ + ∥(ln,1, l̂n,1)∥∗,

(47)
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where ϕ is a self-mapping of R+ defined by (37), and k is the same as in (22). By similar arguments to the
proof of (45)–(47), for i = 1, 2, . . . , p − 2, we can establish that

∥(zn,i, tn,i) − (x, y)∥∗ ≤ αn,i+1∥(xn, yn) − (x, y)∥∗ + (1 − αn,i+1)
(
k∥(zn,i+1, tn,i+1) − (x, y)∥∗

+ an,1ϕ(k∥(zn,i+1, tn,i+1) − (x, y)∥∗) + an,2ϕ(k∥(zn,i+1, tn,i+1) − (x, y)∥∗)

+ bn,1 + bn,2

)
+ αn,i+1∥(e′n,i+1, ê

′

n,i+1)∥∗ + ∥(e′′n,i+1, ê
′′

n,i+1)∥∗ + ∥(ln,i+1, l̂n,i+1)∥∗

(48)

and

∥(zn,p−1, tn,p−1) − (x, y)∥∗ ≤ αn,p∥(xn, yn) − (x, y)∥∗ + (1 − αn,p)
(
k∥(xn, yn) − (x, y)∥∗

+ an,1ϕ(k∥(xn, yn) − (x, y)∥∗) + an,2ϕ(k∥(xn, yn) − (x, y)∥∗)

+ bn,1 + bn,2

)
+ αn,p∥(e′n,p, ê

′

n,p)∥∗ + ∥(e′′n,p, ê
′′

n,p)∥∗ + ∥(ln,p, l̂n,p)∥∗.

(49)

By using (48) and (49) one can prove that for all n ≥ 0,

∥(zn,1, tn,1) − (x, y)∥∗ ≤ αn,2∥(xn, yn) − (x, y)∥∗ + (1 − αn,2)
(
k∥(zn,2, tn,2) − (x, y)∥∗ + an,1ϕ(k∥(zn,2, tn,2)

− (x, y)∥∗) + an,2ϕ(k∥(zn,2, tn,2) − (x, y)∥∗) + bn,1 + bn,2

)
+ αn,2∥(e′n,2, ê

′

n,2)∥∗

+ ∥(e′′n,2, ê
′′

n,2)∥∗ + ∥(ln,2, l̂n,2)∥∗

≤

(
αn,2 + (1 − αn,2)αn,3k + (1 − αn,2)(1 − αn,3)αn,4k2 + · · · +

p−1∏
i=2

(1 − αn,i)αn,pkp−2

+

p∏
i=2

(1 − αn,i)kp−1
)
∥(xn, yn) − (x, y)∥∗ +

p∏
i=2

(1 − αn,i)an,1kp−2ϕ(k∥(xn, yn) − (x, y)∥∗)

+

p−1∏
i=2

(1 − αn,i)an,1kp−3ϕ(k∥(zn,p−1, tn,p−1) − (x, y)∥∗) + (1 − αn,2)an,1ϕ(k∥(zn,2, tn,2) − (x, y)∥∗)

+

p−2∏
i=2

(1 − αn,i)an,1kp−4ϕ(k∥(zn,p−2, tn,p−2) − (x, y)∥∗) + . . .

+ (1 − αn,2)(1 − αn,3)(1 − αn,4)an,1k2ϕ(k∥(zn,4, tn,4) − (x, y)∥∗)
+ (1 − αn,2)(1 − αn,3)an,1kϕ(k∥(zn,3, tn,3) − (x, y)∥∗)

+

p∏
i=2

(1 − αn,i)an,2kp−2ϕ(k∥(xn, yn) − (x, y)∥∗)

+

p−1∏
i=2

(1 − αn,i)an,2kp−3ϕ(k∥(zn,p−1, tn,p−1) − (x, y)∥∗)

+

p−2∏
i=2

(1 − αn,i)an,2kp−4ϕ(k∥(zn,p−2, tn,p−2) − (x, y)∥∗) + . . .

+ (1 − αn,2)(1 − αn,3)(1 − αn,4)an,2k2ϕ(k∥(zn,4, tn,4) − (x, y)∥∗)
+ (1 − αn,2)(1 − αn,3)an,2kϕ(k∥(zn,3, tn,3) − (x, y)∥∗)

+
( p∏

i=2

(1 − αn,i)kp−2 +

p−1∏
i=2

(1 − αn,i)kp−3 +

p−2∏
i=2

(1 − αn,i)kp−4 + . . .

+ (1 − αn,2)(1 − αn,3)(1 − αn,4)k2 + (1 − αn,2)(1 − αn,3)k + 1 − αn,2

)
(bn,1 + bn,2)

(50)
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+

p−1∏
i=2

(1 − αn,i)αn,pkp−2
∥(e′n,p, ê

′

n,p)∥∗ +
p−2∏
i=2

(1 − αn,i)αn,p−1kp−3
∥(e′n,p−1, ê

′

n,p−1)∥∗

+

p−3∏
i=2

(1 − αn,i)αn,p−2kp−2
∥(e′n,p−2, ê

′

n,p−2)∥∗ + · · · + (1 − αn,2)(1 − αn,3)αn,4k2
∥(e′n,4, ê

′

n,4)∥∗

+ (1 − αn,2)αn,3k∥(e′n,3, ê
′

n,3)∥∗ + αn,2∥(e′n,2, ê
′

n,2)∥∗ +
p−1∏
i=2

(1 − αn,i)kp−2
∥(e′′n,p, ê

′′

n,p)∥∗

+

p−2∏
i=2

(1 − αn,i)kp−3
∥(e′′n,p−1, ê

′′

n,p−1)∥∗ +
p−3∏
i=2

(1 − αn,i)kp−4
∥(e′′n,p−2, ê

′′

n,p−2)∥∗ + . . .

+ (1 − αn,2)(1 − αn,3)k2
∥(e′′n,4, ê

′′

n,4)∥∗ + (1 − αn,2)k∥(e′′n,3, ê
′′

n,3)∥∗ + ∥(e′′n,2, ê
′′

n,2)∥∗

+

p−1∏
i=2

(1 − αn,i)kp−2
∥(ln,p, l̂n,p)∥∗ +

p−2∏
i=2

(1 − αn,i)kp−3
∥(ln,p−1, l̂n,p−1)∥∗

+

p−3∏
i=2

(1 − αn,i)kp−4
∥(ln,p−2, l̂n,p−2)∥∗ + · · · + (1 − αn,2)(1 − αn,3)k2

∥(ln,4, l̂n,4)∥∗

+ (1 − αn,2)k∥(ln,3, l̂n,3)∥∗ + ∥(ln,2, l̂n,2)∥∗.

Using (47), (50) and the fact that 0 < α ≤
p∏

i=1
(1 − αn,i), for all n ∈N ∪ {0}, we can get

∥(xn+1, yn+1) − (x, y)∥∗ ≤ αn,1∥(xn, yn) − (x, y)∥∗ + (1 − αn,1)k∥(zn,1, tn,1) − (x, y)∥∗
+ (1 − αn,1)an,1ϕ(k∥(zn,1, tn,1) − (x, y)∥∗) + (1 − αn,1)an,2ϕ(k∥(zn,1, tn,1) − (x, y)∥∗)

+ (1 − αn,1)(bn,1 + bn,2) + αn,1∥(e′n,1, ê
′

n,1)∥∗ + ∥(e′′n,1, ê
′′

n,1)∥∗ + ∥(ln,1, l̂n,1)∥∗

≤

(
1 − kp−1(1 − k)

p∏
i=1

(1 − αn,i)
)
∥(xn, yn) − (x, y)∥∗ + kp−1(1 − k)

p∏
i=1

(1 − αn,i)
L

kp−1(1 − k)α

+

p−1∑
i=1

i∏
j=1

(1 − αn, j)ki
∥(e′′n,i+1, ê

′′

n,i+1)∥∗ + ∥(e′′n,1, ê
′′

n,1)∥∗ +
p−1∑
i=1

i∏
j=1

(1 − αn, j)ki
∥(ln,i+1, l̂n,i+1)∥∗ + ∥(ln,1, l̂n,1)∥∗,

(51)

where

L =
( p∏

i=1

(1 − αn,i)kp−1ϕ(k∥(xn, yn) − (x, y)∥∗) +
p−1∑
i=1

i∏
j=1

(1 − αn, j)ki−1ϕ(k∥(zn,i, tn,i) − (x, y)∥∗)
)
an,1

+
( p∏

i=1

(1 − αn,i)kp−1ϕ(k∥(xn, yn) − (x, y)∥∗) +
p−1∑
i=1

i∏
j=1

(1 − αn, j)ki−1ϕ(k∥(zn,i, tn,i) − (x, y)∥∗)
)
an,2

+

p∑
i=1

i∏
j=1

(1 − αn, j)ki−1(bn,1 + bn,2) +
p−1∑
i=1

i∏
j=1

(1 − αn, j)αn,i+1ki
∥(e′n,i+1, ê

′

n,i+1)∥∗ + αn,1∥(e′n,1, ê
′

n,1)∥∗.

Thanks to Definition 3.7(viii), we know that an,i, bn,i → 0 as n→∞ for i = 1, 2. In the light of (44), it is clear
that the conditions of Lemma 4.4 are satisfied. Now, Lemma 4.4 and (51) guarantee that (xn+1, yn+1)→ (x, y)
as n→ ∞. Therefore, the iterative sequence {(xn, yn)}∞n=0 generated by Algorithm 4.1 converges strongly to
the unique solution (x, y) of the SGNVLI (2), that is, the only element of Fix(Q) ∩Ω.
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Now, we prove the conclusion (ii). Making use of (45), we get

∥(un+1, vn+1) − (x, y)∥∗ ≤ ∥(un+1, vn+1) − (Ln,Dn)∥∗ + ∥(Ln,Dn) − (x, y)∥∗
= ϵn + ∥Ln − x∥1 + ∥Dn − y∥2.

(52)

By following the same arguments as in the proof of (48) and (49) with suitable changes, we obtain

∥Ln − x∥1 ≤ αn,1∥un − x∥1 + (1 − αn,1)
(
φ1∥νn,1 − x∥1 + ϑ1∥ωn,1 − y∥2 + an,1ϕ1(φ1∥νn,1 − x∥1

+ ϑ1∥ωn,1 − y∥2
)
+ bn,1

)
+ αn,1∥e′n,1∥1 + ∥e

′′

n,1∥1 + ∥ln,1∥1
(53)

and

∥Dn − y∥2 ≤ αn,1∥vn − y∥2 + (1 − αn,1)
(
φ2∥νn,1 − x∥1 + ϑ2∥ωn,1 − y∥2 + an,2ϕ2(φ2∥νn,1 − x∥1

+ ϑ2∥ωn,1 − y∥2
)
+ bn,2

)
+ αn,1∥ê′n,1∥2 + ∥ê

′′

n,1∥2 + ∥l̂n,1∥2,
(54)

where φ1, ϑ1 are the same as in (19) and φ2, ϑ2 are the same as in (20).

Since 0 < α <
p∏

i=1
(1 − αn,i), for all n ∈N ∪ {0}, employing (52)–(54), as the proof of (51), we get

∥(un+1, vn+1) − (x, y)∥∗ ≤
(
1 − kp−1(1 − k)

p∏
i=1

(1 − αn,i)
)
∥(un, vn) − (x, y)∥∗

+ kp−1(1 − k)
p∏

i=1

(1 − αn,i)
L′

kp−1(1 − k)α

+

p−1∑
i=1

i∏
j=1

(1 − αn, j)ki
∥(e′′n,i+1, ê

′′

n,i+1)∥∗ + ∥(e′′n,1, ê
′′

n,1)∥∗

+

p−1∑
i=1

i∏
j=1

(1 − αn, j)ki
∥(ln,i+1, l̂n,i+1)∥∗ + ∥(ln,1, l̂n,1)∥∗,

(55)

where

L′ =
( p∏

i=1

(1 − αn,i)kp−1ϕ(k∥(un, vn) − (x, y)∥∗) +
p−1∑
i=1

i∏
j=1

(1 − αn, j)ki−1ϕ(k∥(νn,i, ωn,i) − (x, y)∥∗)
)
an,1

+
( p∏

i=1

(1 − αn,i)kp−1ϕ(k∥(un, vn) − (x, y)∥∗) +
p−1∑
i=1

i∏
j=1

(1 − αn, j)ki−1ϕ(k∥(νn,i, ωn,i) − (x, y)∥∗)
)
an,2

+

p∑
i=1

i∏
j=1

(1 − αn, j)ki−1(bn,1 + bn,2) +
p−1∑
i=1

i∏
j=1

(1 − αn, j)αn,i+1ki
∥(en,i+1, ê′n,i+1)∥∗ + αn,1∥(e′n,1, ê

′

n,1)∥∗ + ϵn.

Let lim
n→∞
ϵn = 0. Then from (41), (55) and Lemma 4.4 it follows that lim

n→∞
(un, vn) = (x, y).
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Conversely, suppose that lim
n→∞

(un, vn) = (x, y). Utilizing (53) and (54), we yield

ϵn = ∥(un+1, vn+1) − (Ln,Dn)∥∗
≤ ∥(un+1, vn+1) − (x, y)∥∗ + ∥(Ln,Dn) − (x, y)∥∗

≤ ∥(un+1, vn+1) − (x, y)∥∗ + (1 − kp−1(1 − k)
p∏

i=1

(1 − αn,i)∥(un, vn) − (x, y)∥∗

+ kp−1(1 − k)
p∏

i=1

(1 − αn,i)
L′′

kp−1(1 − k)α
+

p−1∑
i=1

i∏
j=1

(1 − αn, j)ki
∥(e′′n,i+1, ê

′′

n,i+1)∥∗ + ∥(e′′n,1, ê
′′

n,1)∥∗

+

p−1∑
i=1

i∏
j=1

(1 − αn, j)ki
∥(ln,i+1, l̂n,i+1)∥∗ + ∥(ln,1, l̂n,1)∥∗,

(56)

where

L′′ =
( p∏

i=1

(1 − αn,i)kp−1ϕ(k∥(un, vn) − (x, y)∥∗) +
p−1∑
i=1

i∏
j=1

(1 − αn, j)ki−1ϕ(k∥(νn,i, ωn,i) − (x, y)∥∗)
)
an,1

+
( p∏

i=1

(1 − αn,i)kp−1ϕ(k∥(un, vn) − (x, y)∥∗) +
p−1∑
i=1

i∏
j=1

(1 − αn, j)ki−1ϕ(k∥(νn,i, ωn,i) − (x, y)∥∗)
)
an,2

+

p∑
i=1

i∏
j=1

(1 − αn, j)ki−1(bn,1 + bn,2) +
p−1∑
i=1

i∏
j=1

(1 − αn, j)αn,i+1ki
∥(en,i+1, ê′n,i+1)∥∗ + αn,1∥(e′n,1, ê

′

n,1)∥∗.

Clearly (41) implies that for each i ∈ {1, 2, . . . , p}, lim
n→∞
∥(e′′n,i, ê

′′

n,i)∥∗ = lim
n→∞
∥(ln,i, l̂n,i)∥∗ = 0. Now, the facts that

lim
n→∞

an,i = lim
n→∞

bn,i = 0 for i = 1, 2, and lim
n→∞
∥(e′n,i, ê

′

n,i)∥∗ = 0 for i = 1, 2, . . . , p, ensure that the right-hand side
of (56) tends to zero as n→∞. This completes the proof.

5. Conclusion

The interest in the study of nonlinear equations of evolution in the setting of Banach spaces gave rise
to the appearance and study of accretive and m-accretive mappings. These operators were introduced and
studied intensively in the late 1960s and early 1970s. Inspired by their wide applications, the introduction
and study of a variety of generalizations of the notion of m-accretive mapping in the setting of different
spaces have been the focus of much research in the last two decades. In one of these attempts, Kazmi
and Khan [44] and Peng and Zhu [57] introduced and studied the concept of P-η-accretive mapping in the
context of real q-uniformly smooth Banach spaces and defined the resolvent operator associated with such
a mapping. In this paper, we have studied the system of generalized nonlinear variational-like inclusions
(for short, SGNVLI) (2) involving P-η-accretive mappings. We have used the resolvent operator method
and established a new equivalence relationship between SGNVLI (2) and a class of fixed-point problems.
We have employed the obtained equivalence relationship and constructed a new iterative algorithm for
finding a common element of the solutions set of SGNVLI (2) and the fixed points set of a given total
asymptotically nonexpansive mapping. Finally, under some new approximate conditions imposed on the
parameter and mappings, we have proved the strong convergence and stability of the sequence generated
by our suggested iterative algorithm to a common point of the two sets mentioned above.
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