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Available at: http://www.pmf.ni.ac.rs/filomat

Pointwise bi-slant submanifolds of a Kenmotsu manifold
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Abstract. In the present paper, point wise bi-slant submanifolds are studied. Some geometrically important
results are obtained in the second section and these findings are used in the third section to investigate bi-
slant warped product submanifolds of a Kenmotsu manifold. In the last section of the paper, an inequality
for the squared norm of the second fundamental form of a sequential warped product submanifold of a
Kenmotsu manifold is established.

Introduction
Pointwise slant distributions on submanifolds of an almost Hermitian manifolds were defined as a gen-

eralized version of slant distribution by B.Y.Chen and Garay [3] This further lead to the study of pointwise
semi-slant and hemi-slant submanifolds (cf. [14]). The study was later extended to contact settings and
pointwise semi-slant, pseudo-slant and more generally bi-slant submanifolds in various contact settings
have also been studied (cf. [5], [8], [12] etc). With regards to Kenmotsu manifolds, it is known that these
manifolds are themselves locally warped product of the type I × f N where I is an interval and N, a Kaehler
manifold, with warping function f (t) = c exp(t) where c is a non-zero constant [6]. With this observation, it
is natural to ask whether the warping function of a warped product submanifolds of a Kenmotsu manifold
is the restriction of f on the first factor of the warped product submanifold. In the study of semi-slant and
pseudo slant warped product submanifold, it has been observed that the warping function of the warped
product submanifolds are non-trivial along the integral curve of ξ whereas it vanishes on the orthogonal
complement of the curve [9]. We have analyzed point wise bi-slant submanifolds and observed the similar
phenomenon in this general case as well. This fact plays an important role in the study of bi-slant subman-
ifolds of Kenmotsu manifolds as warped products.

The paper is divided into four sections. The first section is meant to recollect some basic results and
formulas relevant to the study of pointwise bi-slant submanifolds and warped product submanifolds of a
Kenmotsu manifold with slant factors.

Section 2 deals with pointwise bi-slant submanifolds of a Kenmotsu manifold. To initiate the study, first
some useful formulas for further investigations of the submanifolds are obtained. These formulas helped in
establishing integrability conditions for the two distributions on the submanifold. Moreover, necessary and
sufficient conditions are worked out for the totally geodesicness and totally umbilicalness of the involutive
distributions on the submanifold. This is relevant in view of the fact that the first factor of a warped product
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manifold M is totally geodesic whereas the second factor is spherical in M.

Section 3, is mainly devoted to obtain a characterization under which a pointwise bi-slant submanifold
of a Kenmotsu manifold is a warped product submanifold. Preceeding the Theorem, several formulas are
obtained and a few Lemmas are proved which paved way to establish the characterization Theorem.

Finally, in section 4, Sequential warped product submanifolds of a Kenmotsu manifolds are studied
and an inequality for the squared norm of the second fundamental form of these submanifolds is obtained.
Equality case is also discussed.

1. Preliminaries

Let M̄ be a (2m + 1)-dimensional almost contact manifold endowed with almost contact structures
denoted respectively by the standard symbols ϕ, ξ and η,with ϕ being a 1:1-tensor field, ξ, a structure
vector field and η its dual 1-form, connected with each other as:

ϕ2 = −I + η ⊗ ξ η(ξ) = 1 ϕξ = 0 ηoϕ = 0. (1)

An almost contact manifold (M̄, ϕ, ξ, η) can be endowed with a Riemannian metric 1 compatible with almost
contact structures in the sense that

1(ϕU, ϕV) = 1(U,V) − η(U)η(V). (2)

From (1) and (2), it follows that

1(ϕU,V) + 1(U, ϕV) = 0 (3)

for any U,V ∈ ΓT(M̄), where ΓTM̄ denotes the set of locally defined sections of the tangent bundle TM̄ of
M̄. The Riemannian manifold (M̄, 1) is called an almost contact metric manifold.

An almost contact metric manifold M̄ is a Kenmotsu manifold [6], if the Levi-Civita connection ∇̄ on M̄
satisfies

(∇̄Uϕ)V = 1(ϕU,V)ξ − η(V)ϕU, (4)

where the covariant derivative of ϕ is defined by the formula:

(∇̄Uϕ)V = ∇̄UϕV − ϕ∇̄UV. (5)

From (1), (4) and (5), it follows that

∇̄Uξ = U − η(U)ξ. (6)

Let M be an n-dimensional immersed submanifold of an almost contact metric manifold M̄. From now
on, we will be denoting by U,V etc., the vector fields tangential to M and by E, vector fields normal to M. If
∇ and ∇⊥ denote the induced connections on the tangent and normal bundle of M respectively then Gauss
and Weingarten formulas are given by

∇̄UV = ∇UV + h(U,V) (7)

∇̄UE = −AEU + ∇⊥UE (8)

where h, AE are the second fundamental form and shape operator associated with E respectively and
they are related as 1(h(U,V),E) = 1(AEU,V), where 1 denotes the Riemannian metric on M̄ as well as the
metric induced on M.
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A submanifold M of M̄ is said to be a totally geodesic submanifold if h ≡ 0. On the other hand, M is
a totally umbilical submanifold, if the second fundamental form h is along the mean curvature vector H.
More precisely, h(U,V) = 1(U,V)H, where H = 1

n
∑n

i=1 h(ei, ei) and {ei}1≤i≤n is an orthonormal frame of vector
fields on M and {ei}n+1≤i≤2m+1−n is a local orthonormal frame of normal vector fields. The squared norm of
second fundamental form is defined as:

∥h∥2 =
n∑

i, j=1

1(h(ei, e j), h(ei, e j)) (9)

As,

Tp(M̄) = Tp(M) ⊕ T⊥p (M), p ∈M,

we can decompose ϕU for any U ∈ Tp(M) into tangential and normal parts associated with the above direct
sum decomposition. More specifically, we write

ϕU = TU + FU (10)

where T is an endomorphism on Tp(M) and F is a normal valued linear map on Tp(M). The tensor fields on
M determined by the endomorphism T and the normal valued 1-form F are denoted by the same symbols.
Similarly, for E ∈ ΓT⊥(M), we decompose ϕE into tangential and normal parts as:

ϕE = tE + f E, (11)

with t and f being the tangential and normal valued 1-1 tensor fields on the normal bundle T⊥(M) of M.
The covariant derivative of the tensor fields T, F are defined as

(∇̄UT)V = ∇UTV − T∇UV (12)

(∇̄UF)V = ∇⊥UFV − F∇UV. (13)

Similarly, one may obtain the formulas for the covariant derivatives of t and f .
On a submanifold of Kenmotsu manifold, from equation (4), (5), (7),(8), (10), (11), (12) and (13), we obtain

(∇̄UT)V = AFVU + th(U,V) − 1(U,TV)ξ − η(V)TU (14)

and

(∇̄UF)V = f h(U,V) − h(U,TV) − η(V)FU. (15)

Moreover, from equations (6) and (7) we get

∇Uξ = U − η(U)ξ (16)

and

h(U, ξ) = 0. (17)

Let D be a differentiable distribution on the submanifold M of M̄. Then for each p ∈M,

Tp(M) =< ξp > ⊕Dp ⊕D′p,

where D′ is the distribution complementary to D⊕ < ξ >. The distribution D is called a pointwise slant
distribution on M if for each p ∈ M and non-zero tangent vector U ∈ Dp, the angle θ = θ(U) between ϕU
and Dp is constant. In this case, we call θ, a slant function of the distribution D. If the slant function is
independent of choice of p ∈M, then the distribution D is called a slant distribution with constant function



A. Naz, V. A. Khan / Filomat 37:21 (2023), 7077–7090 7080

θ. In particular, if for each p ∈ M, Tp(M) = D⊕ < ξ >, with D being a point wise slant distribution on
M, then M is called a point wise slant submanifold of M̄. In other words, a submanifold M of an almost
contact metric manifold M̄ such that ξ is tangential to M is pointwise slant if and only if the distribution
D = TM∩ < ξ >⊥ is a pointwise slant distribution with slant function θ ∈ C∞(M). In particular, if θ = 0 on
a point wise slant submanifold M, then M is an invariant submanifold whereas if θ = π/2 then M is ϕ-anti
invariant submanifold.

Park [12] obtained following charachterization for pointwise slant submanifold.

Lemma 1.1. Let M be a submanifold of almost contact metric manifold M̄. Then M is pointwise slant submanifold
if and only if

T2 = cos2 θ(−I + η ⊗ ξ) (18)

for some function θ : M→ R.

As an immediate consequence of the above formula, one can easily deduce that

1(TU,TV) = cos2 θ{1(U,V) − η(U)η(V)}, (19)

1(FU,FV) = sin2 θ(1(U,V) − η(U)η(V)), (20)

tFU = sin2 θ(−U + η(U)ξ), (21)

f FU = −FTU (22)

for any U, V ∈ ΓTM.

If TM admits two orthogonal complementry pointwise slant distribution Dθ1 , Dθ2 (with slant functions
θ1, θ2 respectively), then M is said to be a pointwise bi-slant submanifold. Thus, the tangent bundle of a
pointwise bi-slant submanifold admits the following direct sum decomposition

TM = Dθ1 ⊕Dθ2 .

In particular, if θ1 is constant and θ2 = 0, then M is a semi-slant submanifold. On the other hand if θ1 is
constant and θ2 = π/2, then M is a pseudo-slant submanifold. However, if both the slant functions θ1, θ2
are constants then M is called simply a bi-slant submanifold.

2. Pointwise bi-slant submanifold

Througout this section we consider a pointwise bi-slant submanifold M of Kenmotsu manifold with
structure vector field ξ tangential to M. In this case, the tangent and normal bundles of M are decomposed
as:

TM = Dθ1 ⊕Dθ2⊕ < ξ > and T⊥M = FDθ1 ⊕ FDθ2 ⊕ µ,

where, Dθ1 and Dθ2 are orthogonal point wise slant distributions on M with slant angles θ1, θ2 respectively
and µ is ϕ-invariant normal subbundle of M.
Note. Throughout this section, we assume that the slant angles θ1, θ2 of the two distributions are non-trivial
and different from each other. Further, U1,V1 denote vector fields in Dθ1⊕ < ξ > and U2,V2 vector fields in
Dθ2 .

We first obtain some prepatory formulas:

Lemma 2.1. Let M̄ be a Kenmotsu manifold and M be a pointwise bi-slant submanifold of M̄ with slant functions
θ1, θ2 (θ1 , θ2) such that structure vector field ξ is tangential to M. Then the following formulas hold

(i) (∇̄U1ϕ)V1 = 1(TU1,V1)ξ − η(V1)ϕU1
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(ii) (∇̄U2ϕ)V2 = 1(TU2,V2)ξ
(iii) (∇̄U2ϕ)U1 = −η(U1)ϕU2

(iv) (∇̄U1ϕ)U2 = 0

The proof follows on taking account of formula (4) and the facts that for each Ui ∈ Dθi , TUi ∈ Dθi (1 ≤ i ≤ 2)
and the structure vector field ξ is orthogonal to Dθ2 .

As an immediate consequence of the formulas obtained in Lemma 2.1 and the formulas (19) and (20),
we obtain:

Corollary 2.2. Let M̄ be a Kenmotsu manifold and M be a pointwise bi-slant submanifold of M̄ with slant functions
θ1, θ2 (θ1 , θ2) such that structure vector field ξ is tangential to M. Then the following formulas hold

(i) (∇̄U2ϕ)TV2 = cos2 θ2 1(U2,V2)ξ
(ii) (∇̄U1ϕ)TV1 = cos2 θ1 1(U1,V1)ξ

(iii) (∇̄U2ϕ)TV1 = 0 = (∇̄V1ϕ)TU2

(iv) (∇̄U2ϕ)FV2 = sin2 θ2 1(U2,V2)ξ
(v) (∇̄U1ϕ)FV1 = sin2 θ11(U1,V1)ξ

(vi) (∇̄U2ϕ)FU1 = 0 = (∇̄U1ϕ)FU2.

Corollary 2.3. Let M be pointwise bi-slant submanifold of a Kenmotsu manifold such that the structure vector field
ξ is tangential to the submanifold M. Then

(i) 1(∇̄U1 TV1, ϕU2) = cos2 θ11(∇U1 V1,U2) + 1(AFTV1 U1,U2)
(ii) 1(∇̄U1 TU2, ϕV1) = cos2 θ21(∇U1 U2,V1) + 1(AFTU2 U1,V1)

(iii) 1(∇̄U2 TV2, ϕU1) = cos2 θ2{1(∇U2 V2,U1) + η(U1)1(U2,V2)} + 1(AFTV2 U1,U2)

Proof. Making use of formulas (3),(5), (8),(10), (18) and Corollary 2.2 we obtain (i), (ii) and (iii).

Lemma 2.4. Let M be pointwise bi-slant submanifold of Kenmotsu manifold tangential to the structure vector field
ξ. Then

(i) 1(∇̄U1 FV1, ϕU2) = sin2 θ21(∇U1 V1,U2) + 1(AFTU2 V1 − AFV1 TU2 − AFU2 TV1,U1)
(ii) 1(∇̄U2 FV2, ϕU1) = sin2 θ1{1(∇U2 V2,U1) + η(U1)1(U2,V2)} + 1(AFTU1 V2 − AFV2 TU1 − AFU1 TV2,U2)

Proof. From Corollary 2.2, while using (3) we obtain

1(∇̄U1 FU2, ϕV1) = −1(∇̄U1ϕFU2,V1).

The above equation on making use of (11), (21) and the fact that Dθ1 and Dθ2 are mutually orthogonal,
reduces to

1(∇̄U1 FU2, ϕV1) = sin2 θ21(∇U1 U2,V1) − 1(AFTU2 U1,V1). (23)

Now, taking account of (10) and (8), we may write

1(∇̄U1 FV1, ϕU2) = 1(∇̄U1 FV1,TU2) + 1(∇̄U1 FV1,FU2)
= −1(AFV1 U1,TU2) − 1(∇̄U1 FU2,FV1)
= −1(AFV1 U1,TU2) − 1(∇̄U1 FU2, ϕV1 − TV1)
= −1(AFV1 U1,TU2) − 1(AFU2 U1,TV1) − 1(∇̄U1 FU2, ϕV1).
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The above equation, on substitution from (23), yields

1(∇̄U1 FV1, ϕU2) = sin2 θ21(∇U1 V1,U2) − 1(AFV1 U1,TU2) − 1(AFU2 U1,TV1) + 1(AFTU2 U1,V1)

This proves part (i) of the Lemma.

To prove part (ii), working on the same lines, we obtain by making use of (3),(8),(11), (21), (22) and
Corollary 2.2 that

1(∇̄U2 FU1, ϕV2) = − sin2 θ11(∇U2 V2,U1) + sin2 θ1η(U1)1(U2,V2) − 1(AFTU1 U2,V2). (24)

On the other hand, using formulas (8),(11) and orthogonality of Dθ1 ,Dθ2 , we obtain

1(∇̄U2 FV2, ϕU1) = −1(∇̄U2 FU1, ϕV2) + 1(AFU1 U2,TV2) − 1(AFV2 U2,TU1).

On substituting the value of 1(∇̄U2 FU1, ϕV2) from (24) into the above equation, we obtain part (ii). That
proves the Lemma completely.

With regards to the integrability of the two complementry distributions on the submanifold M, we have:

Theorem 2.5. Let M be a point wise bi-slant submanifold of a Kenmotsu manifold with orthogonal complemetry
slant distributions Dθ1 and Dθ2 (θ1 , θ2) and ξ be tangent to M. Then

(i) the distribution Dθ1⊕ < ξ >is parallel if and only if

AFU1 U2 − AFU2 U1 ∈ Dθ2 . (25)

(ii) the distribution Dθ2 is involutive and its leaves are totally umbilical in M with mean curvature vector along ξ,
if and only if

AFU1 U2 − AFU2 U1 ∈ Dθ1⊕ < ξ > . (26)

Proof. We first consider 1(∇U1 V1,U2). Making use of the tensorial equations of Kenmotsu manifolds and
Lemma 2.1, we find that

1(∇U1 V1,U2) = 1(ϕ∇̄U1 V1, ϕU2)

On applying the relevant formulas obtained in Corollary 2.3 and Lemma 2.4, the right hand side of the
above equation reduces to

cos2 θ11(∇U1 V1,U2) + 1(AFTV1 U1,U2) + sin2 θ21(∇U1 V1,U2) + 1(AFTU2 V1 − AFV1 TU2 − AFU2 TV1,U1)

That gives,

(sin2 θ1 − sin2 θ2)1(∇U1 V1,U2) = 1(AFTU2 V1 − AFV1 TU2 − AFU2 TV1 + AFTV1 U2,U1) (27)

Thus, (i) follows from (27).
Next, consider 1(∇U2 V2,U1). With the similar arguments as made above, we may obtain

1(∇U2 V2,U1) =1(∇̄U2ϕV2, ϕU1) − η(U1)1(U2,V2)
=1(∇̄U2 PV2, ϕU1) + 1(∇̄U2 FV2, ϕU1) − η(U1)1(U2,V2)

Again using relevant formulas of Corollary 2.3 and Lemma 2.4, the right hand side of the above equation
reduces to

cos2 θ2{1(∇U2 V2,U1) + η(U1)1(U2,V2)} + sin2 θ1{1(∇U2 V2,U1)η(U1)1(U2,V2)}
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−η(U1)1(U2,V2) + 1(AFTV2 U1 − AFU1 TV2 + AFTU1 V2 − AFV2 TU1,U2).

That gives

(sin2 θ2−sin2 θ1)1(∇U2 V2,U1)+(sin2 θ2−sin2 θ1)η(U1)1(U2,V2) = 1(AFTV2 U1−AFU1 TV2+AFTU1 V2−AFV2 TU1,U2).

or,

(sin2 θ2 − sin2 θ1)1(∇U2 V2 + 1(U2,V2)ξ,U1) = 1(AFTV2 U1 − AFU1 TV2 + AFTU1 V2 − AFV2 TU1,U2). (28)

Now, suppose that (26) holds on a pointwise bi-slant submanifold of a Kenmotsu manifold. In this case,
formula (28) reduces to

(sin2 θ2 − sin2 θ1)1(∇U2 V2 + 1(U2,V2)ξ,U1) = 0, (29)

from which it follows that

1([U2,V2],U1) = 0.

That is, the distribution Dθ2 is involutive. If h2 denotes the second fundamental form of the immersion of a
leaf N2 of Dθ2 in M, then we have from (29) that

h2(U2,V2) = −1(U2,V2)ξ.

Thus, in this case, N2 is totally umbilical in M with mean curvature along the structure vector field ξ.

Conversely, if Dθ2 is involutive and its leaves are totally umbilical in M with mean curvature vector ξ,
then by (28) we deduce (26).

3. Warped product submanifolds of a Kenmotsu manifold

Bishop and O’Neill [1] , while constructing examples of manifolds of negative sectional curvatures,
discovered the notion of warped product manifolds. Later, it was found that the warped product metric is
a natural metric in various models of space-time manifolds. Thats how, warped product manifolds found
applications in relativity. These manifolds are defined as:

Let (N1, 11) and (N2, 12) be Riemannian manifolds and λ be a positive differentiable function on N1. Then
the warped product manifold M denoted as N1 ×λ N2 is the product manifold N1 × N2 endowed with the
Riemannian metric

1 = π∗111 + λ
2π∗212.

It is easy to observe that warped products are a generalization of Riemannian product of two manifolds.

Twisted products N1 ×λ N2 are natural generalizations of warped products. In this case, the function λ
may depend on both factors. When λ depends only on N1, then the twisted product reduces to a warped
product. Ponge and Reckziegel [13] obtained the following:

Theorem 3.1. Let 1 be a Riemannian metric on M = N1 × N2 and assume that canonical foliations LN1 and LN2

intersect perpendicularly every where. Then 1 is the metric tensor of the twisted product N1 ×λ N2 if and only if LN1

is totally geodesic foliation and LN2 is a totally umbilical foliation.

Let ∇ be the Levi-Civita connection on M associated with twisted product metric on M, and ∇1,∇2 denote
the Levi-Civita connections of the metric tensor 11, 12 on N1 and N2 respectively. Further, let L(N1) and
L(N2) denote the set of lifts of vector fields on N1 and N2 respectively. We use the same notations for a
vector field and for its lift. We have [11] .
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Proposition 3.2. If U1,V1 ∈ L(N1) and U2,V2 ∈ L(N2), then

∇U1 V1 = ∇
1
U1

V1, (30)

∇U1 U2 = ∇U2 U1 = (U1 lnλ)U2, (31)

∇U2 V2 = ∇
2
U2

V2 + (U2 lnλ)V2 + (V2 lnλ)U2 − 1(U2,V2)∇ lnλ, (32)

where ∇ lnλ is the gradient of lnλ defined as:

1(∇λ,U) = U(λ),

for any U tangent to M. As a result of the above formula, we have

∥∇λ∥2 =
n∑

i=1

(ei(λ))2

It follows from (30) and (32) respectively that N1 is totally geodesic and N2 is totally umbilical in M.
Moreover, if h2 denotes the second fundamental form of the immersion of N2 in M, then from (32),
h2(U2,V2) = −1(U2,V2)∇ lnλ|L(N1). That is, the mean curvature vector of N2 in M is −∇ lnλ|L(N1).

We have the following characterization theorem for warped products [4]

Theorem 3.3. Let (M,g) be a connected Riemannian manifold equipped with orthogonal complementary involutive
distributions D1 and D2. Further, let the leaves of D1 be totally geodesic and the leaves of D2 be extrinsic spheres in M.
Then (M, 1) = N1×λN2, where N1,N2 denote the leaves of the distributions D1,D2 respectively and λ : N1 → (0,∞)
is a smooth function such that ∇ lnλ is the mean curvature of N2 in M. Further, if M is simply connected and
complete, then (M, 1) is a globally warped product manifold.
Where by extrinsic sphere we mean a totally umbilic submanifold such that the mean curvature vector is parallel in
the normal bundle.

Further generalizing the notion of warped product (resp. twisted product) manifolds, B.Unal[16] intro-
duced the notion of doubly warped products (resp. doubly twisted product). In particular, a doubly
warped product manifold M of N1 and N2, denoted as λ2 N1 ×λ1 N2 is a Riemannian manifold with Rie-
mannian metric tensor 1defined as: 1 = λ2

211+λ2
112 whereλ1 : N1 → R+ andλ2 : N2 → R+ are smooth maps.

B.Y.Chen [2] initiated the study of warped products with extrinsic geometric point of view by consider-
ing CR submanifolds of Kaehler manifolds as warped products. Later, I.Mihai [10] extended the study to
contact settings. Our aim, in this section is to study pointwise bi-slant submanifolds of Kenmotsu manifolds
immersed as warped products.

It is known that non trivial doubly warped products in a Kenmotsu manifold are non existent (whether
ξ is tangential or normal to the submanifold) [8]. Even non-trivial (single) warped products normal to the
structural vector field ξ in a Kenmotsu manifold are non-existent [8] However, non-trivial (single) warped
products tangential to structural vector fields ξ do exist in a Kenmotsu manifold. In this case, ξ remains
tangential to the first factor of the warped product submanifolds (cf.[9]).

Let (N1, 11) and (N2, 12) be Riemannian manifolds and M = N1 ×λ N2 be a warped product manifold
isometrically immersed into a Kenmotsu manifold M̄. Throughout, we will be denoting by U1,V1 etc.,
vector fields tangential to the first factor N1 of M and by U2,V2 etc., vector fields tangential to N2. Then on
making use of the facts that TN1 and TN2 are mutually orthogonal, TU1, TV1 ∈ ΓTN1; TU2, TV2 ∈ ΓTN2
and ξ is tangential to N1, formulae (14) and (15) yield

(∇̄U1 T)U2 = AFU2 U1 + th(U1,U2) (33)
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(∇̄U2 T)U1 = AFU1 U2 + th(U1,U2) − η(U1)TU2 (34)

(∇̄U1 F)U2 = nh(U1,U2) − h(U1,TU2) (35)

(∇̄U2 F)U1 = nh(U1,U2) − h(TU1,U2) − η(U1)FU2 (36)

By virtue of (31), (∇̄U1 T)U2 = 0 and (∇̄U2 T)U1 = (TU1 lnλ)U2 − (U1 lnλ)TU2 and thus, equations (33) and
(34) reduce respectively to

AFU2 U1 + th(U1,U2) = 0 (37)

and

(η(U1) −U1 lnλ)TU2 = AFU1 U2 + th(U1,U2) − (TU1 lnλ)U2. (38)

From (37), we have

1(h(U1,V2),FU2) = 1(h(U1,U2),FV2). (39)

Using (37) in (38), we obtain

AFU2 U1 − AFU1 U2 = (U1 lnλ − η(U1))TU2 − (TU1 lnλ)U2. (40)

Taking product with V2 in the above equation gives

1(h(U1,V2),FU2) − 1(h(U2,V2),FU1) = (U1 lnλ − η(U1))1(TU2,V2) − (TU1 lnλ)1(U2,V2).

That is, we have

1(h(U1,V2),FU2) − 1(h(U2,V2),FU1) + (TU1 lnλ)1(U2,V2) = (U1 lnλ − η(U1))1(TU2,V2). (41)

All terms in the left hand side of of (41) are symmetric in U2,V2 (the first one by virtue of (39) and the others
due to symmetry of h and 1) whereas the right hand side is skew symmetric in U2,V2. Therefore, both sides
must seperately be zero. That is,

(TU1 lnλ)1(U2,V2) = 1(h(U2,V2),FU1) − 1(h(U1,V2),FU2) (42)

and

(U1 lnλ − η(U1))1(TU2,V2) = 0. (43)

(43) holds if either N2 is ϕ-anti invariant or

U1 lnλ = η(U1). (44)

When N2 is not ϕ-anti invariant, then by (44)

TU1 lnλ = 0. (45)

The above findings lead to the following

Theorem 3.4. Let M̄ be a Kenmotsu manifold and M = N1 ×λ N2 be a warped product manifold isometrically
immersed in to M̄ such that the structure vector field ξ = ∂

∂t is tangential to N1. If the second factor N2 of M is not
ϕ-anti invariant submanifold of M̄, then λ is constant on N1, whereas along the integral curve of ξ, λ(t) = et.
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Further,when N2 is not ϕ-anti invariant, equation (40) reduces to

AFU1 U2 = AFU2 U1 (46)

consequently, we have

1(h(U2,V2),FU1) = 1(h(U1,V2),FU2)

1(h(U2,V1),FU1) = 1(h(U1,V1),FU2).

Case 1. In particular, when N2 is ϕ-invariant, formula (37) and (46) imply that

th(U1,U2) = 0 = AFU1 U2. (47)

In this case it follows from(35) and the above equation that

h(U1, ϕU2) = ϕh(U1,U2), h(U1,U2), h(U2,V2) ∈ µ. (48)

Case 2. When N2 is ϕ-anti invariant, from formula (40), we have

AFU1 U2 − AFU2 U1 = (TU1 lnλ)U2. (49)

Taking inner product with V2 in the above equation gives

1(h(U2,V2),FU1) − 1(h(U1,V2),FU2) = (TU1 lnλ)1(U2,V2). (50)

Moreover, using (12), (31) in equation (35) and (36) yields

∇
⊥

U1
FU2 = (U1 lnλ)FU2 + nh(U1,U2) (51)

and

∇
⊥

U2
FU1 = (U1 lnλ − η(U1))FU2 + nh(U1,U2) − h(TU1,U2). (52)

Lemma 3.5. Let M = N1 ×λ N2 be a warped product submanifold of a Kenmotsu manifold M̄ such that structural
vector field ξ is tangential to M. Then following is equivalent

(i) η(U1) = U1 lnλ
(ii) H = ∇ lnλ = ξ.

Proof. By Theorem 3.3, N2 is totally umbilical in M. If H is the mean curvature of N2 in M, then

h2(U2,V2) = 1(U2,V2)H,

where h2 denotes the second fundamental form of the immersion of N2 in to M. On the other hand, by (32)

h2(U2,V2) = −1(U2,V2)∇ lnλ

From the above two equations, we find that

H = −∇ lnλ

That means, for any U1 ∈ ΓTN1,

1(H,U1) = −1(∇ lnλ,U1) = −U1 lnλ

that is,

1(H,U1) = −U1 lnλ (53)

(53) proves the assertion completely.
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Remark 3.6. Let M = N1 × N⊥ arbitrary warped product submanifold of Kenmotsu manifold M̄ such that, ξ is
tangential to N1, then mean curvature vector H of N⊥ in M is not equal to ξ.

It follows from Theorem 3.4 and Lemma3.5.

Theorem 2.5, Lemma 3.5 and Theorem 3.3 lead us to the following characterization Theorem

Theorem 3.7. Let M be an immersed submanifold of a Kenmotsu manifold M̄ such that ξ ∈ TM. Assume that M is
pointwise bi-slant submanifold with two complementary pointwise slant distribution Dθ1 and Dθ2 , where θ1, θ2 are
two slant functions on M such that θ1 , θ2, θ2 , π/2. Then M is locally a warped product submanifold N1 ×λ N2
where N1, N2 are the leaves of the distribution Dθ1 ⊕ ξ and Dθ2 if and only if the shape operator of M satisfies

AFU1 U2 = AFU2 U1, (54)

for U1 ∈ Dθ1⊕ < ξ > and U2 ∈ Dθ2 . In this case, the warping function λ satisfies λ(t) = exp(t) and ξ = ∂
∂t .

Proof. Assume that N1 ×λ N2 is a warped product submanifold of M̄ such that N2 is not anti-invariant
submanifold. Then the condition (54) directly follows from (46).
Conversely, suppose that (54) holds on a pointwise bi slant submanifold M of a Kenmotsu manifold M̄,
then by Theorem 2.5, the distributions Dθ1⊕ < ξ > and Dθ2 are involutive and their leaves are respectively
totally geodesic and totally umbilical in M. Moreover, as ∇U2ξ = U2, we have nor(∇U2ξ) = 0. That means
the mean curvature H is parallel showing that the leaves of Dθ2 are spherical in M. Hence, by Theorem 3.3,
M is a warped product manifold with warping function λ satisfying λ(t) = exp(t).

As an immediate consequence of the above Theorem, we have

Corollary 3.8. Let M be pointwise semi-slant submanifold of Kenmotsu manifold M̄ with ξ ∈ TM. Then for any
U1 ∈ Dθ⊕ < ξ > and X ∈ DT, M is locally warped product submanifold of the type Nθ ×λ NT, where Nθ is integral
pointwise slant submanifold of distribution Dθ⊕ < ξ > having slant function θ and NT is invariant submanifold if
and only if the shape operator satisfies

AFUX ≡ 0.

4. Sequential warped product submanifold

As a next step forward, we consider sequential warped products (i.e., a manifold M of the type
(N1×λN2)×µN3). We can view M as a single warped product manifold N×µN3 with N itself a warped prod-
uct manifold N1 ×λ N2 with factors N1,N2 as submanifolds of M̄, where λ : N1 → R+ and µ : N1 ×N2 → R+

are C∞- functions. If µ depends only on N1, then sequential warped product reduces to bi-warped product.

Let M = (N1 ×λ N2) ×µ N3 be sequential warped product submanifold of Kenmotsu M̄ such that ξ is
tangential to N1. Throughout, we assume that the factors of M are ϕ-invariant, anti invariant and slant
submanifolds of M̄. It is known that if Dθ is a slant distribution on a submanifold M of a Kenmotsu manifold
such that Dθ⊕ < ξ > is involutive, then the leaves of Dθ⊕ < ξ > are considered as slant submanifolds of
M, denoted as Nθ. Moreover, in the case, when N3 is non-anti invariant, the warping function µ is constant
on N2, as a result the sequential warped product will reduce to simply a bi-warped product. Thus, for a
non-trivial sequential warped product submanifold, we assume that N3 is ϕ− anti invariant submanifold of
M̄. More specifically, we consider sequential warped product submanifolds of the type (Nθ ×λ NT) ×µ N⊥,
where NT and N⊥ are ϕ-invariant and anti-invariant submanifolfds of M̄.
Further, let the dim(Nθ) = 2p, dim(NT) = 2q, and dim(N⊥) = r .

Since the shape operator and and the second fundamental form of the immersion of M into M̄ play
important role in the study of extrinsic geometry of the submanifold, we begin the section by looking into
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properties of the the second fundamental form h of M into M̄.

Note. Throughout we will be denoting by X,Y etc, vector fields tangential to NT and by Z,W etc, vector
fields tangential to N⊥, and by U,V etc, vector fields tangential to Nθ.

By (44), we have U lnλ = η(U), in particular TU lnλ = 0. Taking account of these observation in equation
(40), we get

AFUX = 0

That gives the following relations of second fundamental form

1(h(X,Y),FU) = 0, (55)

1(h(X,U),FV) = 0 (56)

and

1(h(X,Z),FU) = 0. (57)

From (40), we have

AFUZ − AFZU = (TU lnµ)Z, AFZX = −(TX lnµ)Z

These relations yield the following equations:

1(h(X,Y),FZ) = 1(h(X,U),FZ) = 1(h(Z,X),FU) = 0, (58)

1(h(X,W),FZ) = −(TX lnµ)1(Z,W) (59)

1(h(Z,V),FU) = 1(h(U,V),FZ), (60)

1(h(Z,W),FU) = 1(h(U,W),FZ) + (TU lnµ)1(Z,W). (61)

Let {U1,U2, ....U2p, ξ}, {X1,X2, ...,X2q} and {Z1,Z2, ...Zr}be orthonormal frames of vector fields on Nθ,NT
and N⊥ respectively.
Throughout this section, we use the following convention for the indices.

1 ≤ i, j, k ≤ 2p; 1 ≤ l,m,n ≤ 2q; 1 ≤ a, b, c ≤ r

Theorem 4.1. Let M = (Nθ ×λ NT) ×µ N⊥ be a sequential warped product submanifold of a Kenmotsu manifold M̄,
where Nθ and NT are slant and ϕ-invariant submanifolds of M̄ whereas N⊥ is a totally umbilical , ϕ-anti invariant
submanifold of M̄. Then the squared norm of the second fundamental form satisfies

∥h∥2 ≥ r2
{sin2 θ∥Hθ∥2 + ∥H⊥∥2 − sin 2θ∥Hθ∥∥∇ lnµθ∥}.

The equality in the above inequality holds iff Nθ is totally geodesic in M̄.
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Proof. By definition,

∥h∥2 =
2p∑

i, j,k=1

1(h(Ui,U j),FUk)2 +

r∑
a=1

2p∑
i, j=1

1(h(Ui,U j),FZa)2 +

2q∑
l=1

2p∑
i, j=1

1(h(Ui,Xl),FU j)2

+

r∑
a=1

2q∑
l=1

2p∑
i=1

1(h(Ui,Xl),FZa)2 +

r∑
a=1

2p∑
i, j=1

1(h(Ui,Za),FU j)2 +

r∑
a,b=1

2p∑
i, j=1

1(h(Ui,Za),FZb)2

+

2q∑
l,m=1

2p∑
i,=1

1(h(Xl,Xm),FUi)2 +

2q∑
l,m=1

r∑
a=1

1(h(Xl,Xm),FZa)2 +

2q∑
l=1

2p∑
i, j=1

1(h(Xl,Ui),FU j)2

+

r∑
a=1

2q∑
l=1

2p∑
i=1

1(h(Xl,Ui),FZa)2 +

r∑
a=1

2q∑
l=1

2p∑
i=1

1(h(Xl,Za),FUi)2 +

r∑
a,b=1

2q∑
l=1

1(h(Xl,Za),FZb)2

+

r∑
a,b=1

2p∑
i=1

1(h(Za,Zb),FUi)2 +

r∑
a,b,c=1

1(h(Za,Zb),FZc)2 +

r∑
a=1

2p∑
i, j=1

1(h(Za,Ui),FU j)2

+

r∑
a,b=1

2p∑
i, j=1

1(h(Za,Ui),FZb)2 +

2q∑
l=1

r∑
a=1

2p∑
i=1

1(h(Za,Xl),FUi)2 +

2q∑
l=1

r∑
a,b=1

1(h(Za,Xl),FZb)2

On using formulae (55), (56), (58) and the symmetry of h, the above equality reduces to

∥h∥2 =
2p∑

i, j,k=1

1(h(Ui,U j),FUk)2 +

r∑
a=1

2p∑
i, j=1

1(h(Ui,U j),FZa)2

+ 2
{ r∑

a=1

2p∑
i, j=1

1(h(Ui,Za),FU j)2 +

r∑
a,b=1

2p∑
i, j=1

1(h(Ui,Za),FZb)2 +

r∑
a,b=1

2q∑
l=1

1(h(Xl,Za),FZb)2
}

+

r∑
a,b=1

2p∑
i=1

1(h(Za,Zb),FUi)2 +

r∑
a,b,c=1

1(h(Za,Zb),FZc)2

As M is a submanifold of a Kenmotsu manifold, h(U, ξ) = 0 for any U ∈ TM, and on further ignoring the
terms involving h(Ui,U j) and making use of (60), we may write:

∥h∥2 ≥ 2
r∑

a,b=1

2p∑
i, j=1

1(h(Ui,Za),FZb)2 + 2
r∑

a,b=1

2q∑
l=1

1(h(Xl,Za),FZb)2 +

r∑
a,b=1

2p∑
i=1

1(h(Za,Zb),FUi)2 (62)

+

r∑
a,b,c=1

1(h(Za,Zb),FZc)2.

Further, if the submanifold N⊥ is totally umbilical in M̄ with mean curvature H, then on denoting the
components of H in F(TNθ) and F(TN⊥) by Hθ and H⊥ respectively, we have

r∑
a,b=1

2p∑
i=1

1(h(Za,Zb),FUi)2 = r2 sin2 θ∥Hθ∥2
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and

r∑
a,b,c=1

1(h(Za,Zb),FZc)2 = r2
∥H⊥∥2.

The other two terms in the inequality (62), on using (59) and (61) take the form:

r∑
a,b=1

2p∑
i, j=1

1(h(Ui,Za),FZb)2 = r2
{sinθ∥Hθ∥ − cosθ∥∇ lnµθ∥}2

and

r∑
a,b=1

2q∑
l=1

1(h(Xl,Za),FZb)2 = r2cos2θ∥∇ lnµθ∥2.

Substituting from the above equations into the inequality (62), we obtain

∥h∥2 ≥ r2
{sin2 θ∥Hθ∥2 + ∥H⊥∥2 − sin 2θ∥Hθ∥∥∇ lnµθ∥}.
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