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Abstract. The purpose of this paper is to introduce and study twisted O-operators on 3-Lie algebras. We
construct an L.-algebra whose Maurer-Cartan elements are twisted O-operators and define a cohomology
of a twisted O-operator T as the Chevalley-Eilenberg cohomology of a certain 3-Lie algebra induced by T
with coefficients in a suitable representation. Then we consider infinitesimal and formal deformations of
twisted O-operators.

1. Introduction

A natural generalization of binary operations appeared first when Cayley studied cubic matrices which
are ternary operations. Furthermore one may consider in general n-ary operations of associative type or Lie
type. In particular, 3-Lie algebras and more generally, n-Lie algebras [21] are generalizations of Lie algebras
to ternary and n-ary cases.

The first instances of ternary Lie algebras are related to Nambu Mechanics [32], which was formulated
algebraically by Takhtajan in [39]. The first complete algebraic study of n-Lie algebras is due to Filippov,
see [21]. We refer to [7, 9, 12] for the realizations and classifications of 3-Lie algebras and n-Lie algebras.
Ternary operations turn to be useful in many mathematics and physics domains, like string theory. The
quantization of the Nambu brackets in [8] was a motivation to present a general construction of (1 + 1)-Lie
algebras induced by n-Lie algebras using the n-ary brackets and trace-like linear forms, see also [5-7, 26].
The structure of 3-Lie (super)algebras induced by Lie (super)algebras, classification of 3-Lie algebras and
application to constructions of B.R.S. algebras have been considered in [1-4].

A deformation theory based on one-parameter formal power series was introduced first by Gerstenhaber
in [22] for associative algebras and then extended to Lie algebras by Nijenhuis and Richardson in [33]. It is
shown that deformations are controlled by suitable cohomologies, Hochschild cohomology in associative
case and Chevalley-Eilenberg cohomology in Lie case. The same approach was used for various algebraic
structures. Deformation theory of 3-Lie algebras was studied and investigated in [20].

In[11], the authors studied the solutions of 3-Lie classical Yang-Baxter equation, that lead to introduce
the notion of O-operator on 3-Lie algebras with respect to a representation. In particular, Rota-Baxter
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operators on 3-Lie algebras, introduced in [10], are O-operators on a 3-Lie algebra with respect to the
adjoint representation.

Twisted Rota-Baxter operators introduced by Uchino in the context of associative algebras [42, 43] are
algebraic analogue of twisted Poisson structure introduced and studied in [27, 36]. They are also related to
NS-algebras considered by Leroux in [31], see also [24]. Twisted Rota-Baxter operators on Lie algebras and
Leibniz algebras were studied in [17, 19]. A cohomology of twisted Rota-Baxter operators was derived,
in [17, 18], from a suitable L-algebra whose Maurer-Cartan elements are given by twisted Rota-Baxter
operators. Such a cohomology can be seen as the Hochschild (resp. Chevalley-Eilenberg) cohomology
of a certain Lie algebra with coefficients in a suitable representation. A cohomology of a twisted relative
Rota-Baxter operator as a Loday-Pirashvili cohomology of a certain Leibniz algebra was constructed in [19].
One may see [13, 30] for Hom-type version of Nijenhuis Bracket and cohomologies of relative Rota-Baxter
Lie algebras.

The main purpose of this paper is to study twisted O-operators on 3-Lie algebras. We provide some
characterizations and key constructions. We construct an L,-algebra whose Maurer-Cartan elements are
twisted O-operators and define a cohomology of a twisted O-operator T as the Chevalley-Eilenberg coho-
mology of a certain 3-Lie algebra induced by T with coefficients in a suitable representation. Furthermore,
we define a cohomology of twisted O-operators that controls their deformations.

The paper is organized as follows. In Section 2, we briefly recall basics about representations and
cohomology of 3-Lie algebras. Then in Section 3, we introduce ®-twisted O-operators on 3-Lie algebras,
provide some examples and characterization results. Section 4 is devoted to constructing an L.-algebra
whose Maurer-Cartan elements are twisted O-operators and defining the cohomology of a twisted O-
operator on a 3-Lie algebra with coefficients in a suitable representation. Itis also compared to a cohomology
of twisted O-operators as Chevalley-Eilenberg cohomology. In Section 5, we study deformations of twisted
O-operators and show that they are controlled by the cohomology theory established in Section 4.

In this paper, we work over an algebraically closed field K of characteristic 0 and all the vector spaces
are over K and finite-dimensional.

2. Preliminaries

In this section, we recall some basic results about 3-Lie algebras and their representations. Our main
references are [14, 21, 25, 39]. A 3-Lie algebra g is a vector space together with a skew-symmetric 3-linear
map [, : A3g — g, such that forall x; € g,1 < i < 5, the following Filippov-Jacobi Identity (sometimes
called fundamental identity or Nambu identity) holds

[x1, %2, [x3, X4, x5]g]g = [[x1, %2, X3]g, Xa, X5]g + [x3, [¥1, X2, Xalg, X51g + [x3, x4, [x1, X2, X5]5]5.- 1
For x1,x; € g, define ad,, ., € gl(g) by
ady, v, X = [x1,%2,x]y, Vx €g. (2)
Then Filippov-Jacobi identity may be expressed as ady, ., is a derivation, i.e.
ady, x, (X3, X4, X515 = [ady, x, X3, X4, X5]g + [X3, A, x, X4, X5]g + [X3, X4, A, 2, X5 ]

Definition 2.1. Let (g, [, -, 1,) be a 3-Lie algebra, V be a vector space and p : N*g — gl(V) be a linear map. The pair
(V, p) is called a representation of g (or V is a g-module) if p satisfies, for all x1,%2,x3,x4 € g,

p(x1, x2)p(x3,x4) = p([x1, X2, X3]g, X4) + p(x3, [x1, X2, X4]g) + p(x3, X4) p(x1, X2), 3)
p([x1, x2, X314, X4) = p(x1, x2)p(x3, X4) + p(x2, X3)p(X1, X4) + p(x3, X1)p(x2, X4). (4)

Let (g, [, -, *]s) be a 3-Lie algebra. The linear map ad : A%2g — gl(g) defines a representation of (g, [-,-,-];) on
itself, which is called the adjoint representation.
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Let (V, p) be a representation of a 3-Lie algebra (g, [, -, *]5). Denote by

3ng(gl V) Hom(/\zg - ® /\29 NG, V)/ (7’1 2 1)/
— ———
n-1

which is the space of n-cochains. Consider the differential d : €}, (3; V) — (Sggé(g; V) defined by

(af)(%lr fn/xn+1)
= ) D@, X, B, Do s A vk A 15,9 ke R ¥ Xe)

1<j<k<n

+ Z( 1)]f(x1/ : / %n/ [x]/ }/]1 xn+1] )+ Z( 1)]+1P(x]/ y])f(}:l/ : /f %1’!! xn+1)

j=1

+ (_1)n+1(P ynr xn+1)f(%1/ s, X1, X)) + P(xn+lr xn)f(%lz X, yn)) 5)

forall X, = x; Ay; € A%, i =1,2,---,n and x,41 € g. It was proved in [14, 39] that d 0 d =
Thus (&, €%, . (9; V), d) is a cochain complex which is called Chevalley-Eilenberg cochain complex of 3-Lie
algebras. The quotient space H},, (3; V) = Z%, . (6; V)./ Bng(q, V), where Z3, . (9; V) = {f € €2 (6 V)l af =0}
is the space of n-cocycles and B}, (3; V) = {f = dg| g € €% (g; V)} is the space of n-coboundaries, is called
the n'" cohomology group of the 3-Lie algebra g with coefficients in V.

Let © € €3, (9;V) be a 2-cocycle in the Chevalley-Eilenberg cochain complex, thatis © : A’ — Visa
trilinear map satisfying, for all x1,x2, y1, y2, 3 € 9,

O(x1, x2, [y1, y2, y3lo) + p(x1, 2)O(Y1, Y2, y3) — Ox1, X2, Y1lg, Y2, ¥3) — Oy, [x1, X2, Y214, ¥3)
= O(y1, y2, [x1, %2, y3l) — p(y2, Y3)Ox1, X2, y1) — p(Y3, y1)O(x1, X2, Y2) — p(Y1, Y2)O(x1, X2, y3) = 0. (6)

The direct sum g @ V carries a 3-Lie algebra structure given by
[, ), (4,), (2, w)e = (Ix, y, Z)y, p(x, ) + p(z, )0 + ply, Dt + O, y,2)), (7)

which is called the ®-twisted semi-direct product and denoted by g =g V.

3. Twisted O-operators on 3-Lie algebras

In this section, we introduce twisted O-operators on 3-Lie algebras. We give some constructions and
provide examples. Let (g,[,-,];) be a 3-Lie algebra, (V, p) be a representation and © € G:'SLze(g’. V) be a
2-cocycle in the Chevalley-Eilenberg cochain complex.

Definition 3.1. A linear map T : V — g is said to be a ©-twisted O-operator if T satisfies
[Tu, T, Tw], = T(p(Tu, To)yw + p(Tv, Tw)u + p(Tw, Tu)v + O(Tu, T, Tw)), (8)

forallu,v,weV.

Using the ©-twisted semi-direct product, one can characterize twisted O-operators by their graphs.

Proposition 3.1. Alinearmap T : V — gisa O-twisted O-operator if and only if the graph Gr(T) = {(Tu, u)l u € V}
is a subalgebra of the O-twisted semi-direct product g =g V.
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Proof. Let (Tu,u), (Tv,v) and (Tw, w) € Gr(T). Then we have
[(Tu, u), (Tv,v), (Tw, w)le
= ([Tu, Tv, Twly, p(Tu, To)w + p(Tw, Tu)v + p(Tv, Tw)u + O(Tu, Tv, Tw)).
Assume that Gr(T) is a subalgebra of the ®-twisted semi-direct product g <g V, then we have
[Tu, T, Tw], = T(p(Tu, To)yw + p(Tw, Tu)v + p(Tv, Tw)u + O(Tu, T, Tw)).
On the other hand, if T is a @-twisted O-operator, then we obtain
[(Tu, u), (Tv,v), (Tw,w)]e
= (T(p(Tu, To)yw + p(Tw, Tu)v + p(Tv, Tw)u + O(Tu, To, Tw)),
p(Tu, To)yw + p(Tw, Tu)v + p(To, Tw)u + O(Tu, Tv, Tw)) e Gr(T).

Hence, Gr(T) is a subalgebra of the ®-twisted semi-direct product g < V. O

The set Gr(T) is isomorphic to V as a vector space by the identification (Tu, u) = u. A ©-twisted O-operator
T induces a 3-Lie algebra structure on V, where the bracket is given by

[u,v,w]r = p(Tu, To)w + p(Tv, Tw)u + p(Tw, Tu)v + O(Tu, Tv, Tw). )
It is obvious that T is a 3-Lie algebra morphism, that is T([u, v, w]r) = [Tu, Tv, Tw],.

Definition 3.2. Let T:V — gand T" : V' — g be O-twisted and ©'-twisted O-operators. A morphism of twisted
O-operators from T to T’ consists of a pair (¢, ) of a 3-Lie algebra morphism ¢ : ¢ — o and a linear map : V. — V'
satisfying

P(p(x, y)u) = p'(P(x), py)YP(u), Yx,y € g, ue, (10)
YPo@®@=0"0(pR0p®¢), (11)
¢poT=T oy. (12)

Example 3.2. Any O-operator (in particular, Rota-Baxter operator of weight 0) on a 3-Lie algebra is a ®-twisted
O-operator with ® = 0.

Example 3.3. Let g be a 3-Lie algebra and V be a g-module. Suppose 0 : ¢ — V is an invertible 1-cochain in the
Chevalley-Eilenberg cochain complex of g with coefficients in V. Then T = 07! : V — g is a ©-twisted O-operator
with ©® = —d6. The proof follows from the fact that

O(Tu, Ty, Tw) = —(d0)(Tu, Tv, Tw)
= —p(Tu, Tv)0(Tw) — p(Tv, Tw)O(Tu) — p(Tw, Tu)0(Tv) + O([Tu, Tv, Tw],). (13)

By applying T to both sides of (13), we get the identity (8).
Example 3.4. Let N : g — g be a Nijenhuis operator on a 3-Lie algebra g, i.e. N satisfies the identity
[Nx, Ny, Nz], = N([Nx, Ny, z], + [Nx, y, Nz, + [x, Ny, Nz],
— N([Nx, y, 2], + [x, Ny, zl, + [x, y, Nzl,) + N*[x, v, z]g), Vx,y,z € g. (14)
In this case, g carries a new 3-Lie algebra structure given by the following bracket

[xl ]// Z]N :[Nx/ NyIZ]Q + [Nx/ y,NZ]g + [x/Ny, Nz]g - N([Nx/ ]// Z]g
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+ [x, Ny, z]g + [x,y, Nz], — Nlx, y, z],).

We denote this 3-Lie algebra by gn. Moreover, the 3-Lie algebra gy has a representation on g given by p(x, y)z =
[Nx, Ny, zlg, for all x,y,z € o. With this representation, the map © : A3gy — @ defined by

O(x,y,z) = =N([Nx, y,zly + [x, Ny, z]; + [x, y, Nz]; — N[x, y, z]5)

is a 2-cocycle in the Chevalley-Eilenberg cohomology of gn with coefficients in g. Then it is easy to observe that the
identity map id : g — g is a ©-twisted O-operator.

Given a ©-twisted O-operator T and a 1-cochain 8, we construct a (© + d0)-twisted O-operator under certain
condition. First we have the following observation.
Proposition 3.5. Let § be a 3-Lie algebra and V be a g-module. For any 2-cocycle ® € €3, (3; V) and 1-cochain
0 € €. (a; V), we have a 3-Lie algebra isomorphism

g<e V = gxgg V.

Proof. Define ¢g : <@ V — g x<e190 V by Yo(x, 1) = (x,u — 0(x)), for all (x, u) € & V. Then we have,

Yo(l(x,u), (y,0), (z,w)]e)
= ([x, ¥zl plx, y)w + p(z, x)v + p(y, 2)u + O(x, y,z) — O([x, y, z]g))
= ([x, ¥,zlg, p(x, Y)w + p(z, x)0 + p(y, 2)u + O(x, y, 2)
— p(x, Y)6(z) = p(z, )60(y) - p(y,2)0(x) + (O)(x, y,2))
= [, u = 0(x)), (y, 0 = O(y)), (z,w — O(2)]e+0,
for all (x,u), (y,v), (z,w) € g® V. This proves the result. [
1

Proposition 3.6. Let T : V — g be a ©-twisted O-operator. For any 1-cochain 0 € €. (a;V), if the linear map
(Idy —60T):V — Visinvertible, then the linear map T o (Idy —0 o T)™! : V. — gis a (© + d0)-twisted O-operator.

Proof. Consider the subalgebra Gr(T) C g =g V of the ®-twisted semi-direct product. Thus by
Proposition 3.5, we get that

Yo(Gr(T)) = {(Tu,u = (6 o T)(w)l u € V} C g<erap V

is a subalgebra. Since the map (Idy — 0o T) : V — V is invertible, we have 1g(Gr(T)) is the graph of the
linear map T o (Idy — 0 o T)"!. In this case, it follows from Proposition 3.1 that T o (Idy — 6 o T)! is a
(® + JO)-twisted O-operator. [

Next, we give a construction of a new ©-twisted O-operator out of an old one and a suitable 1-cocycle.
Let T : V — g be a ©-twisted O-operator. Suppose 0 € €, . (g;V) is a 1-cocycle in the Chevalley-Eilenberg
cochain complex of g with coefficients in V. Then 0 is said to be T-admissible if the linear map (Idy + 00 T) :

V — Vis invertible.

Proposition 3.7. Let 0 € (iéLl.E(g; V) be a T-admissible 1-cocycle. Then T o (Idy + 0 o T)™ : V — g is a O-twisted
O-operator.

Proof. Consider the deformed subspace
to(Gr(T)) = {(Tu,u+ (O o T)(u)|ue Vi cgxe V.

Since 0 is a 1-cocycle, t¢(Gr(T)) C g =g V turns out to be a subalgebra. Furthermore, since the map
(Idy + 6 o T) is invertible, then 7(Gr(T)) is the graph of the map T o (Idy + 0 o T)"!. Hence the result follows
from Proposition 3.1. O
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The ©-twisted O-operator in the above proposition is called the gauge transformation of T associated
with 6. We denote this ©-twisted O-operator simply by Tp.

Proposition 3.8. Let T be a ©-twisted O-operator and O be a T-admissible 1-cocycle. Then the 3-Lie algebra
structures on V induced from the ©-twisted O-operators T and Ty are isomorphic.

Proof. Consider the linear isomorphism (Idy + 8o T) : V — V. For any u,v,w € V, we have

[(Idy + 6 o T)(u), (Idy + 6 o T)(v), (Idy + 6 o T)(w)]r,

= p(Tv, Tw)(Idy + 0 o T)(u) + p(Tw, Tu)(Idy + 6 o T)(v)

+ p(Tu, To)(Idy + 6 o T) + ©(Tu, Tv, Tw)

= p(To, Tw)u + p(Tw, Tu)v + p(Tu, Tv)w + O(Tu, T, Tw)

+ p(To, Tw)(0 o T)(u) + p(Tw, Tu)(0 o T)(v) + p(Tu, Tv)(O o T)(w)
= [u,v,wlr + 6([Tu, T, Tw],)

=[u,v,wlr + 6 o T([u,v,wlr) = (Idy + 6 o T)([u, v, wlr).

This shows that (Idy + 8o T) : (V,[-,-,*Ir) = (V,[,, ‘]1,) is a 3-Lie algebra isomorphism. []

4. Cohomology of twisted O-operators

In this section, we construct an L.,-algebra whose Maurer-Cartan elements are @-twisted O-operators on
3-Lie algebras. Such characterization of ®-twisted O-operator T allows us to introduce a cohomology of T.
Next, we show that the cohomology of T is equivalently described by the Chevalley-Eilenberg cohomology
of V with coefficients in a suitable representation on g.

4.1. Maurer-Cartan characterization and cohomology
Let g be a vector space. Consider the graded vector space
C'(8,8) = ®20C"(8, 8) = BuzoHom(A’g ® -+~ ® A’g AG, 9).

—_————
n

The degree of elements in C*(g, g) is defined to be n. Then the graded vector space C*(g, ) equipped with
the graded commutator bracket

[P, Qlsie = PoQ — (=1)"1QoP, ¥V P € C¥(g,9),Q € C(g, 9), (15)
is a graded Lie algebra, with PoQ € CP*(g, g) defined by

(PoQ)(Xy, -+, Xpig, X)

4
=Y NEDT Y PRy, Xty Qo+ Rofkrg1) Xerg) A Yergs Rergets s Xprg 2)
k=1 0eS(k-1,)

p
+ Z(—l)(kfl)q Z (DPXoy, s Xoko1), Xhag A Qo+ Xotkrg1)s Ykrq)s Fragers s Xpag, X)
k=1 oeS(k-1,9)

+ Z (“DPID)7PEoy, s Xoy, QR o1y s Xo(pag-1), Xo(pag), X)),
oeS(p.q)
where X; = x; A y; € A%g,i=1,2,--- ,p+gand x € g. See [35] for more details.
We recall from [35] the following result.

Proposition 4.1. Let g be a vector space. Then 7 € C'(g, ) = Hom(A3g, g) defines a 3-Lie algebra structure on g if
and only if 7 is a Maurer-Cartan element of the graded Lie algebra (C*(g, 9), [, ‘1sLic), i.e. it satisfies the Maurer-Cartan
equation [1t, ]are = 0. Moreover, (C*(g, 9), [, -13ie, A=) is a differential graded Lie algebra, where d, is defined by

dr = [7, JaLie- (16)
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The notion of an L-algebra was introduced by Schlessinger and Stasheff in [37, 38]. See [28, 29] for
more details.

Definition 4.1. An Le-algebra is a Z-graded vector space g = @yez8* equipped with a collection of linear maps
Iy : ®g — g of degree 1 (k > 1) with the property that, for any homogeneous elements x1,- -, x, € g, we have

(i) (graded symmetry) for every o € 5,
ln(xa(l)/ Tty xo(n—l)/ xa(n)) = E(G)ll’l(xl/ X1, x?’l)/

(ii) (generalized Jacobi identity) foralln > 1,

n

Z Z ()it (Li(xXoy, * *+ » Xo(i))s Xai+1),*** » Xomy) = 0.

i=1 UES(,‘/V,,,’)

Definition 4.2. A Maurer-Cartan element of an L-algebra (§ = @ezga", {li}Y) is an element a € q satisfying the
Maurer-Cartan equation

+00

Z %ln(a,--' ,a)=0. (17)

n=1

Let a be a Maurer-Cartan element of an L-algebra (g, {li};’:"f). Forallk >1and xq,---,x, € g, define a series
of linear maps [}l : ® g — g of degree 1 by

+00

1
l?(xlr ot /xk) = Z ﬁln+k{a/ e, X1, /xk}- (18)
———

n=0 "
n

Theorem 4.2. [23] With the above notations, (8, {I*}7) is an Lw-algebra, obtained from the L-algebra (g, {li}

by twisting with the Maurer-Cartan element a. Moreover, a + ' is a Maurer-Cartan element of (g, {I;}17) if and
only if &’ is a Maurer-Cartan element of the twisted Leo-algebra (g, {I7}17).

Let (V, p) be a representation of a 3-Lie algebra (g, [-,-,-];) and let ® be a 2-cocycle in the cohomology
of g with coefficients in V. For convenience, we use 7 : AS g — ¢ to indicate the 3-Lie bracket on g. Then
7 + p + © corresponds to the semi-direct product 3-Lie algebra structure on g @ V given by

[x+u,y+v,z+wle =[x, y,zl; + plx, Y)w + pz, x)v + p(y, 2)u + O(x, y, ). (19)

Therefore, we have
[f+p+0O,m+p+ 0Ol =0.

Consider the graded vector space
C(V,8) = @u>0C"(V, 8) = @pzoHom(A*’V @ --- ® A*V AV, g).
>0

Define

I3 : C"(V, ) X C'(V,0) X CP(V, 8) = C"™"7*(V g),

Is: C"(V,8) X C"(V,8) X CP(V, 8) X CI(V, 8) — C"™*"*17(V, g)
by

(P, Q,R) =[[[7t + p, Pl3Lie, Qlarie, Rl3Lie,
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14(P,Q, R, S) =I[l[©, PlaLie, QlaLies RlaLies Slaie-
One method for constructing explicit L-algebras is given by Voronov’s higher derived brackets [44].
Moreover, using the above method, the ternary bracket I3 and the 4-ary bracket Iy are compatible in the

sense of Le-algebra. This follows since © is a 2-cocycle. In summary, we obtain the following result.

Theorem 4.3. Let (V, p) be a representation of a 3-Lie algebra (g, [-, -, -]5) and © be a 2-cocycle in the cohomology of
g with coefficients in V. Then the graded vector space C*(V, ) is an Le-algebra with

ll = 12 = 0/ 13('/ ./ ‘)/ 14(‘/ '/ ./ ‘)/ (20)

and higher brackets are trivial. A linear map T : V — g is a O-twisted O-operator if and only if T is a solution of the
Maurer-Cartan equation of the Lo-algebra (C*(V, 9),13,14), i.e.

1 1
GO TT) + (T T,T,T) = 0.

Proof. Using the above discussion, the first part follows. For the second part, we have that for any
T € Hom(V, g),

(T, T, T, T)(u,v,w) = -24T(O(Tu, To, Tw)). (21)
Next, as in [40, Theorem 3.4] proof we have
I3(T, T, T)Y(u,v,w) = 6<[Tu, To, Tw], - T(p(Tu, To)yw + p(Tv, Tw)u + p(Tw, Tu)v)). (22)
Hence from Egs. (21) and (22), we get
1 1
(§l3(T/ Tr T) + El‘l(Tr T/ T/ T))(u/ 0, w)
=[Tu, Tv, Tw], — T(p(Tu, To)w + p(Tv, Tw)u + p(Tw, Tuyw) — T(O(Tw, Tv, Tw)).

Thus, a linear map T € Hom(V, g) is a ©-twisted O-operator of a 3-Lie algebra g with respect to a represen-
tation p if and only if T is a Maurer-Cartan element of the Lo-algebra (C*(V, g),13,11). O

Proposition 4.4. Let T be a ©-twisted O-operator of a 3-Lie algebra g with respect to a representation p. Then
C*(V, g) carries a twisted Leo-algebra structure given by

ﬁm:%uﬂﬂm+%mﬂrﬂm, (23)
H(P,Q) = B(T,RQ) + 3u(T,T,R,Q), en
5(P,Q,R) = 5(P,Q,R) + 4(T,P,Q,R), (25)
IN(P,Q,R,S) = 14(P,Q,R,S), (26)
Il =0, kx5, (27)

where P € CP(V,0),Q € C1(V,q),R € C'(V,g) and € C°(V,qg). Moreover, for any linear map T’ : V. — g, the
sum T + T’ is a O-twisted O-operator if and only if T’ is a Maurer-Cartan element in the twisted Le-algebra

(C(V,0),I1,13,13,17), that is T" satisfies

’ 1 ’ ! 1 ’ ’ ! 1 4 ’ 4 ’
lﬂT)+EgayT)+ﬁgaxT,Ty+agayTﬂzT)=a
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Proof. For the first part, since T is a Maurer-Cartan element of the L-algebra (C*(V, g),I3,14), by Theorem
4.2, we have that C*(V, g) carries a twisted L«-algebra structure. For the second part, by Theorem 4.3, T + T”
is a ©-twisted O-operator if and only if

%l3(T +T,T+T,T+T)+ %L;(T +T,T+T,T+T, T+T)=0. (28)
Applying %lg(T, T,T)+ %L;(T, T, T, T) = 0, the above condition is equivalent to

1
?7(313(7", T,T') +3I(T, T, T') + l5(T', T', T"))
+ %(414(1”, T,T,T) +6l4(T, T, T, T') + 4ly(T, T', T, T') + I(T', T', T', T')) = 0.

Thatis, II(T") + £I1(T", T') + %II(T", T, T") + £1L(T", T', ', T') = 0, which implies that T’ is a Maurer-Cartan
element of the twisted Le-algebra (C*(V,0),1],17,13,11). O

The above characterization of a @-twisted O-operator T allows us to define a cohomology associated to
T. More precisely, we define C1.(V, g) = Hom(A*V ®---® A2V AV, g), for n > 0 and the differential operator
| —

n>0

dr : C(V, 0) — C¥1(V, ) by

1 1
ar(f) =BT )+ LT TT. ), feCrV,9). (29)
The corresponding cohomology groups are

Z73(V,9) _ {f € CL(V, 9)ldr(f) = 0}
Bi(V,9)  {dr(9lg € Ci'(V,9)}

H(V,9) =

4.2. Cohomology of twisted O-operators as Chevalley-Eilenberg cohomology

In this subsection, we define a cohomology of a ®-twisted O-operator as the Chevalley-Eilenberg
cohomology of the 3-Lie algebra (V, [+, -, -]r) given by Eq. (9) with coefficients in a suitable representation on
g. This cohomology will be used in Section 5 to study formal deformations of T.

Proposition 4.5. Let T be a ©-twisted O-operator on a 3-Lie algebra (g,[-,-,15) with respect to a representation
(V, p). Define pe : N>V — gl(g) by

pe(u,v)x = [Tu, Tv,x], — T(p(TU, X)u + p(x, Tu)v + O(x, Ty, TU)), Yu,veV,x €g. (30)

Then (g, pe) is a representation of the 3-Lie algebra (V, [, -, -1t) on the vector space g.

Proof. By a direct calculation using the definition of pe, we get

pe(u1, u2)pe(us, us)x — pe(lu, uz, uslr, ug)x

= pe(us, [u1, uz, uslr)x — pe(us, us) pr(u, uz)x

= [Tuy, Tuy, [Tus, Tua, x]glg + [Tur, Tuz, Tp(Tus, x)ualq — [Tu1, Tup, Tp(Tus, x)usl,
= [Tuy, Tuy, TO(x, Tuz, Tus)lg + Tp(Tus, [Tuz, Tus, x1g)us + Tp(Tuq, Tp(Tus, x)us)us
= Tp(Tu, Tp(Tug, x)uz)up — Tp(Tuy, TO(x, Tuz, Tuy))uy — Tp(Tuy, [Tuz, Tuy, x]g)u1
— Tp(Tuy, Tp(Tus, x)ug)us + Tp(Tuy, Tp(Tug, x)us)us + Tp(Tuz, TO(x, Tus, Tug))u;
—TO(Tp(Tusz, x)ug, Tuy, Tuy) + TO(Tp(Tuy, x)uz, Tuq, Tuy)

+ TO(TO(x, Tus, T4), Tuy, Tuz) — TO([Tus, Tug, x]4, Tug, Tus)
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— [[Tus, Tup, Tuszly, Tus, x1g — T(p([Tu1, Tuz, Tuzlg, x)us + Tp(Tug, x)p(Tug, Tuz)us
+ Tp(Tug, x)p(Tuz, Tuz)uy + Tp(Tug, x)p(Tuz, Tur)uz + Tp(Tuy, x)O(Tuy, Tuy, Tuz)
+ TO(x, [Tu1, Tua, Tuzly, Tus) — [Tus, [Tur, Tuz, Tualy, Xy — Tp(Tus, x)p(Tuy, Tuiz)ig
— Tp(Tus, x)p(Tuy, Tug)uy — Tp(Tuz, x)p(Tuy, Tur)uy — Tp(Tuz, x)O(Tuy, Tuy, Tuy)
+ T(p([Tu1, Tuz, Tuslg, x)uz + TO(x, Tus, [Tuq, Tuz, Tusl,)
= [Tus, Tug, [Tu1, Tup, x1glg — [Tus, Tua, Tp(Tuy, x)uzly + [Tuz, Tus, Tp(Tua, x)u1],
+ [Tus, Tuyg, TO(x, Tuy, Tuz)lg — Tp(Tus, [Tu1, Tuz, x1g)us — Tp(Tus, Tp(Tuy, x)uz)uy
+ Tp(Tus, Tp(Tuy, x)u1)us + Tp(Tus, TO(x, Tuy, Tuz))us + Tp(Tuy, [Tur, Tuz, x]g)us
+ Tp(Tug, Tp(Tuq, x)uz)uz — Tp(Tug, Tp(Tuz, x)ur)uz — Tp(Tuy, TO(x, Tuy, Tuz))usz
+ TO(Tp(Tu1, x)uz, Tuz, Tug) — TO(Tp(Tuz, x)u1, Tuz, Tuy)
— TO(TO(x, Tu, Tuz), Tuz, Tus) + TO([Tu1, Tuy, x]4, Tuz, Tus)

M+E)+®) = —T(@(Tul, Tuy, [Tus, Tua, x]g) + p(Tu1, Tuz)O(Tuz, Tug, x)
— p(Tuyg, x)O(Tuy, Tuy, Tuz) — O([Tuy, Tup, Tusly, Tug, x)
— p(x, Tuz)®(Tuy, Tuz, Tus) — O(Tus, [Tuq, Tua, Tus]g, X)
— p(Tuz, Tus)O(Tuy, Tuy, x) — O(Tusz, Tug, [Tuq, Tuy, x]g))

® = ~T((9©)(Tuy, Tup, Tuiz, Tatg, X)) = 0
Similarly,

po([u1, uz, us]r, us)x — pe(u1, uz)pe(us, us)x
— poe(uz, us)pe(u1, us)x — pe(us, ur)pe(uz, us)x = 0.
Hence the result follows. [

Letde : €%, (V;9) — (Eg;j;(V; g), (n = 1) be the corresponding coboundary operator of the 3-Lie algebra

(V. [-, -, -]r) with coefficients in the representation (g, pe). More precisely,
de : €4 (V;8) — €4 (V; g) is given by

(a@f)(ulr Tty u‘rl/ un+1)
Z 1 FQU, - 0, Wery, [, 07wl A v + 1 A [, 07, 0T, West, =+, W, thg)

1<j<ksn
+2( W, Wy U, [u,,v],un+11T>+Z< 1) pe(it;, o) fU, -+, Wy, -+, W 1)
j=1
+ (—1)"”(p@<vn, 1) fQU -+, Wt 1) + o, ) fQU, -+, Waa, 00)), (31)

foralld; =u; Av; € A2V, i=1,2,--- ,nand u,+q € V.
It is obvious that f € €} . (V;g) is closed if and only if

[Tu, To, f(w)]s + [f (), To, Twls + [Tu, f(0), Twl,

- (p(Tu To)yw + p(Tv, Tw)u + p(Tw, Tu)v + O(Tu, T, Tw))
~ T(p(To, f@))u + p(f(w), Tuyo + O(f(w), Tu, Tv))
(p(Tw fw)v + p(f(u), To)w + O(f(u), Tv, Tw))
= T(p(Tu, f@)w + p(f(©), Twhu + O(f(v), Tw, Tw)) = 0.
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For all X € g A g, we define 6(X) : V — g by

0(X)(0v) =

T(p(X)v + ©(X, To)) - [¥, To],, Yo € V. (32)

Proposition 4.6. Let T be a ©O-twisted O-operator on a 3-Lie algebra (g, [-,-, ;) with respect to a representation
(V, p). Then 6(X) is a 1-cocycle on the 3-Lie algebra (V, [-, -, -]7) with coefficients in (g, pe).

Proof. For all u,v,w € V, we have

@)+M+@) =

(9e6(X))(u, v, w)
= [Tu, Tv, 0(X)(w)]s + [6(X)(u), Tv, Tw], + [Tu, 5(X)(v), Tw],

- 6(%)(p(Tu, To)yw + p(To, Tw)u + p(Tw, Tu)v + O(Tu, T, Tw))
— T(p(To, 5(X)(@))u + p(5(X)(w), Tuyo + O (X)(w), Tu, To))

- T(p(Tw, O(X)(m))v + p(6(X)(u), To)yw + OO(X)(u), To, Tw))

— T(p(Tu, 5(X)(@))w + p(5(X)(0), Tw)u + OO (X)(v), Tw, Tw)
=[Tu, To, Tp(X)wly + [Tu, T, TO(X, w)]; — [Tu, Tv, [X, Tw],],

+ [Tp(X¥)u, Tv, Tw]y + [TO(X, Tu), Tv, Twl, — [[X, Tul,, To, Twl,
+ [Tu, Tp(X)v, Tw]g + [Tu, TO(X, Tv), Tw]g — [Tu, [X, Tv]y, Tw],

— Tp(¥)(p(Tu, Toyw + p(To, Tw)u + p(Tw, Tu)o + O(Tu, To, Tw))

—TOX, [Tu, Tv, Twl,) + [X, [Tu, Ty, Twl,],

- T(p(Tv, Tp(X)w)u + p(Tv, TO(X, Tw))u — p(Tv, [X, Twlg)u

+ p(Tp(X)w, Tu)v + p(TO(X, Tw), Tu)v — p([X, Tw]y, Tu)v

+O(Tp(X)w, Tu, Tv) + O(TO(X, Tw), Tu, Tv) — O([X, Twlg, Tu, TU))

- T(p(Tw, Tp(X)u)v + p(Tw, TO(X, Tu))v — p(Tw, [X, Tulg)v

+ p(Tp(X)u, To)w + p(TO(X, Tu), To)w — p([X, Tuly, To)w

+O(Tp(X)u, To, Tw) + O(TO(X, Tu), To, Tw) - O(X, Tuly, To, Tw))

- T(p(Tu, To(X)v)w + p(Tu, TO(X, Tv))w — p(Tu, [X, Tv]y)w

+ p(Tp(X)v, Tw)u + p(TO(X, Tv), Tw)u — p([X, Tv]y, Tw)u

+O(Tp(X)v, Tw, Tu) + O(TO(X, Tv), Tw, Tu) — O([X, Tv],, Tw, Tu))
(@(% [Tu, Tv, Tw]y) + Tp(X)O(Tu, Tv, Tw)

= Tp(Tu, Tv)®(X, Tw) — Tp(Tv, Tw)O(X, Tu) — Tp(Tw, Tu)O(X, Tv)

- TO([X, Tw]y, Tu, Tv) — TO([X, Tu],, To, Tw) — TO([X, Tv],, Tw, Tu))

= —T((@®)(X, Tu, To, Tw)) =

Thus, we deduce that dg6(X) =0. O

Now, we give a cohomology of ©-twisted O-operators on 3-Lie algebras.

Definition 4.3. Let T be a O-twisted O-operator on a 3-Lie algebra (g, [, -, -]5) with respect to a representation (V, p).
Define the set of n-cochains by

(gne)(vl g) — { 3Lze(V CI) nzl (33)

gAg, n= 0
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Define De : €2(V;8) — C51(V; q) by

do, n>1,
De = 34
© {6, n=0. (34)

Denote the set of n-cocycles by Z{(V; g) and the set of n-coboundaries by 8((V; g). Denote by
He(V;9) = Z6(V;9)/Bg(V;9), 20

the n'" cohomology group which will be taken to be the n" cohomology group for the @-twisted O-operator
T.

Theorem 4.7. Let T be a ©-twisted O-operator on a 3-Lie algebra (g, [-, -, -14) with respect to a representation (V, p).
Then we have

dr(f) = (-1)"'De(f), YfeHom(A*’V®--- @A VAV,g), n=1,2,---. (35)
N’
n—-1

Proof. According to [40, Theorem 4.5], we have
1
Elf}(T/ T/ f)(ul/ Tty uni un+1)
=(_1)”—1{(_1)n+1([T0n, Tun+1/ f(ull trty un—lr un)]g - Tp(TuVH-l/ f(ulr ttty un—ll ul’l))vn

= Tp(fQy, -+, Wy, ), TOW)ths1 )

+ (_1)n+1([Tun+1/ f(ul/ Tty un—lr vn)]g - TP(T”n/ f(ull Tty un—lrvn))unﬂ

- Tp(f(ull Tty un—llvﬂ)l Tu"+1)un) + Z(_l)j+1([Tuj/ ij/ f(ulr Tty 1’I\j/ Tty unr un+1)]g
j=1

= Tp(Toj, fQ, - Wy, Wyttt = Tp(FQ, -+, Wy ee Wy, 1), Ty
+ Y W 2 W, (p(Ta, Top)ug + p(Toj, Tug)u; + p(Ta, Tuj)o;) A vy

1<j<ksn

+ U A (P(Tuj/ Toj)or + p(Toj, Top)uj + p(Toy, Tuj)vj), Wepr, o, Wy, Upy1)
+ Z(_l)]f(ull Tty 1’/{]‘/ Tty un/ p(Tu]/ ij)unﬂ + P(Tv]r Tun+1)uj + p(Tul’l+1/ Tu])v])}
=)

Here we observe that

(T, T, T, f)(Uq,- -+, Wy, thy41)
=[O, Tls-rie, Tls-Lies T13-1ies fla-Lie(M1, - -+ , Wy, 1)
=[O, Tls-rie, Tl3-rie, T13-ic(f (M1, - -+ , W1, ) A Uy, Uyg1)
+ [0, Tla-rie, T13-Lies TI3-rLie(ttn A fQy, -+, U1, 0), Uns1)

+ Z(_l)”_l(_l)j_1[®/ T]3—Li€/ T]3—Li8/ T]3—Li8(uj/ f(ull Tty 1/’[\j/ trty unl un+1))
=1
n-1 k

- DY Y D

k=1 j=1
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f(u1, co Upy e W, [0, Tla-rie, Tl3-ries T13-1ie (W, gs1) A Opgr, Wig, =+, U, Mn+1)

_( 1n 1%2( 1)]+1

k=1 j=1

f(ull Tty u : 1Ik/ uk+1 A [61 T]3—Li€l T]3—Li€/ T]S—Liﬁ(uj/ Uk+1)/ uk+2/ Tty lI)’l/ uﬂ+1)

( 1)71 - Z( 1 ]+1 1I1/ ,1I un;[G) T]3 Lies T]3 Lies T]3 Lte(u]/ un+1))
j=1

:(—1)n_16{(_1)n+1( - T®(f(ulr Tty u}‘]*ll un)/ Tvn/ TunJrl) - TG)(f(ulr Tty u?l*ll vn)/ TuVHl/ T”n))

—Z( DHTO(FQL, - W, -+ Wy, thyer), Titj, Tj)
+ Z(—1)ff(u1, o Wy Wy, O(Tu, Toj, Tiyan))

+ Z ( 1)]f(u1/ / uk 1/®(Tu]/ TU]/ Tuk) A Uk + uk A ®(Tu]/ TU]/ TUk) 1’IkJr‘l/ tty un/un+1)}-

1<j<k<n

Hence dr(f) = %13(7", T, )+ %14(]", T, T, f) = (-1)""'De(f). The proof is finished. [

5. Deformations of twisted O-operators

In this section, we study infinitesimal and formal deformations of a ®-twisted O-operator. For defor-
mations of Rota-Baxter and O-operators, see [15, 16, 34, 41].

5.1. Infinitesimal deformations

Let (g, [+, -, -]5) be a 3-Lie algebra, (V, p) be a representation of g, and © € (%L "

Chevalley-Eilenberg cochain complex. Let T : V — g be a ©-twisted O-operator.

(9; V) be a 2-cocycle in the

Definition 5.1. An infinitesimal deformation of T consists of a parametrized sum T; = T + tT4, for some Ty €
Hom(V, ) such that Ty is a ©-twisted O-operator for all values of t. In this case, we say that Ty generates an
infinitesimal deformation of T .

Suppose that T; generates an infinitesimal deformation of T. Then we have
[Teu, To, Tyw],
= Tt(p(Ttu, Tw)w + p(To, Trw)u + p(Tyw, Tau)v + (T, Ty, Ttw)),
for u,v,w € V. This is equivalent to the following conditions
[Tu, T, Tywly + [Tu, T1o, Tw]g + [T1u, Tv, Tw],
= T(p(Tu, Tio)w + p(Thu, To)w + p(To, Tyw)u + p(Tho, Tw)u
+ p(Tw, Tiu)o + p(Trw, Tu)v + O(Tu, Tv, Tyw) + O(Tu, T1v, Tw)
+ O(Tu, To, Tw))

+ Ty(p(Tu, To)w + p(To, Tw)u + p(Tw, Tu)o + O(Tu, To, Tw)), (36)
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[Tu, Tho, T1wly + [Tau, Ty, Tiwl, + [T1u, Tro, Tw],
= T(p(T1u, Tyo)w + p(T1o, Tiw)u + p(Tiw, Tyu)o
+ O(Tu, T1v, T1w) + O(T1u, Ty, Tiw) + O(T1u, T1v, Tw))
+ Tl(p(Tu, Tio)w + p(Thu, To)w + p(Tv, Tyw)u + p(T10, Tw)u
+ p(Tw, Tyu)o + p(T1w, Tu)v + O(Tu, Ty, Tyw) + O(Tu, T1v, Tw)
+O(Tyu, To, Tw)), (37)

[T1u, Tyo, Tywly = T(O(T1u, Tro, Tyw))

+ Tl(p(Tlu, Tiv)w + p(T1o, Tiw)u + p(T1w, Tru)v

+©(Tu, T1v, Tyw) + ©(Tyu, To, Tyw) + (T, Tro, Tw)) (38)
and

T1(©(Tyu, Tyo, Tyw)) = 0. (39)

Note that the identity (36) implies that T; is a 1-cocycle with respect to the cohomology of T. Hence, Ty
defines a cohomology class in Hg(V; g).

Definition 5.2. Two infinitesimal deformations Ty = T + tT1 and T, = T + tT, of a ©-twisted O-operator T are said
to be equivalent if there exists an element X € g A g such that the pair

(e = Idy + H[X, =1y, o = Idy + H{p(X)(-) + OX, T-))) (40)

defines a morphism of @-twisted O-operators from Ty to T,.
An infinitesimal deformation Ty = T + tT4 of a O-twisted O-operator is said to be trivial if T; is equivalent to
T,=T.
t

The condition that ¢ = Id, + t[X, -], is a 3-Lie algebra morphism of (g, [+, -, -]5) is equivalent to
[z1, [X, 2214, [¥, z3]6]g + [[X, 2114, 22, [, 23]6]g

+[[%121]g/ [%/22]gfz3]g = 0/ (41)
[[X, 211y, [X, 22]g, [X, 23]3]g = 0, forall z1,25,23 €g.

The condition ¢ (p(z1, z2)u) = p(P(z1), P(22))P¢(1) implies that

O(X, Tp(z1,z2)u) = p(z1,22)O(X, Tu),

(p(z1, [¥, 221y) + p(1%X, 215, 22) ) (P () + O(X, Tw))
+p([%, Zl]gr [X, Zz]g)u =0,

p([X, 2]y, [X, 2214) (p(¥)u + O(X, Tw)) = 0,

(42)

Finally, conditions 1, 0 © = ® o (¢ ® ¢y ® ¢;) and ¢ o T; = T, o 1; are respectively equivalent to

p(X)O(z21, 22, 23) + O(X, TO(z1, 22, 23)) = O([X, 1]y, 22, 23)

+0(z1, [X, 2214, 23) + O(21, 22, [ X, 23],),

O(z1, [, 221y, [X, 23]5) + O([X, 2114, 22, [X, 25],) (43)
+O([X, z1]q, [, 2214, 23) = O,

O([X, 1]y, [, 2214, [X, z3]5) = O,
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{Tlu + [%, Tuly = T(p()u + O, Tu)) + Ty, )

[X, Tyuly = T)(p(X)u + O(X, Tu)).
Note that the above identities hold forall X e g A g, 21,22,z € gand u € V.

From the first condition of (44), we have
Tiu - Tllu = T(p(%)u + O(X, Tu)) —[¥X, Tuly, = De(X)(u).
Therefore, we get the following theorem.

Theorem 5.1. Let T, = T + Ty and T, = T + T, be two equivalent infinitesimal deformations of a ©-twisted
O-operator T. Then Ty and T, define the same cohomology class in HE(V; g).

5.2. Formal deformations

Now we consider a more general situation by using formal power series. Let g be a 3-Lie algebra, V be
a g-module and © be a 2-cocycle in the Chevalley-Eilenberg cohomology of g with coefficients in V. Let
T :V — gbe a ©-twisted O-operator.

Let K[[t]] be the power series ring in one variable t. For any K-linear space V, denote by V[[t]] the
vector space of formal power series in t with coefficients in V. If (g,[-, -, -]4) is a 3-Lie algebra over K, then
there is a 3-Lie algebra structure over the ring K[[t]] on g[[t]] given by

+00 +00 +00 +o
[Y b, Yyt Y ztt] = Y)Y ozt Vx g zce . (45)
i=0 j=0 k=0 $=0 i+j+k=s

For any representation (V, p) of (g, [, -, ‘l5), there is a natural representation of the 3-Lie algebra g[[f]] on the
K[[t]]-module V[[¢]], which is given by

+00 +00 +00 +0o
p(Z xiti,z yjtj)(z vktk) = Z Z p(xi, yj)urt’, Yxi, yj € g, vk € V. (46)
i=0 j=0 k=0 5=0 i+j+k=s

Similarly, the 2-cocycle © can be extended to a 2-cocycle (denoted also by ®) on the 3-Lie algebra g[[f]] with
coefficients in V[[t]]. Consider a power series

+00
T, =Y T, T; € Homx(V;9), (47)
i=0
that is, Ty € Homg(V; 9)[[t]] = Homk(V;g[[t]]). Extend it to be a K[[{]]-module map from V[[t]] to g[[¢]]
which is still denoted by T;.

+00
Definition 5.3. If T} = 2 Tt withTy=T satisfies
i=0

[Tiu, Tro, Trwly
= Ty(p(Tsu, Two)w + p(Tyv, Tew)u + p(Tiw, Tawo + O(Tyu, Tyv, Tyaw)), (48)

we say that Ty is a formal deformation of the ©-twisted O-operator T.
+o00
Recall that a formal deformation of a 3-Lie algebra (g, [+, -, -]5) is a formal power series w; = Z wit*, where
k=0
wy € Hom(A3g; g) such that wo(x, ¥,2) = [x,y,2], for any x,y,z € g and w; defines a 3-Lie algebra structure
over the ring K[[¢]] on g[[¢]].
Based on the relationship between ®-twisted O-operators and 3-Lie algebras, we have the following
construction.
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+00

Proposition 5.2. LetT; = Z T:t' be a formal deformation of a ©-twisted O-operator T on the 3-Lie algebra (g, [, -, *15)
i=0

with respect to a representation (V, p). Then [-, -, -1, defined by

+00

[u,v,w]r, = Z ( Z (p(Tiu, To)yw + p(Tyv, Tjw)u + p(Tiw, T]-u)v)

s=0 i+j=s

+ Z O(Tiu, T]‘Z), Tkw))ts

i+j+k=s
forallu,v,w €V, is a formal deformation of the 3-Lie algebra (V,[-,-, -1r) defined in (9).

By applying Eqs.(45)-(47) to expand Eq.(48) and collecting coefficients of *, we see that Eq.(48) is equivalent
to the system of equations, fors =0,1,2,---,

Z [Tiu, Tjv, Trw],

i+j+k=s

= Z Ti(p(Tju, Two)w + p(Tjv, Trw)u + p(T jw, Tku)v)

i+j+k=s

+ Y. T(O(Tu, T, Tyw)). (49)

i+jrk+m=s
Note that (49) holds for s = 0 since Ty = T is a ©-twisted O-operator. For s = 1, we get
[Tu, Ty, Tywlg + [Tu, T1o, Twly + [Ty, To, Tw],
= T(p(Tu, Tio)w + p(Tru, To)w + p(To, Tiw)u + p(Tro, Tw)u
+ p(Tw, Tyu)o + p(T1w, Tu)v + O(Tu, To, Tyw) + O(Tu, Trv, Tw)
+©(T1u, To, Tw))

+ Tl(p(Tu, To)yw + p(Tv, Tw)u + p(Tw, Tu)v + O(Tu, T, Tw)),

which is exactly Eq. (36). This implies that (Dg(T1))(1,v,w) = 0. Hence the linear term T is a 1-cocycle
with respect to the cohomology of T. It is called the infinitesimal of the deformation T;.
In the sequel, we discuss equivalent formal deformations.

+00 +00
Definition 5.4. Let T; = Z Tit' and T, = Z T';t" be two formal deformations of a ®-twisted O-operator T = Ty =
i=0 i=0
T, on a 3-Lie algebra g with respect to a representation (V, p). They are said to be equivalent if there exist an element
XegAag ¢i€gl(g)and p; € g(V), i > 2, such that the pair

(1 = Idy + HX, =1y + Y it', = Idy + Hp(X)(-) + OX, T-)) + Y it (50)
i=2 i=2

is a morphism of ©-twisted O-operators from Ty to T,.

Theorem 5.3. If two formal deformations of a @-twisted O-operator T on a 3-Lie algebra (g, [+, -, -15) with respect to
a representation (V, p) are equivalent, then their infinitesimals are in the same cohomology class.

Proof Let (¢+, ) be the two maps defined by Eq.(50) which gives an equivalence between two deformations

T; = Z T;t and T Z T';t' of a O-twisted O-operator T. By ¢y o Ty = T o 1y, we have
i=0 i=0

Tiu = Tyu + T(p(X)u + O(X, Tu)) - [X, Tul,
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=T u+ (De(¥)(u), Yu eV,

which implies that Ty and T are in the same cohomology class. [J
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