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Abstract. In this paper, we establish certain fixed point theorems for (φ,ψ, p)-weakly contractive mappings
on relational metric spaces by using the notion of w-distance and locally S-transitivity of binary relation.
Our results generalize the results of Alam and Imdad (J. Fixed Point Theory Appl., 17(4), 693–702, 2015),
Senapati and Dey (J. Fixed Point Theory Appl., 19, 2945–2961, 2017) and many others of the existing literature.
Moreover, we have an application to the nonlinear Fredholm integral equations and some illustrative
examples to reveal the usability of our findings.

1. Introduction

The classical Banach contraction principle is one of the pivotal result of analysis, which states that
every contraction mapping on a complete metric space (X, d) has a unique fixed point. In 1997, Alber and
Guerre-Delabariere [4] generalized the Banach contraction principle in setting of Hilbert spaces, which was
further extended by Rhoades [21] for arbitrary complete metric spaces. A self mapping S : M→ M is said
to be weakly contractive mapping, if for all ν, µ ∈M

d(Sν,Sµ) ≤ d(ν, µ) − ψd(ν, µ), (1)

where ψ : [0,∞)→ [0,∞) is a continuous and non-decreasing function such that ψ(t) = 0 if and only if t = 0.

Remark 1.1. Notice that the condition (1) is weaker than the Banach contraction condition, that is d(Sν,Sµ) ≤
λd(ν, µ) for λ ∈ [0, 1). One can take ψ(t) = (1 − λ)t, where λ ∈ [0, 1) in condition (1) then this condition reduces to
the Banach contraction condition.

Motivated by the work of Alber and Guerre-Delabariere [4], and Rhoades [21], Dutta and Chaudhary [8]
generalized the classical Banach contraction principle for weak contractive mappings on complete metric
spaces.
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Theorem 1.2 (Dutta and Chaudhary). Let (M, d) be a complete metric space and let S : M→M be a self-mapping
satisfying the inequality

φ(d(Sν,Sµ) ≤ φ(d(ν, µ)) − ψ(d(ν, µ)), (2)

where ψ,φ : [0,∞) → [0,∞) are both continuous and monotonic non-decreasing functions with ψ(t) = 0 = φ(t) if
and only if t = 0. Then S has a unique fixed point.

On the other hand, Nieto and Rodrı́guez-López [14, 15], and Ran and Reurings [20] extended the Banach
contraction principle to partially ordered metric spaces, which was further extended by Alam and Imdad
[1] for a metric space endowed with amorphous binary relation. Now, many researchers have extended
and generalized the result of Alam and Imdad in different ways (see, [2], [5]-[7], [11], [16], [17] and reference
therein). Subsequently, Senapati and Dey [23] improved the result of Alam and Imdad [1] by using the
notion of w-distance, which was recently refined by Gopi and Khantwal [18] for nonlinear contractions on
relational metric spaces.

Our aim in this paper is to establish some fixed point theorems in relational metric spaces by utilizing
the notions of w-distance, altering distance function and employing locally S-transitivity of binary relation.
Our results extend and generalize the results of Alam and Imdad [1], Senapati and Dey [23] and many
others in the existing literature. Moreover, we extend our findings for the existence and uniqueness of
solution for nonlinear Fredholm integral equations and also give some illustrative examples to support our
results.

2. Preliminaries

Throughout the paper, we follow that M, ℜ, N and N0 stand for a non-empty set, non-empty binary
relation on M, the set of non-zero positive integers and the set of whole numbers, respectively. Let us recall,
the following notations and relevant results.

Definition 2.1. [13] Letℜ be a binary relation defined on M.

(i) Ifℜ is a subset of M ×M. We say that ν isℜ-related to µ if and only if (ν, µ) ∈ ℜ.

(ii) ν and µ areℜ-comparable if either (ν, µ) ∈ ℜ or (µ, ν) ∈ ℜ. We denote it by [ν, µ] ∈ ℜ.

Definition 2.2. [3] For a binary relationℜ defined on M.

(i) The inverse or transpose or dual relation ofℜ, denoted byℜ−1 is defined byℜ−1 = {(ν, µ) ∈M2 : (µ, ν) ∈ ℜ}.
(ii) The symmetric closureℜs is the smallest symmetric relation containingℜ, i.e.,ℜs =ℜ∪ℜ−1.

Definition 2.3. [1] For a binary relationℜ defined on M.

(i) (ν, µ) ∈ ℜs
⇐⇒ [ν, µ] ∈ ℜ.

(ii) ℜ is called S-closed if for any ν, µ ∈M, (ν, µ) ∈ ℜ ⇒ (Sν,Sµ) ∈ ℜ.
(iii) Ifℜ is S-closed, thenℜs is also S-closed.
(iv) Ifℜ is S-closed, then ∀ n ∈N0,ℜ is also Sn-closed where Sn denotes nth iterate of S.
(iv) A sequence {νn} ⊂M is calledℜ-preserving if (νn, νn+1) ∈ ℜ,n ∈N0.

(iv) ℜ is called d-self-closed if whenever {νn} is anℜ-preserving sequence and νn
d
−→ ν as n→∞, then there exists

a subsequences {νnk } of {νn} with [νnk , ν] ∈ ℜ, for all k ∈N.

Definition 2.4. [3] A subset D of a non-empty set M is calledℜ-connected if for each pair ν, µ ∈ D, there exists a
path inℜ from ν to µ.

Definition 2.5. [22] A subset D of a non-empty set M is called ℜ-directed if for each pair ν, µ ∈ D, there exists
ϱ ∈M such that (ν, ϱ) ∈ ℜ and (µ, ϱ) ∈ ℜ.
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Inspired by Turinici [24], Alam and Imdad [3] introduce the notion of locally transitive by localizing the
notion of transitivity. Further, for the notion ofℜ-completeness andℜ-continuity, we may refer to [2].

Definition 2.6. [12] Letℜ be a binary relation on a non-empty set M. For ν, µ ∈ M, a path of length k ∈ N inℜ
from ν to µ is a finite sequence {ϱ0, ϱ1, . . . , ϱk} ⊆M satisfying:

(i) ϱ0 = ν and ϱk = µ;

(ii) (ϱi, ϱi+1) ∈ ℜ ∀ i ∈ {0, 1, 2, . . . , k − 1}.

Definition 2.7. [10] A function φ : [0,∞) → [0,∞) is said to be an altering distance function if it satisfies the
following conditions:

(i) φ is monotone increasing and continuous,

(ii) φ(t) = 0 ⇐⇒ t = 0.

The notion ofℜ-lower semi-continuity (briefly,ℜ-LSC) of a function is defined by Senapati and Dey [23].
The respective authors explained by giving examples that theℜ-LSC is weaker than both theℜ-continuity
and the lower semi-continuity (see for details [23]) and modified the definition of w-distance (Definition
2.8) and the related Lemma 1 given in [9] in relation to the metric spaces endowed with an arbitrary binary
relationℜ.

Definition 2.8. [23] Let (M, d) be a metric space andℜ be a binary relation on M. A function p : M ×M→ [0,∞)
is said to be a w-distance on M if
(w1) p(ν, ϱ) ≤ p(ν, µ) + p(µ, ϱ), for any ν, µ, ϱ ∈M;
(w2) for any ν ∈M, p(ν, .) : M→ [0,∞) isℜ-lower semi-continuous;
(w3) for any ϵ > 0, there exists δ > 0, such that p(ϱ, ν) ≤ δ and p(ϱ, µ) ≤ δ implies d(ν, µ) ≤ ϵ.

The following lemma is required in our subsequent discussion.

Lemma 2.9. [19, 24] Let p be a w-distance on metric space (M, d) and {νn} a sequence in M. If {νn} is not a Cauchy,
then there exist ϵ > 0 and subsequences {νnk } and {νmk } of {νn} such that

(i) k ≤ nk ≤ mk, for all k ∈N,
(ii) p(νnk , νmk ) > ϵ, for all k ∈N,
(iii) p(νnk , νmk−1 ) ≤ ϵ, for all k ∈N.

Moreover, suppose that limn→∞ p(νnk , νmk ) = 0, then

(iv) limn→∞ p(νnk , νmk ) = ϵ,
(v) limn→∞ p(νnk+1 , νmk+1 ) = ϵ.

3. Main Results

Now, we drive our main result on the existence of fixed points for the class of nonlinear contractions by
using the notion of w-distance and employing the S-transitive binary relation on metric spaces.

Theorem 3.1. Let (M, d) be a metric space endowed with an arbitrary binary relationℜ and p be a w-distance on M.
Assume that S : M→M be a mapping and the following conditions are hold:
(a) there exists Y ⊆M, S(M) ⊆ Y ⊂M such that (Y, d) isℜ-complete,
(b)ℜ is S-closed and locally S-transitivity,
(c) eitherℜ|Y is d-self closed or S isℜ-continuous,
(d) M(S,ℜ) is non-empty,
(e) for all ν, µ ∈M with (ν, µ) ∈ ℜ,

φ(p(Sν,Sµ)) ≤ φ(p(ν, µ)) − ψ(p(ν, µ)), (3)

where φ : [0,∞)→ [0,∞) is an altering distance function and ψ : [0,∞)→ [0,∞) is a lower semi-continuous with
ψ(t) > 0, for t ∈ (0,∞) and ψ(t) = 0, for t = 0. Then S has a fixed point.
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Proof. We have M(S,ℜ) is non-empty. Let ν0 ∈ M(S,ℜ) then (ν0,Sν0) ∈ ℜ. Construct a sequence {νn} of
Picard iterates with initial point ν0 and

νn = Sn(ν0), for all n ∈N0. (4)

Since (ν0,Sν0) ∈ ℜ andℜ is S-closed therefore

(Sν0,S2ν0), (S2ν0,S3ν0), . . . , (Snν0,Sn+1ν0), · · · ∈ ℜ,

and

(νn, νn+1) ∈ ℜ, for all n ∈N0, (5)

which yields {νn} isℜ-preserving sequence. From (3.1), we have

φ(p(νn, νn+1)) ≤ φ(p(νn−1, νn)) − ψ(p(νn−1, νn)) ≤ φ(p(νn−1, νn)), (6)

and by monotonicity of function φ, we get

p(νn, νn+1) ≤ p(νn−1, νn).

It follows that {p(νn, νn+1)} is bounded monotonic decreasing sequence of positive numbers, so there exists
r ≥ 0 such that

lim
n→∞

p(νn, νn+1) = r.

Letting n→∞ in (6) and using continuity of functions ψ and φ, we obtain

φ(r) ≤ φ(r) − ψ(r) ≤ φ(r),

which implies that ψ(r) = 0. Thus r = 0 and

lim
n→∞

p(νn, νn+1) = 0. (7)

Now, we shall show that {νn} is a Cauchy sequence. On contrary, we suppose that the sequence {νn} is not
Cauchy. Then, in view of Lemma 2.9, there exist ϵ > 0 and sub-sequences {νnk }, {νmk } of {νn} such that

k ≤ nk ≤ mk, ϑk = p(νnk , νmk ) > ϵ, p(νnk , νmk−1 ) ≤ ϵ, for all k,m,n ∈N,

and

lim
k→∞

ϑk = lim
k→∞

p(νnk , νmk ) = ϵ, lim
k→∞

ϑk+1 = lim
k→∞

p(νnk+1 , νmk+1 ) = ϵ. (8)

Applying the assumption of locally S-transitivity of binary relation ℜ yields (νnk , νmk ) ∈ ℜ and from
assumption (e), we have

φ(ϑk+1) ≤ φ(ϑk) − ψ(ϑk). (9)

Letting k→∞ in (9) and using (8), we get

φ(ϵ) ≤ φ(ϵ) − ψ(ϵ),

which is possible unless ψ(ϵ) = 0 implies ϵ = 0. Therefore, by (L3) of Lemma 1.19 in [23], we have the
sequence {νn} isℜ-preserving Cauchy in Y. As (Y, d) isℜ-complete, we must have a point ν ∈ Y such that
νn → ν as n→∞.
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Now, we claim that ν is a fixed point of S. Since {νn} isℜ-preserving with νn
p
−→ ν, thenℜ-continuity of

S implies νn+1 = Sνn
p
−→ Sν and by unicity of the limit, we get Sν = ν that is, ν is a fixed point of S.

Alternately, we assume that ℜ|Y is d-self closed. So there exists a sub-sequence {νnk } of {νn} with
[νnk , ν] ∈ ℜ and using condition (3.1), we have

φ(p(νnk+1 ,Sν)) = φ(p(Sνnk ,Sν)) ≤ φ(p(νnk , ν)) − ψ(p(νnk , ν)), (10)

for all k ∈N0. By virtue of monotonicity of ψ, we have

φ(p(Sνnk ,Sν)) ≤ φ(p(νnk , ν)), for all k ∈N0. (11)

Next, we claim that

p(Sνnk ,Sν) ≤ p(νnk , ν), for all k ∈N. (12)

On account of different values of p(νnk , ν), we get a partition {N0,N+} of N (that is, N0
∪N+ = N and

N0
∩N+ = ∅) such that p(νnk , ν) = 0, for all n ∈N0 and p(νnk , ν) > 0, for all n ∈N+.
If p(νnk , ν) = 0, for all k ∈ N0 that is, p(Sνnk ,Sν) = 0, for all k ∈ N0 then condition (12) holds. Otherwise,

by monotonicity of functions φ, ψ and from (10), we have p(Sνnk ,Sν) < p(νnk , ν), for all k ∈ N+, which
concludes condition (12) also holds for all n ∈ N+. Finally, the condition (12) holds for all n ∈ N. Making
k → ∞ in (12) and using νnk

p
−→ ν, we have νnk+1

p
−→ Sν. Thus, by uniqueness of the limit, we get Sν = ν that

is, ν is a fixed point of S.

Remark 3.2. If we take φ(t) = t and ψ(t) = (1 − λ)φ(t) in the Theorem 3.1, then we get the Theorem 2.1 of Senapati
and Dey [23]. Similarly, if we take p(ν, µ) = d(ν, µ), φ(t) = t and ψ(t) = (1 − λ)φ(t) in our main result then we
obtain the Theorem 2.1 of Alam and Imdad [1]. Hence, our main result improves and generalizes many well known
results in relation-theoretic metrical fixed-point theory.

Remark 3.3. Theorem 3.1 remains valid if replace the assumption of locally S-transitivity of ℜ by any one of the
assumptions: (a)ℜ-transitivity, (b) S-transitivity ofℜ and (c) locally transitivity ofℜ.

Theorem 3.4. In addition to the hypotheses of Theorem 3.1, if

(U) S(M) isℜs-connected,

then S has a unique fixed point.

Proof. Let ν and µ be two fixed points of S in relation metric space (M, d). Then,

Snν = ν and Snµ = µ, for all n ∈N,

and clearly ν, µ ∈ S(M). Assume that assumption (U) also holds in addition to the hypotheses of Theorem
3.1. Then, there exists a path, say (ϱ0, ϱ1, ϱ2, . . . , ϱk) of some finite length k inℜs, from ν to µ such that

ϱ0 = ν, ϱk = µ and [ϱi, ϱi+1] ∈ ℜ, for each i (0 ≤ i ≤ k − 1). (13)

and by S-closedness ofℜ, we have

[Snϱi,Snϱi+1] ∈ ℜ, for all n ∈N0 and i (0 ≤ i ≤ k − 1). (14)

If (ν, µ) ∈ ℜs then either (Snν,Snµ) ∈ ℜ or (Snµ,Snν) ∈ ℜ and by S-closedness of ℜ, we have (Snν,Snµ) ∈
ℜ, for n = 0, 1, 2, . . . . From condition (3.1), we get

φ(p(ν, µ)) = φ(p(Snν,Snµ)) ≤ φ(p(Sn−1ν,Sn−1µ)) − ψ(p(Sn−1ν,Sn−1µ))
= φ(p(ν, µ)) − ψ(p(ν, µ)), (15)
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which leads to a contradiction. Thus, we obtain that ψ(p(ν, µ)) = 0 implies p(ν, µ) = 0, that is ν = µ. Hence
S has a unique fixed point.

On the other hand, if (ν, µ) , ℜs, then there exists a path of length k > 1 in ℜs. We define ti
n =

p(Snϱi,Sn
ϱi+1

) ∈ ℜs, for i(0 ≤ i ≤ (k − 1)) and n ∈N0. Moreover, form (3.1) and for any fix i, we have

φ(ti
n) = φ(p(Snϱi,Snϱi+1)) ≤ φ(p(Sn−1ϱi,Sn−1ϱi+1)) − ψ(p(Sn−1ϱi,Sn−1ϱi+1))

≤ φ(p(Sn−1ϱi,Sn−1ϱi+1)) = φ(ti
n−1). (16)

Consequently, {φ(ti
n)} = {φ(p(Snϱi,Snϱi+1))} is a non-negative decreasing sequence. Monotonicity of φ gives

us the sequence {ti
n} is also a decreasing and consequently, there exists t ≥ 0 such that

lim
n→∞

ti
n = t.

Letting n→∞ in (16) and utilizing the monotonicity of functions φ and ψ, we get

φ(t) ≤ φ(t) − ψ(t) ≤ φ(t).

This implies ψ(t) = 0 and consequently t = 0, for each i (0 ≤ i ≤ k − 1). Finally, from the above conclusion
and using triangular inequality, we obtain

p(ν, µ) = p(Snϱ0,Snϱk) ≤ t0
n + t1

n + · · · + tk−1
n → 0, as n→∞.

Hence S has a unique fixed point.

Remark 3.5. Theorem 3.4 remains true if assumption (U) is replaced by the assumption that eitherℜ|S(M) is complete
or S(M) isℜs-directed.

Example 3.6. Let M = [0, 1] be a complete metric space equipped with usual metric d. We define a binary relation
(ν, µ) ∈ ℜ implies ν < µ on M and a self mapping S on M such that

S(ν) =
ν

1 + ν2 , for all ν ∈M,

Then, it is easy to verify that ℜ is S-closed and mapping S is ℜ-continuous. Again, we define two mappings
φ,ψ : [0,∞)→ [0,∞) by

ψ(t) =


t3

1 + t2 , for t > 0,

0, for t = 0,

φ(t) = t, for all t ∈ [0,∞) and a w-distance p : M ×M → M by p(ν, µ) = µ. For all ν, µ ∈ M with (ν, µ) ∈ ℜ, we
have

φ
(
p(S(ν),S(µ))

)
= φ(Sµ) =

µ

1 + µ2 = µ −
µ3

1 + µ2 = φ(p(ν, µ)) − ψ(p(ν, µ)).

Thus, all the assumptions of Theorem 3.1 are satisfied and S has a fixed points in M (namely at ν = 0).

Remark 3.7. In the above example, if we take ν = 0 and µ = ϵ, where ϵ > 0 is an arbitrary point, very close to 0. Then
(0, ϵ) ∈ ℜ and S does not satisfy the contractive condition of Senapati and Dey [23], that is p(S(ν),S(µ)) ≤ λp(ν, µ),
where λ ∈ [0, 1). Since p(S(ν), S(µ)) ≤ λp(ν, µ) implies that ϵ

1+ϵ2 ≤ λϵ or λ ≥ 1
1+ϵ2 . Hence λ < [0, 1) and the above

example shows, the utility of Theorem 3.1 over the result of Sanapati and Dey [23] and many others.

For different setting of functions ψ,φ, p and contractive condition (3.1), we may obtained several metric
fixed point results from Theorem 3.1 in relational metric spaces.

Let Λ be the set of functions ξ : [0,∞)→ [0,∞), such that
(h1) ξ is Lebesgue integrable on each compact subset of [0,∞),
(h2)
∫ ϵ

0 ξ(z)dz > 0, for each ϵ > 0.
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Theorem 3.8. Theorem 3.1 is valid even if contraction condition (e) is replaced by
(e1)
∫ p(Sν,Sµ)

0 ξ(z)dz ≤
∫ p(ν,µ)

0 ξ(z)dz −
∫ p(ν,µ)

0 δ(z)dz,

for all ν, µ ∈M with (ν, µ) ∈ ℜ, where ξ, δ ∈ Λ.

Proof. The proof follows from Theorem 3.1 by taking the function φ(t) =
∫ t

0 ξ(z)dz and ψ(t) =
∫ t

0 δ(z)dz, for
all t ∈ [0,∞).

Further, if we take δ(z) = (1 − λ)ξ(z), λ ∈ [0, 1) in Theorem 3.8, we get the following result.

Corollary 3.9. Theorem 3.8 is valid even if contraction condition (e1) is replaced by
(e2)
∫ p(Sν,Sµ)

0 ξ(z)dz ≤ λ
∫ p(ν,µ)

0 ξ(z)dz,

for all ν, µ ∈M with (ν, µ) ∈ ℜ, where ξ ∈ Λ.

Taking φ(t) = t in Theorem 3.1, we get the following corollary as a direct consequence of our Theorem 3.1.

Corollary 3.10. Let (M, d) be a metric space endowed with binary relationℜ and p be a w-distance on M. Assume
that S : M→M be a mapping and the following hypotheses hold:
(a) there exists Y ⊆M, S(M) ⊆ Y ⊂M such that (Y, d) isℜ-complete,
(b)ℜ is S-closed and locally S-transitivity,
(c) eitherℜ|Y is d-self closed or S isℜ-continuous,
(d) M(S,ℜ) is non-empty,
(e) there exists a lower semi-continuous function ψ : [0,∞)→ [0,∞), with ψ(t) > 0, for all t ∈ (0,∞) and ψ(t) = 0,
for t = 0, such that

p(Sν,Sµ) ≤ p(ν, µ) − ψ(p(ν, µ)), (17)

for all ν, µ ∈M with (ν, µ) ∈ ℜ. Then S has a fixed point.

Remark 3.11. Notice that by taking p = d in Corollary 3.10, our result extends the result of Dutta and Rhoades [8],
and Prasad et al. [17] as the notion of lower semi continuity is weaker than the notion of continuity.

Similarly, if we take ψ(t) = t − ϕ(t), where ϕ : [0,∞) → [0,∞) such that ϕ(t) < t and
∞∑

n=1
ϕn(t) < ∞, in

Corollary 3.10 then we get the following result.

Corollary 3.12. Let (M, d) be a metric space endowed with arbitrary binary relation ℜ and p be a w-distance on
metric space M. Suppose that S : M→M be a mapping and the following conditions hold:
(a) there exists Y ⊆M, S(M) ⊆ Y ⊂M such that (Y, d) isℜ-complete,
(b)ℜ is S-closed and locally S-transitivity,
(c) eitherℜ|Y is d-self closed or S isℜ-continuous,
(d) M(S,ℜ) is non-empty,
(e) there exists ν, µ ∈M such that

p(Sν,Sµ) ≤ ϕ(p(ν, µ)), (18)

for all ν, µ ∈M with (ν, µ) ∈ ℜ. Then S has a fixed point.

4. Application to nonlinear Fredholm equations

Consider the nonlinear Fredholm integral equation

ν(t) = 1(t) +
∫ β

α
k(t, s, ν(s))ds, (19)

where α, β ∈ Rwith α < β, and ν ∈ C[α, β], 1 : [α, β]→ R and k : [α, β]× [α, β]×R→ R are given continuous
mappings.
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Theorem 4.1. Let φ,ψ : [0,∞) → [0,∞) with φ is an altering distance function and ψ is lower semi-continuous
function with ψ(t) > 0, for all t ∈ (0,∞) and ψ(t) = 0 for t = 0. If

sup
t∈[α,β]

|k(t, s, µ(t))| ≤
φ(supt∈[α,β] |µ(t)|) − ψ(supt∈[α,β] |µ(t)|) − ||ψ||

β − α
,

for all t, s ∈ [α, β], then inequality (19) has a solution.

Proof. We define a function S : C[α, β]→ C[α, β] by

Sν(t) = ψ(t) +
∫ β

α
k(t, s, ν(s))ds (20)

and a binary relation

ℜ =
{
(ν, µ) ∈ C[α, β] × C[α, β] : ν(t) ≤ µ(t), ∀ t ∈ [α, β]

}
.

on C[α, β]. Let p : M ×M→ [0,∞) given by

p(ν, µ) = ||µ||∞ = sup
t∈[α,β]

|µ(t)|, for all ν, µ ∈M. (21)

Then, clearly p is a w-distance on M.

(i) Let M = C[α, β] endowed with metric d : M ×M → [0,∞) given by d(ν, µ) = sup
t∈[α,β]

|ν(t) − µ(t)|, for all

ν, µ ∈M. Then, (M, d) forms a complete metric space and so (M, d) isℜ-complete.

(ii) Choose anℜ-preserving sequence {νn} such that νn
d
−→ ν. Then, for all t ∈ [α, β], we get

ν0(t) ≤ ν1(t) ≤ ν2(t) ≤ · · · ≤ νn(t) ≤ νn+1 ≤ . . .

and converges to ν(t) implies that νn(t) ≤ ν(t), for all t ∈ [α, β], n ∈ N0, which amount of saying that
[νn, ν] ∈ ℜ, for all n ∈N0. Hence,ℜ is d-self closed.

(iii) From (20) and for any (ν, µ) ∈ ℜ, that is ν(t) ≤ µ(t), we have

(Sν)(t) = ψ(t) +
∫ β

α
k(t, s, ν(s))ds

≤ ψ(t) +
∫ β

α
k(t, s, µ(s))ds

= (Sµ)(t),

which shows that (Sν,Sµ) ∈ ℜ, that isℜ is S-closed.

(iv) Let ν ∈ C([α, β],ℜ) be a solution of (19), that is

ν(t) ≤ ψ(t) +
∫ β

α
k(t, s, ν(s))ds = (Sν)(t),

implies that (ν,Sν) ∈ ℜ and M(S,ℜ) , ∅.
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(v) Now, for (ν, µ) ∈ ℜ,

|Sµ(t)| = sup
t∈[α,β]

∣∣∣∣∣ψ(t) +
∫ β

α
k(t, s, µ(s))ds

∣∣∣∣∣
≤ ||ψ|| + sup

t∈[α,β]

∫ β

α
|k(t, s, µ(s))|ds

≤ ||ψ|| +

∫ β

α

(φ(supt∈[α,β] |µ(t)|) − ψ(supt∈[α,β] |µ(t)|) − ||ψ||

β − α

)
ds

= ||ψ|| +
1

β − α

∫ β

α

(
φ(p(ν, µ)) − ψ(p(ν, µ)) − ||ψ||

)
ds

= φ(p(ν, µ)) − ψ(p(ν, µ)),

which implies that

sup
t∈[α,β]

|(Sµ)(t)| ≤ φ(p(ν, µ)) − ψ(p(ν, µ))

and so

p(Sν,Sµ) ≤ φ(p(ν, µ)) − ψ(p(ν, µ)),

for all (ν, µ) ∈ ℜ. Hence, we have

ψ(p(Sν,Sµ)) ≤ p(Sν,Sµ) ≤ φ(p(ν, µ)) − ψ(p(ν, µ)),

for all ν, µ ∈M with (ν, µ) ∈ ℜ. This prove that S satisfies all the hypotheses of Theorem 3.1 and so the
inequality (19) has a solution.

Conclusion. We have established non-unique fixed points for (φ,ψ, p)-weakly contractive mappings in non-
complete relational metric spaces for a discontinuous single-valued map using the notion of w-distance
and locally S-transitivity of binary relation. For the uniqueness of the fixed point, we have assumed range
space to be ℜs-connected. Our conclusions are sharpened versions of the existing conclusions, wherein
continuity and completeness have been substituted by comparatively weaker notions (theirℜ analogs). Fi-
nally, we have given an application to solve the nonlinear Fredholm integral equation which demonstrates
the usability of our conclusion.

Acknowledgments. The authors are grateful to the referees for their careful reading of the manuscript
and for giving valuable remarks to improve it.
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[14] J. J. Nieto and R. Rodrı́guez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary

differential equations, Acta Math. Sin. Engl. Ser. 23 (12) (2007) 2205–2212.
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