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Abstract. Recent research has uncovered an algorithm for locating the common solution to variational
inclusion problems with multivalued maximal monotone mapping and α-inverse strongly monotone map-
ping, as well as the points that are invariant under non-expansive mapping. In their algorithm, Zhang et
al. [S. Zhang, J. H. W. Lee, C. K. Chan, Algorithms of common solutions to quasi-variational inclusion and fixed
point problems, Appl. Math. Mech. 29(5) (2008), 571–581.], λ must satisfy a very strict condition, namely
λ ∈ [0, 2α]; thus, it cannot be used for all Lipschitz continuous mappings, despite the fact that inverse
strongly monotone implies Lipschitz continuous. This manuscript aims to define a new algorithm that
addresses the flaws of the previously described algorithm. Our algorithm is used to solve minimization
problems involving the fixed point set of a non-expansive mapping. In addition, we support all of our
claims with numerical examples derived from computer simulation.

1. Introduction and preliminaries

Everywhere, in the paperV designates a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥. The
variational inclusion problem consists of finding v ∈ V such that

0 ∈ (C +B)v, (1)

where C : V →V and B : V → 2V are single and multivalued mappings, respectively. The solution set of
problem (1) is denoted by (C +B)−10.

Many researchers working in the field have given their algorithms for solving problems (1), like Lions
and Mercier [12]. Their algorithm is as follows:

vm+1 = J
B

λ (vm − λCvm), m = 0, 1, 2, · · · . (2)

Here JBλ is known as resolvent operator for B and is defined as JBλ := [I + λB]
−1

. The drawback of (2) is
that it converges weakly to the solution of problem (1) when C is inverse strongly monotone.
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The drawback of weak convergence of (2) was overwhelmed by Takahashi et al. [21] by proposing the
following algorithm: for w ∈ K (closed and convex subset ofV) and

vm+1 = αmw + (1 − αm)JBλm
(vm − λmC(vm)), m = 0, 1, 2, · · · . (3)

They proved strong convergence of the algorithm by imposing some restrictions on the sequences {λm} and
{αm}.
In the case of Banach spaces, Lopez et al. [13] gave a strong convergent algorithm for solving the problem
(1). Their algorithm has the following form: v1,w ∈ E(Banach space) and

vm+1 = αmw + (1 − αm)
(
J
B

λm
(vm − rm(Cvm + am) + bm

)
, m = 0, 1, 2, · · · . (4)

By imposing some restrictions on sequences {λm}, {αm}, {am} and {bm}, they proved its strong convergence.
Recently many researchers worked on different algorithms dealing with such problems. For more synthesis
on this topic, one may refer to [2, 8–10, 16–18, 20, 23, 24, 27].
On the other hand, the fixed point problem consists of finding

v∗ ∈ K : v∗ = Av∗, (5)

where K is a nonempty, closed, and convex subset of a Hilbert spaceV and A : K → K is a nonexpansive
mapping. The solution set of (5) is denoted by P(A). There are many iterative procedures for approximating
fixed points of problem (5), like Mann’s iteration [14], which is as follows: v1 ∈ K and

vm+1 = αmvm + (1 − αm)Avm, m = 0, 1, 2, · · · .

Here {αm} ⊆ [0, 1]. A detailed synthesis of fixed point problems and their applications can be found in the
noteworthy manuscripts [3, 15, 25].
Halpern [7] also gave an iteration scheme which is defined as v1 = v ∈ K

vm+1 = αmv + (1 − αm)Avm, m = 0, 1, 2, · · · .

Here also {αm} ⊆ [0, 1].
For the last several years, researchers are finding a common solution to problems (1) and (5) like Zhang et
al. [26]. They designed the following algorithm:vm+1 = βmv + (1 − βm)Awm,

wm = J
B

λ (vm − λCvm), m = 0, 1, 2, · · · .
(6)

Here A is α-inversely strongly monotone and λ ∈ (0, 2α] and sequence βm ⊆ [0, 1] has the following
restrictions:

(i) βm → 0,
∑
∞

m=0 βm = ∞,

(ii)
∑
∞

m=0 |βm+1 − βm| < ∞.

They show that {vm} converges strongly to P(A) ∩ (C +B)−10.

In this paper, we have modified algorithm (6). The merits of our algorithm over algorithm (6) are as
follows:

Remark 1.1. (i) Our algorithm can be used for all types of Lipschitz continuous functions while algorithm (6)
cannot be used for all types of Lipschtiz continuous functions, see Example 3.1 and Figures 1 and 2.

(ii) Our algorithm can be used for λ ∈ R+ while algorithm (6) has a very strict condition on λ, that is, λ ∈ (0, 2α],
see Example 3.2 and Figures 3 and 4.
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Let us go back to some earlier definitions and results which we use in this paper.

Definition 1.2. [11] If there exists a constant α ∈ R+ such that

α∥Cv − Cw)∥2 ≤ ⟨Cv − Cw, v − w⟩ , ∀ v,w ∈ V.

Then C :V →V is known as an α-inverse strongly monotone mapping.
If B :V → 2V satisfies,

0 ≤
〈
x − y, v − w

〉
, ∀ v,w ∈ V, x ∈ Bv and y ∈ Bw.

Then it is called monotone, and if it is monotone and (I + λB)v = V for λ ∈ R+, where I is the identity mapping,
then it is called a maximal monotone.

Definition 1.3. [11] The single-valued mapping JλB :V →V defined by

Jλ
B(v) = [I + λB]−1v, ∀ v ∈ V,

is known as resolvent operator for B :V → 2V.

Definition 1.4. [19] If the mapping A :V →V satisfies

∥v − w∥ ≥ ∥Av − Aw∥, ∀ v,w ∈ V.

Then it is called nonexpansive.
The resolvent operator is nonexpansive, that is,

∥v − w∥ ≥ ∥JλB(v) −JλB(w)∥.

Definition 1.5. [19] Let K be a nonempty closed convex subset of V. Then for any v ∈ V, there exists one and
only one nearest point inK , known as a metric projection of v onK and is denoted by projKv i.e.

∥v − projKv∥ ≤ ∥v − w∥, ∀w ∈ K .

Remark 1.6. The following characteristic properties are owned by metric projection projK :

(i) projK :V → K is nonexpansive, that is,

∥projK (v) − projK (w)∥ ≤ ∥v − w∥, ∀ v,w ∈ V;

(ii) projK is firmly nonexpansive, that is,

∥projK (v) − projK (w)∥2 ≤ ⟨projK (v) − projK (w), v − w⟩, ∀ v,w ∈ V;

(iii) For each v ∈ V, u = projK (v) if and only if

⟨v − u,u − w⟩ ≥ 0, ∀w ∈ K .

Lemma 1.7. [4] A mapping B + C : V → 2V is maximal monotone, if B : V → 2V is maximal monotone and
C :V →V is Lipschitz continuous.

With the help of the above lemma, we define a new resolvent operator as follows:

Definition 1.8. Let C : V → V be a Lipschitz continuous mapping and B : V → 2V be a maximal monotone
operator. Then a new resolvent operator of the maximal monotone operator B + C can be defined by:

J
B+C
λ (v) = [I + λ(B + C)]−1v, ∀ v ∈ V. (7)

Remark 1.9. The resolvent operator given by (7) is nonexpansive and 1-inverse strongly monotone.
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Lemma 1.10. [26] Let {αm}, {βm} and {γm} be three nonnegative real sequences satisfying the following condition:

αm+1 ≤ (1 − λm)αm + βm + γm, ∀ m ≥ m0,

where m0 is some nonnegative integer, {λm} is a sequence in (0, 1) with
∑
∞

m=0 λm = ∞, βm = o(λm) and
∑
∞

m=0 γm < ∞.
Then limm→∞ αm = 0.

Lemma 1.11. [5] IfV is a real Hilbert space, then

∥v1 + v2∥
2
≤ ∥v1∥

2 + 2⟨v2, v1 + v2⟩, ∀ v1, v2 ∈ V.

2. Main Result

In this section, we put forward a new algorithm and use it to get a solution that is common to both
variational inclusion problem (1) and problem (5). In order to prove the main result we need the following
lemma:

Lemma 2.1. v = JC+Bλ (v) for all λ ∈ R+ if and only if v ∈ V satisfies (1).

Proof. If v ∈ V is a solution of problem (1), then for λ ∈ R+, 0 ∈ λ(C + B)v, and hence v ∈ [I + λ(C + B)v].
Therefore, we have

v = [I + λ(C +B)]−1v = JC+Bλ (v).

The converse implication is also obvious.

Theorem 2.2. Let C : V → V, B : V → 2V and A : V → V be Lipschitz continuous, maximal monotone and
non-expansive mappings, respectively. Suppose that P(A)∩ (C+B)−10 , ∅. Let v = v0 ∈ V and {vm} be the sequence
generated byvm+1 = βmv + (1 − βm)Awm,

wm = J
C+B
λ (vm), m = 0, 1, 2, · · · .

(8)

satisfying the following conditions:

(i) βm → 0,
∑
∞

m=0 βm = ∞,

(ii)
∑
∞

m=0 |βm+1 − βm| < ∞.

Then {vm} converges strongly to a point of P(A) ∩ (C +B)−10.

Proof. The result is proved in six steps:
Step 1. First, we show that the sequences {vm} and {wm} are bounded.

For z ∈ P(A) ∩ (C +B)−10 and from Lemma 2.1, we have

z = JC+Bλ (z).

So, we have

∥wm − z∥ = ∥J
C+B
λ (vm) −JC+Bλ (z)∥

≤ ∥vm − z∥, ∀m ≥ 0. (9)
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Using (8) and (9), we can write

∥vm+1 − z∥ = ∥βm(v − z) + (1 − βm)(Awm − z)∥
≤ βm∥v − z∥ + (1 − βm)∥wm − z∥
≤ βm∥v − z∥ + (1 − βm)∥vm − z∥
≤ max {∥v − z∥, ∥vm − z∥}
...

≤ max {∥v − z∥, ∥v0 − z∥}
= ∥v − z∥. (10)

From above inequality (10) we conclude that the sequences {vm} and {wm} are bounded. Since A is nonex-
pansive and C is Lipschitz continuous, {Cvm} and {Awm} are also bounded inV.

Step 2.We prove that

∥vm+1 − vm∥ → 0 and ∥wm+1 − wm∥ → 0 as m→ 0. (11)

We note that

∥wm+1 − wm∥ = ∥J
C+B
λ (vm+1) −JC+Bλ (vm)∥

≤ ∥vm+1 − vm∥. (12)

Hence from (8) and (12), we obtain

∥vm+1 − vm∥ = ∥βmv + (1 − βm)Awm − (βm−1v + (1 − βm−1)Awm−1)∥
= ∥(βm − βm−1)(v − Awm−1) + (1 − βm)(Awm − Awm−1)∥
≤ |βm − βm−1|∥v − Awm−1∥ + (1 − βm)∥Awm − Awm−1∥

≤ M|βm − βm−1| + (1 − βm)∥wm − wm−1∥

≤ M|βm − βm−1| + (1 − βm)∥vm − vm−1∥, (13)

where M = supm≥1 ∥v − Awm−1∥. We see that all the conditions of Lemma 1.10 are satisfied by taking
em = ∥vm − vm−1∥, fm = 0 and 1m = M|βm − βm−1| and it is clear from Lemma 1.10 that ∥vm+1 − vm∥ → 0 as
m→ 0. And also, from (12) we have ∥wm+1 − wm∥ → 0 as m→ 0.

Step 3.We prove that for z ∈ P(A) ∩ (C +B)−10,

∥vm − Awm∥ → 0 as m→∞. (14)

We note that

∥vm − Awm∥ ≤ ∥vm − Awm−1∥ + ∥Awm−1 − Awm∥

≤ βm−1∥v − Awm−1∥ + ∥wm−1 − wm∥. (15)

Since βm → 0 and ∥wm−1 − wm∥ → 0, we have that ∥vm − Awm∥ → 0.
Step 4.We prove that

∥vm − wm∥ → 0 and ∥Awm − wm∥ → 0. (16)
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For z ∈ P(A) ∩ (C +B)−10 and using Remark 1.9, Lemma 2.1 and equation (8), we obtain

∥wm − z∥2 = ∥J
C+B
λ (vm) −JC+Bλ (z)∥2

≤ ⟨vm − z,JC+Bλ (vm) −JC+Bλ (z)⟩
= ⟨vm − z,wm − z⟩

=
1
2

{
∥vm − z∥2 + ∥wm − z∥2 − ∥vm − z − (wm − z)∥2

}
≤

1
2

{
∥vm − z∥2 + ∥vm − z∥2 − ∥vm − wm∥

2
}
.

So, we get

∥wm − z∥2 ≤ ∥vm − z∥2 −
1
2
∥vm − wm∥

2. (17)

So, Using (8) and (17), we have

∥vm+1 − z∥2 = ∥βm(v − z) − (1 − βm)(Awm − z)∥2

≤ βm∥v − z∥2 + (1 − βm)∥Awm − z∥2

≤ βm∥v − z∥2 + (1 − βm)∥wm − z∥2

≤ βm∥v − z∥2 + (1 − βm)
{
∥vm − z∥2 −

1
2
∥vm − wm∥

2
}
.

This implies that

(1 − βm)
2

∥vm − wm∥
2
≤ βm∥v − z∥2 + (∥vm − z∥2 − ∥vm+1 − z∥2). (18)

Since βm → 0 and

|∥vm − z∥2 − ∥vm+1 − z∥2| ≤ ∥vm+1 − vm∥(∥vm∥ + ∥vm+1∥)→ 0,

from (18), ∥vm − wm∥ → 0. Also from (14) we obtain

∥Awm − wm∥ ≤ ∥Awm − vm∥ + ∥vm − wm∥ → 0.

Step 5.We prove that

lim sup
m→∞

⟨v − q,Awm − q⟩ ≤ 0, (19)

where q = projP(A)∩(C+B)−10(v).
Since {wm} is a bounded sequence inV, there exists a subsequence {wmi } ⊂ {wm} such that wmi ⇀ w ∈ V

and

lim sup
m→∞

⟨v − q,Awm − q⟩ = lim
mi→∞

⟨v − q,Awmi − q⟩. (20)

Since ∥Awm −wm∥ → 0, ∥Awmi −wmi∥ → 0 and A is nonexpansive, I −A :V →V is demiclosed, so we have
Aw = w, that is, w ∈ P(A).

Now we prove that

w ∈ (C +B)−10. (21)

Since C is Lipschitz continuous and B is maximal monotone, by Lemma 1.7, C + B is maximal monotone.
Let (a, b) ∈ Graph(C +B), that is, b ∈ (C +B)a. Since wmi = J

C+B
λ (vmi ), we have vmi ∈ [I + (C +B)]wmi , that is,

1
λ

(vmi − wmi ) ∈ (C +B)wmi .
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So, by maximal monotonicity of (C +B), we have〈
a − wmi , b −

1
λ

(vmi − wmi )
〉
≥ 0.

Hence we have

⟨a − wmi , b⟩ ≥
〈
a − wmi ,

1
λ

(vmi − wmi )
〉
. (22)

Since ∥vmi − wmi∥ → 0 and wmi ⇀ w, we get

lim
mi→∞

⟨a − wmi , b⟩ = ⟨a − w, b⟩ ≥ 0.

Because C + B is maximal monotone, this implies that 0 ∈ (C + B)w, that is, w ∈ (C + B)−10. So w ∈
P(A) ∩ (C +B)−10

Since ∥Awm − wm∥ → 0 and wmi ⇀ w ∈ P(A) ∩ (C +B)−10, from (20) and Remark 1.6, we get

lim sup
m→∞
⟨v − q,Awm − q⟩ = lim

mi→∞
⟨v − q,Awmi − q⟩

= lim
mi→∞

⟨v − q,Awmi − wmi + wmi − q⟩

= lim
mi→∞

⟨v − q,w − q⟩

≤ 0.

Hence (19) is proved.
Step 6. Finally we prove that

vm → q = projP(A)∩(C+B)−10(v0). (23)

Using (8), (9) and Lemma 1.11, we obtain

∥vm+1 − q∥2 = ∥βm(v − q) + (1 − βm)(Awm − q)∥2

≤ (1 − βm)2
∥(Awm − q)∥2 + 2βm⟨v − q, vm+1 − q⟩

≤ (1 − βm)2
∥wm − q)∥2 + 2βm⟨v − q, vm+1 − q⟩

≤ (1 − βm)2
∥vm − q)∥2 + 2βm⟨v − q, vm+1 − q⟩. (24)

Let

γm = max
{
0, ⟨v − q, vm+1 − q⟩

}
.

Then γm ≥ 0.
Now we prove that γm → 0 as m→∞.
It follows from (19) that for given δ > 0, there exists m0 such that

⟨v − q, vm+1 − q⟩ < δ.

So, we have

0 ≤ γm < δ, ∀m ≥ m0.

By the arbitrariness of δ > 0, we get γm → 0. So we can write (24) as follows:

|vm+1 − q∥2 ≤ (1 − βm)2
∥vm − q)∥2 + 2βmγm. (25)

By taking em = |vm+1 − q∥2, fm = 2βmγm and 1m = 0, then all the conditions of the Lemma 1.10 are satisfied.
Hence vm → q as m→∞. This completes the proof.
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3. Numerical Examples

In this section we show through numerical examples that our algorithm (8) has merits over algorithm
(6). All codes are written in MATLAB 2012.

Example 3.1. LetV = R be the set of all real numbers and let C : R→ R, A : R→ R and B : R→ 2R be defined
as Cv = −6v for all v ∈ R, Av = v and Bv = {3v} for all v ∈ R. Then C is Lipschitz continuous but is not inverse
strongly monotone. It is clear that Zhang et al.’s algorithm (6) is not applicable, see Fig. 1 while our algorithm (8) is
applicable, see Fig. 2.

No.of iterations                      Fig. 1
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Figure 1: {vm} does not converge for using algorithm (6).
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Figure 2: {vm} converges for using our algorithm (8).
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Example 3.2. LetV = R be the set of all real numbers and let C : R→ R, A : R→ R and B : R→ 2R be defined
as Cv = 2v for all v ∈ R, Av = v and Bv = { v2 } for all v ∈ R. Then C is 1

2 -inversely strongly monotone. It is clear
that Zhang et al.’s algorithm (6) is not applicable when λ = 2, that is, λ < (0, 2α], see Fig. 3 while our algorithm (8)
is applicable even though λ < (0, 2α], see Fig. 4.
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Figure 3: {vm} does not converge using algorithm (6) by taking λ = 2.
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Figure 4: {vm} converges using our algorithm (8) by taking λ = 2

4. Application

We know that the minimization problem can be converted into an equivalent to the variational inclusion
problem. So, our algorithm can be used to solve minimization problem over the fixed point set of a non-
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expansive mapping.
Let V = R, a Hilbert space, f : R → R be a function defined by f (v) = v2

4 , 1 : R → R ∪ {+∞} be a proper
convex and lower semi-continuous function defined as 1(v) = v2 and A : R→ R by Av = v, a non-expansive
mapping. Then our aim is to find v∗ ∈ P(A) such that

{ f (v∗) + 1(v∗)} = min
v∈P(A)

{ f (v) + 1(v)}, (26)

which is equivalent (By Fermat’s Rule) to find v ∈ P(A) such that

0 ∈
v
2
+ 2v. (27)

Then above problem is same as finding common solution of problems (1) and (5) by taking Cv = v
2 ,Bv = 2v,

Av = v and K = [−1, 1].
Then solution set of Problem (26) or problem (27) is {0} (see Fig.5).

Using our algorithm (8), we can easily see from Fig.6 that sequence converges to 0 (solution) for different
initial values.
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Figure 5: Solution of the problem (4.1) is 0.
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Figure 6: {vm} converges to 0(common solution) while starting with different initial values v0 = 1,−1, 2 and − 2

5. Conclusion

We presented a novel approach that corrects the weaknesses in the Zhang et al. [26] algorithm. We
also defined a novel way to correct the weaknesses in the pronounced algorithm. We also use computer
modeling to back up our claims with numerical evidence. In comparison to the results currently available
in the current state-of-the-art, the results presented in this article are sharp.

Acknowledgment: The authors thank the reviewers sincerely for their insightful criticism and com-
ments on our paper. Their astute recommendations and helpful comments significantly raised the caliber
of our work.
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