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Abstract. Let T and S be bounded linear operators on a complex Hilbert spaceH . In this paper, we define
a new quantity K(T) which is less than the numerical radius w(T) of T. We employ this quantity to provide
some new refinements of the numerical radii of products TS, commutators TS − ST, and anticommutators
TS + ST, which give an improvement to the important results by A. Abu-Omar and F. Kittaneh (Studia
Mathematica, 227 (2), (2015)). Furthermore, we extend these results to the case of semi-Hilbertian space
operators in order to improve some results of A. Zamani (Linear Algebra and its Applications, 578, (2019)).

1. Introduction and preliminary

Let
(
H , ⟨·, ·⟩

)
be a complex Hilbert space equiped with the norm ∥ · ∥. We denote by B(H) the unital

C∗-algebra of all bounded linear operators acting on H , with I its unit element. Let T ∈ B(H), we denote

by T∗,ℜ(T) =
T + T∗

2
and ℑ(T) =

T − T∗

2i
the adjoint, the real part and the imaginary part of T, respectively.

The numerical range of T is given by:

W(T) =
{
⟨Tx, x⟩ : x ∈ H , ∥x∥ = 1

}
.

It is well-known that W(T) is a convex set in C and its closure W(T) contains the spectrum σ(T) of T.
Moreover, W(T∗) =

{
λ : λ ∈W(T)

}
and W(U∗TU) =W(T) for any unitary U ∈ B(H). The operator norm, the

numerical radius and the spectral radius of T are denoted by ∥T∥, w(T) and r(T) respectively and they are
given by ∥T∥ = sup

{
∥Tx∥ : x ∈ H , ∥x∥ = 1

}
, w(T) = sup

{
|λ| : λ ∈ W(T)

}
and r(T) = sup

{
|z| : z ∈ σ(T)

}
. It is

known that

max
{1
2
∥T∥; r(T)

}
≤ w(T) ≤ ∥T∥, (1)

thus w(·) defines an equivalent norm to the usual operator norm ∥ · ∥ on B(H). It is also easy to check
that the norm w(·) is self-adjoint, i.e., w(T∗) = w(T) for every T ∈ B(H). Furthermore, if T is normal then
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w(T) = ∥T∥ = r(T). It is well-known that the norm w(·) satisfies the power inequality

w
(
Tn

)
≤

(
w(T)

)n
(for all n ∈N).

Unfortunately, the norm w(·) is not submultiplicative. This means that, in general, the inequality

w
(
TS

)
≤ w(T)w(S) (for T,S ∈ B(H)),

does not hold. Indeed, if we take

T =
[
0 0
1 0

]
and S =

[
0 1
0 0

]
,

it is easy to check that w(T) = w(S) =
1
2

and w(TS) = 1. Moreover, the inequality

w
(
TS

)
≤ ∥T∥w(S) (for T,S ∈ B(H)),

is not true in general, even if T and S commute, see [29]. In 2022, Benabdi et al.[9] proved that

w
(
TS

)
≤

3
√

3
4
∥T∥w(S),

whenever T,S ∈ B(H) such that T is a positive operator, i.e., ⟨Tx, x⟩ ≥ 0 for all x ∈ H . They also showed

that the constant
3
√

3
4

is the smallest possible for which the inequality holds.

In addition, we have the following numerical radius inequalities.

Theorem 1.1 ([21], Chapter 2). Let T,S ∈ B(H). Then

1.

w
(
TS

)
≤ ∥TS∥ ≤ 2∥T∥w(S) ≤ 4w(T)w(S).

2. If T and S commute, then

w
(
TS

)
≤ 2w(T)w(S).

3. If T and S doubly commute (i.e., TS = ST and TS∗ = S∗T), then

w
(
TS

)
≤ ∥T∥w(S).

4.

w
(
TS + ST

)
≤ 4w(T)w(S).

5.

w
(
TS + ST

)
≤ 2
√

2∥T∥w(S).

6.

w
(
TS ± ST∗

)
≤ 2∥T∥w(S).
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Fuglede’s Theorem asserts that if T is a normal operator commuting with S, then T and S doubly
commute. In particular, whenever TS = ST such that T is normal, we have

w
(
TS

)
≤ w(T)w(S).

In [33], Yamazaki showed the following interesting formula

w(T) = sup
θ∈R
∥ℜ(eiθT)∥ = sup

θ∈R
∥ℑ(eiθT)∥, (2)

for every T ∈ B(H). For proofs and more material about the numerical radius, we refer the reader to [21, 22]
and the references therein.

We denote by R(T) the numerical radius distance of T from the scalar operators:

R(T) = inf
z∈C

w
(
T − zI

)
.

Clearly R(T) ≤ w(T) and we can easily prove that R(·) is a semi-norm onB(H). Furthermore, R(T) = 0 if and
only if T = αI for some α ∈ C. A straightforward calculation shows that R(T∗) = R(T) and R(U∗TU) = R(T)
for any unitary U ∈ B(H). Moreover, it is well-known that R(T) is the radius of the smallest disk in the
complex plane containing W(T), see [23, 25]. In the case when T is normal, we can easily verify that R(T) is
exactly the radius of the smallest disk in the complex plane containing σ(T), because W(T) is the convex hull
of σ(T) (see, [21, Theorem 1.4-4]). The quantity R(T) has appeared in several numerical radius inequalities.
We present some of them.

In 1970, Stampfli [32] proved that ∥δT∥ = 2D(T), where D(T) = inf
λ∈C
∥T−λI∥ and δT is the inner derivation

induced by T:

δT : B(H) −→ B(H), S 7→ TS − ST.

He also showed that if T is normal, then ∥δT∥ = 2R(T). In this particular case, we have the following
inequality:

w
(
TS − ST

)
≤ 2R(T)∥S∥ (for all S ∈ B(H)). (3)

Later, in 2011, Hirzallah et al. [23] presented several numerical radius inequalities of the commutator
TS − ST, where S ∈ B(H). When T is self-adjoint, they obtained an improvement of (3), as follows:

w
(
TS − ST

)
≤ 2R(T)R(S) (for all S ∈ B(H)).

Moreover, they showed that

w
(
TS − ST

)
≤ ∥T∥R(S) (for all S ∈ B(H)),

when T is positive, see [23, Corollary 4.1].
In 2015, A. Abu-Omar and F. Kittaneh [2] used the quantity R(T) to establish some new estimates for

the numerical radii of products TS, commutators TS − ST, and anticommutators TS + ST. These estimates
improved the inequalities stated in Theorem 1.1. We present some of their results in the following theorem.

Theorem 1.2 ([2]). Let T,S ∈ B(H). Then

1.

w
(
TS

)
≤ ∥TS∥ ≤ ∥T∥

(
w(S) + R(S)

)
≤ 2∥T∥w(S). (4)

2.

w
(
TS

)
≤ ∥TS∥ ≤

(
w(T) + R(T)

)(
w(S) + R(S)

)
≤ 4w(T)w(S). (5)
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3. If T and S commute, then

w
(
TS

)
≤ w(T)

(
w(S) + R(S)

)
≤ 2w(T)w(S). (6)

4.

w
(
TS + ST

)
≤ 2w(T)

(
w(S) + R(S)

)
≤ 4w(T)w(S). (7)

5.

w
(
TS + ST

)
≤ 2∥T∥

√
w(S)2 + R(S)2 ≤ 2

√

2∥T∥w(S). (8)

6.

w
(
TS + ST

)
≤ 2

√
w(T)2 + R(T)2

√
w(S)2 + R(S)2 ≤ 4w(T)w(S). (9)

One of the most recent research directions in the theory of operators on Hilbert spaces is the study of
numerical radius inequalities and their various improvements, see for example [1–3, 12, 24, 30] and the
references therein.

The notion of numerical radius of an operator plays an important role and has received a lot of attention
due to its variety of usage in different areas such as mathematics and physics, see for example [20]. This
concept has been extended in several directions (e.g., see [4, 10, 13, 24, 26] and the references therein). One
such direction is the A-numerical radius. This new notion was first introduced by Saddi in [31], as follows:

wA(T) = sup
{
|⟨ATx, x⟩| : x ∈ H , ∥x∥A = 1

}
(for T ∈ B(H)),

where A ∈ B(H) is a positive operator and ∥x∥A =
√
⟨Ax, x⟩ for every x ∈ H . In the last few years, many

mathematicians have focused their attention on studying various types of A-numerical radius inequalities.
For example, A. Zamani [34] extended the numerical radii inequalities discussed in Theorem 1.2 to the
case of A-numerical radius. We refer the reader to [10, 16–19, 28, 34] and the references therein for further
information and other types of A-numerical radius inequalities.

The main purpose of this paper is to provide some new refinements of the numerical radii inequalities
mentioned in Theorem 1.2, and to extend it to the semi-Hilbertian space operators. We start with the Hilbert
space operators case, in which we use a new quantity K(T) that is less than the numerical radius w(T). Then,
we extend our results to the semi-Hilbertian space operators case, employing a quantity KA(T) which is
similar to K(T).

The paper is organized as follows. In Section 2, we first define the quantity K(T) of T ∈ B(H). Next,
we provide some properties related to this quantity, such as the continuity of the map T 7→ K(T) on B(H).
We conclude this section, by studying the set of all self-adjoint operators C ∈ B(H) that commute with
an operator B ∈ B(H). In Section 3, we present our improvements of Theorem 1.2. In Section 4, we start
by recalling some results related to the theory of semi-Hilbertian space operators. Finally, we extend our
results to this case.

2. The quantity K(T)

In order to define the quantity K(T) of an operator T ∈ B(H), we need the following results, which are
proved by Kaadoud in [25].

Lemma 2.1 ([25]). Let K be a non-empty compact subset of C, then there exist a unique complex number zK and a
unique positive real number RK such that the disk of the center zK and radius RK is the smallest disk of the complex
plane containing K. Moreover

RK = sup
λ∈K
|λ − zK| = inf

z∈C
sup
λ∈K
|λ − z|.
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Lemma 2.2 ([25]). Let K be a non-empty compact subset of C and α ∈ C. The following properties are equivalent:

1. zK = α.
2. |K − α| < |K − (α + λ)| for all λ ∈ C \ {0}.
3. |K − α|2 + |λ|2 ≤ |K − (α + λ)|2 for all λ ∈ C.

(Here, |K − β| = sup
z∈K
|z − β| for β ∈ C.)

In the sequel of this section, T ∈ B(H). According to Lemma 2.1, there exists a unique complex number
zW(T) such that R(T) = w

(
T − zW(T)I

)
. In addition, the disk of the center zW(T) and radius R(T) is the

smallest disk of the complex plane containing the numerical range W(T). Furthermore, it follows from [25,
Proposition 26] that zW(T) ∈W(T). We write simply zT instead of zW(T).

From Lemma 2.2, we can easily obtain the following properties:

1. zT∗ = zT and zλT = λzT for all λ ∈ C.
2. zUTU∗ = zT for any unitary U ∈ B(H).

Now, we define the quantity K(T) as follows:

K(T) = inf
λ∈R

w
(
T − iλzTI

)
.

It is obvious that

K(T) =

w(T) if zT = 0,

infλ∈R w
(
e−i(θ+ π2 )T − λI

)
otherwise,

(10)

where θ = ar1(zT) is the argument of zT, i.e., zT = |zT |eiθ. This means that K(T) is simply the distance from
the operator e−i(θ+ π2 )T to the real spaceRI in the complex Banach space

(
B(H),w(·)

)
when zT , 0. Moreover,

the following facts follow immediately from the definition of K(T):

K(T∗) = K(T),K(ηT) = |η|K(T) and K(U∗TU) = K(T),

for all η ∈ C and all unitary U ∈ B(H). Also, we have the following inequality

R(T) ≤ K(T) ≤ w(T). (11)

The following example shows that the inequality (11) can be strict.

Example 2.3. Let T =
[
1 + i 0

0 i

]
, it is easy to check that w(T) =

√

2. It follows from [21, Lemma 1.1-1] that W(T)

is the segment joining the values 1 + i and i. This implies that zT =
1
2
+ i and R(T) =

1
2

. Now, let λ ∈ R

w
(
T − iλzTI

)
= w

( (1 + λ) + i(1 −
λ
2

) 0

0 λ + i(1 −
λ
2

)


)

= max
{∣∣∣(1 + λ) + i(1 −

λ
2

)
∣∣∣, ∣∣∣λ + i(1 −

λ
2

)
∣∣∣}

= max
{√

(1 + λ)2 + (1 −
λ
2

)2,

√
λ2 + (1 −

λ
2

)2

}

=


√

(1 + λ)2 + (1 −
λ
2

)2 if λ ≥
−1
2√

λ2 + (1 −
λ
2

)2 if λ ≤
−1
2
.
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Then, we can conclude that K(T) = inf
λ∈R

w(T − iλzTI) = w(T − i(
−2
5

)zTI) =
3
√

5
5

. This shows that

R(T) = 0.5 < K(T) ≃ 1.341 < w(T) ≃ 1.414.

Let us now give some properties concerning the quantity K(T).

Proposition 2.4. Let T ∈ B(H). Then

1. There exists a real number λT such that K(T) = w(T − iλTzTI).
2. If zT = 0 then K(T) = R(T) = w(T).
3. If zT , 0 then R(T) < K(T).

4. If zT , 0 then ∥ℜ(aTT)∥ ≤ K(T) and ∥ℑ(aTT)∥ ≤ R(T), with aT =
zT

|zT |
.

5.

R(T) ≤
K(T) + R(T)

2
≤

√
K(T)2 + R(T)2

2
≤ K(T) ≤ w(T) (12)

and

w(T) ≤
√

K(T)2 + R(T)2 ≤
√

2K(T) ≤
√

2w(T). (13)

6. If R(T) = 0 then K(T) = w(T).
7. K(T) = 0 if and only if T = 0.
8. If T is self-adjoint then K(T) = w(T).

Proof. 1. If zT = 0 the result is obvious, it suffices to take λT = 0. Now, we assume that zT , 0. Using the
fact that lim w(T − iλzTI) = +∞when |λ| goes to +∞, and combining it with a compactness argument,
we can show that the infimum in the definition of K(T) is attained at some λT ∈ R. This means that
K(T) = w(T − iλTzTI).

2. Clear.
3. By contradiction we assume that K(T) = R(T). Then, by the uniqueness of zT, it follows that zT = iλTzT.

Since zT , 0 we get 1 = iλT. Which is impossible, because λT ∈ R. Hence, R(T) < K(T).
4. It is obvious to check that ℑ(aTT) = ℑ(aT(T − zTI)) andℜ(aTT) = ℜ(aT(T − iλTzTI)). By applying the

formula (2) we get that ∥ℑ(aTT)∥ ≤ w(T − zTI) and ∥ℜ(aTT)∥ ≤ w(T − iλTzT). Thus, ∥ℜ(aTT)∥ ≤ K(T)
and ∥ℑ(aTT)∥ ≤ R(T).

5. It is sufficient to show that

w(T) ≤
√

K(T)2 + R(T)2. (14)

The other inequalities in (12) and (13) are obvious. If zT = 0 then the inequality is trivial. Now, we
assume that zT , 0. Let x ∈ H such that ∥x∥ = 1, then

|⟨Tx, x⟩| = |⟨aTTx, x⟩| (with aT =
zT

|zT |
)

=
√
ℜ(⟨aTTx, x⟩)2 + ℑ(⟨aTTx, x⟩)2

=
√
⟨ℜ(aTT)x, x⟩2 + ⟨ℑ(aTT)x, x⟩2

≤

√
∥ℜ(aTT)∥2 + ∥ℑ(aTT)∥2

≤

√
K(T)2 + R(T)2.

This implies that w(T) ≤
√

K(T)2 + R(T)2.
6. If R(T) = 0 then T = zTI. So, by a simple calculation, we can show that K(T) = w(T).
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7. If T = 0 then w(T) = 0. Hence K(T) = 0. Reciprocally, if K(T) = 0 then R(T) = 0. So by (6) we get that
w(T) = K(T) = 0. Consequently, T = 0.

8. The result is evident when zT = 0. Now, we assume that zT , 0. Since T is self-adjoint we have W(T)
is a real segment. Then, zT ∈ R, this implies that aT = ±1. By part (4) we get w(T) = ∥T∥ ≤ K(T). Thus,
K(T) = w(T).

Remark 2.5. 1. Example 2.3 shows that the inequalities (12) and (13) can be strict.
2. The parts (2) and (3) show that zT = 0 if and only if K(T) = R(T).

3. The part (8) shows that, in general, the reciprocal of the part (6) is not true. In fact, let T =
[
2 0
0 1

]
be a

self-adjoint matrix. From part (8) we obtain that K(T) = w(T) = 2, but R(T) =
1
2

.

4. The reciprocal of the part (8), in general, is not true. Indeed, let T =
[
0 1
0 0

]
. It follows from [21, Example 1]

that zT = 0. Hence, from part (2) we get K(T) = w(T), but T is not self-adjoint.
5. Example 2.3 shows that if the self-adjoint assumption is replaced by normal, then part (8) is generally false.

Proposition 2.6. Let T,S ∈ B(H). Then

|K(T) − K(S)| ≤ w(T − S) +max{|λT |; |λS|} |zT − zS|, (15)

where λT and λS are real numbers which satisfy

K(T) = w(T − izTλTI) and K(S) = w(S − izSλSI).

Note that Proposition 2.4 asserts the existence of the real numbers λT and λS.

Proof. By the definition of K(T) we get

K(T) ≤ w(T − iλSzTI) = w
(
T − S + S − iλSzSI + iλS(zS − zT)I

)
≤ w(T − S) + K(S) + |λS||zT − zS|

≤ w(T − S) + K(S) +max{|λT |; |λS|} |zT − zS|.

Hence, by symmetry, we obtain (15).

In [25], Kaadoud proved that the map T 7→ zT is continuous on B(H). This implies that the map
T 7→ R(T) is also continuous on B(H). The following result shows the continuity of the map T 7→ K(T).

Proposition 2.7. Let {Tn} be a sequence of elements of B(H) such that {Tn} converges to T in B(H). Then, the
sequence {K(Tn)} converges to K(T).

Proof. If zT = 0, then by Proposition 2.4, we have w(T) = R(T) = K(T). On the other hand, the inequality
(11) implies that

R(Tn) ≤ K(Tn) ≤ w(Tn), (for all n ∈N). (16)

By using the facts lim
n→+∞

R(Tn) = R(T) and lim
n→+∞

w(Tn) = w(T), together with the inequality (16), we get
lim

n→+∞
K(Tn) = K(T).

Now, we suppose that zT , 0. We first show that there exists M > 0 such that |λTn | ≤M for all n ∈N. By
contradiction, we suppose that {λTn } is an unbounded sequence. Taking a subsequence if necessary, we may
assume that lim

n→+∞
|λTn | = +∞. Since the sequence {zTn } converges to zT we have zTn , 0 for all sufficiently

large n ∈ N. Then, lim
n→+∞

|λTn zTn | = +∞. This implies that lim
n→+∞

K(Tn) = +∞, which contradicts the fact that
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{w(Tn)} is a bounded sequence. Consequently, there exists M > 0 such that |λTn | ≤M for all n ∈N. It follows
from (15) that

|K(T) − K(Tn)| ≤ w(T − Tn) +max{|λT |; |λTn |} |zT − zTn |

≤ w(T − Tn) +max{|λT |; M} |zT − zTn |,

for all n ∈N. This implies that, lim
n7→+∞

K(Tn) = K(T). Thus, the map T 7→ K(T) is continuous on B(H).

The following result shows that K(·) satisfies the triangular inequality for special cases.

Proposition 2.8. Let T,S ∈ B(H). If one of the following conditions

(C1) zT+S = 0,
(C2) zT+S, zT and zS are real numbers,

is satisfied, then

K(T + S) ≤ K(T) + K(S).

Proof. Let λT and λS be the real numbres such that

K(T) = w(T − iλTzTI) and K(S) = w(S − iλSzSI).

If the condition (C1) holds, then

K(T + S) = w(T + S) ≤ w(T + S − µI) for all µ ∈ C.

In particular, for µ = iλTzT + iλSzS we obtain

K(T + S) ≤ w
(
T + S − iλTzTI − iλSzSI

)
≤ w

(
T − iλTzTI

)
+ w

(
S − iλSzSI

)
= K(T) + K(S).

Now, we assume that the condition (C2) holds. By the formula (10) we get

K(T + S) = distw

(
± i(T + S);RI

)
≤ distw

(
± iT;RI

)
+ distw

(
± iS;RI

)
= K(T) + K(S),

where distw means the distance in the sense of w(·). This completes the proof.

Remark 2.9. In general, zT+S is not equal to zT + zS. Indeed, if we take the matrices

T =

3 + i 0 0
0 1 + i 0
0 0 2 + i

 and S =

−1 + 4i 0 0
0 −1 − i 0
0 0 −2 − i

 .
Then, we have

T + S =

2 + 5i 0 0
0 0 0
0 0 0

 .
It is obvious that T,S and T + S are normal operators. Hence, from [21, Theorem 1.4-4], W(T) is the segment joining
the values 1+ i and 3+ i, W(S) is the right triangle with vertices {−1+ 4i;−1− i;−2− i} and W(T+S) is the segment
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joining the values 0 and 2+ 5i. This implies that zT = 2+ i, zS =
−3
2
+

3
2

i and zT+S = 1+
5
2

i. Thus, zT+S , zT + zS.
However, in this case we have

K(T + S) ≤ K(T) + K(S),

because, K(T) = w(T − i(
−1
5

)zTI) =
7
√

5
5

, K(S) = w(S − i(
−2
3

)zSI) =
√

13 and K(T + S) = w(T + S) =
√

29. This
fact combined with proposition 2.8, make us wonder: Does K(·) satisfy the triangle inequality?

For an operator B ∈ B(H) we define the set S (B) by

S (B) = {C ∈ B(H) | C is self-adjoint and BC = CB}.

It is clear that S (B) is a closed real linear space. Moreover, S (B∗) = S (B). Now, we give some properties
concerning the real space S (B).

Proposition 2.10. Let B,C ∈ B(H). If {Cn} is a seuquence of elements of S (B) such that lim
n7→+∞

⟨Cnx, x⟩ = ⟨Cx, x⟩

for all x ∈ H , then C ∈ S (B).

Proof. We have ⟨Cnx, x⟩ ∈ R for all n ∈ N and all x ∈ H , thus ⟨Cx, x⟩ ∈ R for all x ∈ H . Hence, C is
self-adjoint. It is, therefore, sufficient to show that BC = CB. From the Polarization Identity, we get

⟨Cx, y⟩ = lim
n7→+∞

⟨Cnx, y⟩ for all x, y ∈ H .

This implies that

⟨BCx, x⟩ = ⟨Cx,B∗x⟩
= lim

n7→+∞
⟨Cnx,B∗x⟩

= lim
n7→+∞

⟨BCnx, x⟩

= lim
n7→+∞

⟨CnBx, x⟩ (because, Cn ∈ S (B))

= ⟨CBx, x⟩,

for every x ∈ H . Consequently, BC = CB.

Remark 2.11. 1. S (I) = S (0) = {C ∈ B(H) | C is self-adjoint}.
2. By the Cartesian Decomposition, we get that B(H) = S (I) + iS (I).
3. Proposition 2.10 asserts that the real space S (B) is closed in the topological space (B(H), τ), with τ is the

coarsest topology on B(H) for which every map Φx (x ∈ H) is continuous on B(H), where

Φx(T) = ⟨Tx, x⟩ (for all T ∈ B(H)).

Proposition 2.12. Let B ∈ B(H). If C ∈ S (B) and f : J −→ R is a continuous function on an interval J such that
σ(C) ⊂ J, then f (C) ∈ S (B).

Proof. Since f is a real-valued function, it follows from continuous function calculus that f (C) is self-adjoint.
Hence, it is sufficient to show that B f (C) = f (C)B. By Stone-Weierstrass theorem, there exists a sequence of
polynomials {pn}, with real coefficients, which converges uniformly to f in σ(C). Then, the sequence {pn(C)}
converges to f (C). Hence, from the closedness of S (B), it is enough to prove that Bp(C) = p(C)B for every
polynomial p with real coefficients. However, this can be deduced directly from the fact that S (B) is a real
linear space and Ck

∈ S (B) for all k ∈N.
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3. Numerical radius inequalities for operators

In this section, we present our improvements. We start with the following result which gives a refinement
of part (6) in Theorem 1.1.

Theorem 3.1. Let T,S ∈ B(H). Then

w
(
TS + ST∗

)
≤ 2 dist

(
T, iS (S)

)
w(S)

≤ 2 inf
µ∈R
∥T − iµC∥ w(S)

(
for all C ∈ S (S)

)
(17)

≤ 2∥T∥w(S),

with dist
(
T, iS (S)

)
= inf

{
∥T − iC∥ | C ∈ S (S)

}
.

Proof. We only need to establish the first inequality in (17), since the other inequalities in (17) are results
that will automatically follow. Let C ∈ S (S), then

w
(
TS + ST∗

)
= w

(
(T − iC)S + S(T − iC)∗

)
.

By applying Theorem 1.1 (6), we get

w
(
TS + ST∗

)
≤ 2∥T − iC∥w(S).

Hence, by taking the infimum over all C ∈ S (S), we have

w
(
TS + ST∗

)
≤ 2 dist

(
T, iS (S)

)
w(S).

Remark 3.2. If we replace T by iT in (17), we get

w
(
TS − ST∗

)
≤ 2 dist

(
T,S (S)

)
w(S)

≤ 2∥T∥w(S).

The following result is an immediate consequence of Theorem 3.1.

Corollary 3.3. Let T,S ∈ B(H). Then

w
(
TS + ST∗

)
≤ 2k(T)w(S) and w

(
TS − ST∗

)
≤ 2k′(T)w(S),

where k(T) = inf
µ∈R
∥T − iµI∥ and k′(T) = inf

µ∈R
∥T − µI∥.

The example below highlights that the inequalities in Theorem 3.1 are considerable improvements.

Example 3.4. Let T =
[
1 + 2i 0

0 −i

]
and S =

[
1 0
0 0

]
. We can easily find that ∥T∥ =

√

5, w(S) = 1 and w
(
TS+ST∗

)
=

2. On the other hand, it is not difficult to show that any self-adjoint 2 × 2 matrix C has the form C =
[
a z
z b

]
, where

a, b ∈ R and z ∈ C. This implies that S (S) =
{ [

a 0
0 b

]
| a, b ∈ R

}
. A simple calculation shows that

dist(T, iS (S)) = inf
a,b∈R

(
max

{√
1 + (2 − a)2; |1 + b|

})
.

Since 1 ≤
√

1 + (2 − a)2 for all a ∈ R, we get that 1 ≤ dist(T, iS (S)). For a = 2 and b = 0, we obtain dist(T, iS (S)) ≤
1. Thus, dist(T, iS (S)) = 1. This gives that

w(TS + ST∗) = 2 dist(T, iS (S)) w(S) = 2 < 2 ∥T∥ w(S) ≃ 4, 4721.
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In the remainder of this section, T and S are elements of B(H) such that zT , 0 and zS , 0. We denote

by aT =
zT

|zT |
and bS =

zS

|zS|
.

The following result gives a refinement of the inequalities (6) and (7). We use some ideas of [2, Theorem
2.5].

Theorem 3.5. Let T,S ∈ B(H). Then

w(TS + ST) ≤ 2
(
dist

(
ℜ(bSS), iS (T)

)
+ dist

(
ℑ(bSS), iS (T)

))
w(T)

≤ 2
(
k
(
ℜ(bSS)

)
+ k

(
ℑ(bSS)

))
w(T)

≤ 2
(
∥ℜ(bSS)∥ + ∥ℑ(bSS)∥

)
w(T)

≤ 2
(
K(S) + R(S)

)
w(T)

≤ 2
(
w(S) + R(S)

)
w(T).

In particular, if T and S commute then

w(TS) ≤

(
dist

(
ℜ(bSS), iS (T)

)
+ dist

(
ℑ(bSS), iS (T)

))
w(T)

≤

(
k
(
ℜ(bSS)

)
+ k

(
ℑ(bSS)

))
w(T)

≤

(
∥ℜ(bSS)∥ + ∥ℑ(bSS)∥

)
w(T)

≤

(
K(S) + R(S)

)
w(T)

≤

(
w(S) + R(S)

)
w(T).

Proof. It is clear that

w(TS + ST) = w
(
Tℜ(bSS) +ℜ(bSS)T + i

(
Tℑ(bSS) + ℑ(bSS)T

))
≤ w

(
Tℜ(bSS) +ℜ(bSS)T

)
+ w

(
Tℑ(bSS) + ℑ(bSS)T

)
.

So, by applying Theorem 3.1 we get

w(TS + ST) ≤ 2
(
dist

(
ℜ(bSS), iS (T)

)
+ dist

(
ℑ(bSS), iS (T)

))
w(T)

≤ 2
(
k
(
ℜ(bSS)

)
+ k

(
ℑ(bSS)

))
w(T)

≤ 2
(
∥ℜ(bSS)∥ + ∥ℑ(bSS)∥

)
w(T)

≤ 2
(
K(S) + R(S)

)
w(T) [by Proposition 2.4 (4)]

≤ 2
(
w(S) + R(S)

)
w(T).

This gives the desired results.

The following example shows that, using our inequalities in Theorem 3.5, we get considerably smaller
quantities to the ones obtained by (6) and (7).

Example 3.6. Let T =
[
2 0
0 1

]
and S =

[
1 + i 0

0 i

]
. It is obvious that TS = ST, w(T) = 2, w(S) =

√

2 and

w(TS) = 2
√

2. We have shown in Example 2.3 that zS =
1
2
+ i, R(S) =

1
2

and K(S) =
3
√

5
. A straightforward



Z. Taki, M. C. Kaadoud / Filomat 37:20 (2023), 6925–6947 6936

calculation gives that

ℜ(bSS) =


3
√

5
0

0
2
√

5

 , ℑ(bSS) =


−1
√

5
0

0
1
√

5

 and S (T) =
{ [a 0

0 b

]
| a, b ∈ R

}
,

where bS =
zS

|zS|
=

1
√

5
− i

2
√

5
. From this we obtain

∥ℜ(bSS)∥ = dist(ℜ(bSS), iS (T)) = inf
a,b∈R

(
max

{√9
5
+ a2;

√
4
5
+ b2

})
=

3
√

5
.

∥ℑ(bSS)∥ = dist(ℑ(bSS), iS (T)) = inf
a,b∈R

(
max

{√1
5
+ a2;

√
1
5
+ b2

})
=

1
√

5
.

This implies that

w(TS) ≃ 2.828 <
(
∥ℜ(bSS)∥ + ∥ℑ(bSS)∥

)
w(T) ≃ 3.577

<
(
K(S) + R(S)

)
w(T) ≃ 3.683

<
(
w(S) + R(S)

)
w(T) ≃ 3.828.

The following result gives a refinement of the inequalities (4) and (5). Our approach is based on [2,
Theorem 2.3].

Theorem 3.7. Let T,S ∈ B(H). Then

w(TS) ≤ ∥TS∥ ≤ ∥T∥
[
K(S) + R(S)

]
≤ ∥T∥

[
w(S) + R(S)

]
, (18)

and,

w(TS) ≤ ∥TS∥ ≤
[
K(T) + R(T)

][
K(S) + R(S)

]
≤

[
w(T) + R(T)

][
K(S) + R(S)

]
(19)

≤

[
w(T) + R(T)

][
w(S) + R(S)

]
.

Proof. We show the inequalities (18).

∥TS∥ = ∥T(bSS)∥ = ∥Tℜ(bSS) + iTℑ(bSS)∥ ≤ ∥T∥
[
∥ℜ(bSS)∥ + ∥ℑ(bSS)∥

]
It follows from Proposition 2.4 (4) that

w(TS) ≤ ∥TS∥ ≤ ∥T∥
[
K(S) + R(S)

]
≤ ∥T∥

[
w(S) + R(S)

]
.

The inequalities (19) result immediately from (18) and the fact that

∥T∥ = ∥aTT∥ ≤ ∥ℜ(aTT)∥ + ∥ℑ(aTT)∥.

As an immediate consequence of Theorem 3.7, we have the following result.
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Corollary 3.8. Let T,S ∈ B(H). Then

w(TS) ≤ 2∥T∥K(S) ≤ 2∥T∥w(S),

and,

w(TS) ≤ 4K(T)K(S) ≤ 4w(T)w(S).

The inequalities (18) and (19) are non-trivial improvements, as shown in the following example.

Example 3.9. Let S = T =

1 + i 0 0
0 1 0
0 0 0

. It is obvious that ∥S∥ = w(S) =
√

2, ∥TS∥ = w(TS) = 2 and W(S) is the

right triangle with vertices {1 + i; 1; 0}. This gives that zS =
1
2
+

i
2

and R(S) =

√
2

2
. Now, let λ ∈ R then

w(S − iλzSI) = max
{√

1 + (1 − λ)2;
√

1 + λ2; |λ|
}

= max
{√

1 + (1 − λ)2;
√

1 + λ2
} (

since, |λ| <
√

1 + λ2
)

=


√

1 + λ2 if λ ≥
1
2√

1 + (1 − λ)2 if λ ≤
1
2
.

This implies that K(S) = w
(
S − i

zS

2
I
)
=

√
5

2
. It follows from inequalities (18) and (19) that

w(TS) = ∥TS∥ = 2 < ∥T∥
[
K(S) + R(S)

]
≃ 2.581

< ∥T∥
[
w(S) + R(S)

]
= 3,

and,

w(TS) = ∥TS∥ = 2 <
[
K(T) + R(T)

][
K(S) + R(S)

]
≃ 3.331

<
[
w(T) + R(T)

][
K(S) + R(S)

]
≃ 3.871

<
[
w(T) + R(T)

][
w(S) + R(S)

]
= 4.5.

The example below demonstrates that the inequalities in Corollary 3.8 are significant improvements.

Example 3.10. From Example 3.9, we have

w(TS) = 2 < 2∥T∥K(S) ≃ 3.162 < 2∥T∥w(S) = 4,

and

w(TS) = 2 < 4K(T)K(S) = 5 < 4w(T)w(S) = 8.

Let us now give a refinement of the inequalities (6), (8) and (9). In order to achieve this goal, we need
the following lemmas which have been proved by Abu-Omar and Kittaneh in [1, 3].

Lemma 3.11 ([3]). Let T,S ∈ B(H). Then

w
(
TS ± ST

)
≤

√
∥T∗T + TT∗∥

√
∥S∗S + SS∗∥.
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Lemma 3.12 ([1]). Let A1,A2,B1,B2 ∈ B(H). Then

r
(
A1B1 + A2B2

)
≤ r

(  w(B1A1)
√
∥B1A2∥∥B2A1∥√

∥B1A2∥∥B2A1∥ w(B2A2)

 )
=

1
2

(
w(B1A1) + w(B2A2)

)
+

1
2

√(
w(B1A1) − w(B2A2)

)2
+ 4∥B1A2∥∥B2A1∥.

Now, we can prove the following result, which improves the inequalities (8) and (9). We use some ideas of
[2, Remark 2.8].

Theorem 3.13. Let T,S ∈ B(H). Then

w
(
TS ± ST

)
≤

√

2∥T∥
√
µ1(S)

≤

√

2∥T∥
√
µ2(S)

≤

√

2∥T∥
√
µ3(S)

≤ 2∥T∥
√

K(S)2 + R(S)2 (20)

≤ 2∥T∥
√

w(S)2 + R(S)2,

and,

w
(
TS ± ST

)
≤

√
µ1(T)

√
µ1(S)

≤
√
µ2(T)

√
µ2(S)

≤
√
µ3(T)

√
µ3(S)

≤ 2
√

K(T)2 + R(T)2
√

K(S)2 + R(S)2 (21)

≤ 2
√

w(T)2 + R(T)2
√

w(S)2 + R(S)2,

where

µ1(T) =
(
∥ℜ(aTT)∥2 + ∥ℑ(aTT)∥2

)
+

√(
∥ℜ(aTT)∥2 − ∥ℑ(aTT)∥2

)2
+ 4∥ℜ(aTT)ℑ(aTT)∥2.

µ2(T) =
(
K(T)2 + R(T)2

)
+

√(
K(T)2 − R(T)2

)2
+ 4∥ℜ(aTT)ℑ(aTT)∥2.

µ3(T) =
(
K(T)2 + R(T)2

)
+

√(
K(T)2 − R(T)2

)2
+ 4∥ℜ(aTT)∥2 ∥ℑ(aTT)∥2.

Proof. We first show the inequalities (21). By using the fact that

T∗T + TT∗ = (aTT)∗(aTT) + (aTT)(aTT)∗ = 2
(
(ℜ(aTT))2 + (ℑ(aTT))2

)
,

and by letting A1 = B1 =ℜ(aTT),A2 = B2 = ℑ(aTT) in Lemma 3.12, we get

∥T∗T + TT∗∥ ≤ µ1(T),

because ∥ℜ(aTT)ℑ(aTT)∥ = ∥(ℜ(aTT)ℑ(aTT))∗∥ = ∥ℑ(aTT)ℜ(aTT)∥.
It is easy to check that M1 ≤M2, with

M1 =

[
∥ℜ(aTT)∥2 ∥ℜ(aTT)ℑ(aTT)∥

∥ℜ(aTT)ℑ(aTT)∥ ∥ℑ(aTT)∥2

]
,
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and

M2 =

[
K(T)2

∥ℜ(aTT)ℑ(aTT)∥
∥ℜ(aTT)ℑ(aTT)∥ R(T)2

]
.

Hence ∥M1∥ ≤ ∥M2∥, with ∥M1∥ =
µ1(T)

2
and ∥M2∥ =

µ2(T)
2

. This implies that√
∥T∗T + TT∗∥ ≤

√
µ1(T)

≤
√
µ2(T)

≤
√
µ3(T) (22)

≤

√

2
√

K(T)2 + R(T)2

≤

√

2
√

w(T)2 + R(T)2.

By symmetry, we obtain the same inequalities (22) for S. Using Lemma 3.11 and the inequalities (22), we
derive the inequalities (21).

For the inequalities (20), it suffices to observe that√
∥T∗T + TT∗∥ ≤

√
∥T∗T∥ + ∥TT∗∥ =

√

2∥T∥.

Hence, the required inequalities are obtained immediately by employing Lemma 3.11 and (22).

The inequalities (20) and (21) are important refinements, as the following example shows.

Example 3.14. From Example 3.6, we have

w(TS + ST) =
√

2∥T∥
√
µ1(S) ≃ 5, 656

<
√

2∥T∥
√
µ2(S)

=
√

2∥T∥
√
µ3(S) ≃ 5, 664

< 2∥T∥
√

K(S)2 + R(S)2 ≃ 5, 727

< 2∥T∥
√

w(S)2 + R(S)2 = 6.

Since T =
[
2 0
0 1

]
is self-adjoint, we obtain µ1(T) = µ2(T) = µ3(T) = 2∥T∥2 and K(T) = w(T) = ∥T∥. Moreover, in

this case we have R(T) =
1
2

. This implies that

w(TS + ST) ≃ 5, 656 < 2
√

K(T)2 + R(T)2
√

K(S)2 + R(S)2 ≃ 5, 903

< 2
√

w(T)2 + R(T)2
√

w(S)2 + R(S)2 ≃ 6, 184.

The inequality (6) can be improved as follows.

Theorem 3.15. Let T,S ∈ B(H). If T and S commute then

w(TS) ≤ η1(T,S)
≤ η2(T,S)

≤ w(T)
[
K(S) + R(S)

]
≤ 2w(T)K(S)
≤ 2w(T)w(S),
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where

η1(T,S) =
1
2

(
w(T)[K(S) + R(S)] +√

w(T)2
(
K(S) − R(S)

)2
+ 4 sup

θ∈R
∥ℜ(bSS)ℑ(eiθT)∥∥ℑ(bSS)ℜ(eiθT)∥

)
,

η2(T,S) =
w(T)

2

(
[K(S) + R(S)] +

√(
K(S) − R(S)

)2
+ 4∥ℜ(bSS)∥∥ℑ(bSS)∥

)
.

Proof. It suffices to show the first inequality, as the others follow. Let θ ∈ R, by the commutativity of T and
S we get that

ℜ(eiθT(bSS)) = ℜ(eiθT)ℜ(bSS) − ℑ(eiθT)ℑ(bSS).

Hence, by taking A1 = ℜ(eiθT), B1 = ℜ(bSS), A2 = −ℑ(eiθT), B2 = ℑ(bSS) in Lemma 3.12, and by the norm
monotonicity of matrices with nonnegative entries, we have

r
(
ℜ(eiθT(bSS))

)
≤

∥∥∥∥∥∥
[
∥ℜ(bSS)∥ ∥ℜ(eiθT)∥

√
m(θ,T,S)√

m(θ,T,S) ∥ℑ(bSS)∥∥ℑ(eiθT)∥

] ∥∥∥∥∥∥
≤

∥∥∥∥∥∥
[

K(S)w(T)
√

m(θ,T,S)√
m(θ,T,S) R(S)w(S)

] ∥∥∥∥∥∥
=

1
2

(
w(T)[K(S) + R(S)]

)
+

1
2

√
w(T)2(K(S) − R(S))2 + 4m(θ,T,S),

where m(θ,T,S) = ∥ℜ(bSS)ℑ(eiθT)∥∥ℑ(bSS)ℜ(eiθT)∥. By taking the supremum over all θ ∈ R, we get

w(TS) ≤ η1(T,S).

We finish this section with the following example, which shows that the inequalities in Theorem 3.15
are significant improvements.

Example 3.16. From Example 3.6, we have

w(TS) ≃ 2.828 < η1(T,S) ≃ 3.604
= η2(T,S)
< w(T)[K(S) + R(S)] ≃ 3.683
< 2w(T)K(S) ≃ 5.366
< 2w(T)w(S) ≃ 5.656.

4. A-numerical raduis inequalities for operators

In all what follows, A ∈ B(H) is a positive operator, i.e., ⟨Ax, x⟩ ≥ 0 for all x ∈ H . We denote by A
1
2 the

square root of A and by ⟨·, ·⟩A the positive semi-definite sesquilinear form induced by A:

⟨·, ·⟩A : H ×H −→ C, (x, y) 7→ ⟨x, y⟩A = ⟨Ax, y⟩.

The seminorm induced by ⟨·, ·⟩A onH is given by ∥x∥A =
√
⟨x, x⟩A for every x ∈ H . We can easily show that

∥ · ∥A is a norm if and only if A is injective, and that
(
H , ∥ · ∥A

)
is a complete space if and only if the range
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R(A) of A is closed inH . We denote by P the orthogonal projection onto R(A), where R(A) is the closure of
R(A).

Let T ∈ B(H), an operator R ∈ B(H) is called A-adjoint of T if for every x, y ∈ H , we have ⟨Tx, y⟩A =
⟨x,Ry⟩A, i.e., AR = T∗A. This kind of equation is studied by Douglas in [14]. In general, the existence and
uniqueness of A-adjoint are not guaranteed, see [16]. We denote by BA(H) the set of all operators in B(H)
which admit A-adjoints. From Douglas Theorem [14], we have

BA(H) = {T ∈ B(H) | R(T∗A) ⊆ R(A)},

whereR(S) is the range of an operator S ∈ B(H). Notice thatBA(H) is a subalgebra ofB(H) which is neither
closed nor dense in B(H), see [6, p.1463]. If T ∈ BA(H), the reduced solution of the equation AX = T∗A
is a distinguished A-adjoint operator of T, which is denoted by T♯ and satisfies R(T♯) ⊆ R(A). Note that,
T♯ = A†T∗A, where A† is the Moore-Penrose inverse of A, see [5]. It is important to note that if T ∈ BA(H)

then T♯ ∈ BA(H),
((

T♯
)♯)♯
= T♯ and

(
T♯

)♯
= PTP. Moreover,

(
TS

)♯
= S♯T♯ and

(
T + αS

)♯
= T♯ + αS♯ for all

S ∈ BA(H) and all α ∈ C.
An operator T ∈ BA(H) is said to be A-selfadjoint if AT is selfadjoint, that is, AT = T∗A. In general, the

fact that T is A-selfadjoint does not imply that T♯ = T, see [34, p.161]. However, if T ∈ BA(H) then T = T♯

if and only if T is A-selfadjoint and R(T) ⊆ R(A) (see, [34]). On the other hand, for every T ∈ BA(H), the

following operators are A-selfadjoint: TT♯, T♯T,ℜA(T) =
T + T♯

2
and ℑA(T) =

T − T♯

2i
. Before we move on,

it should be mentioned that if T is A-selfadjoint then T♯ is also A-selfadjoint and (T♯)♯ = T♯, see [16, Lemma
1]. In this case, we haveℜA(T♯) = T♯ and ℑA(T♯) = 0.

For more information about the class of operators defined on semi-Hilbertian spaces, we refer the reader
to [5, 6, 11, 16–19, 28, 34] and the references therein.

Let T ∈ B(H), the A-operator seminorm ∥T∥A, the A-numerical radius wA(T) and the A-spectral radius
rA(T) of T are respectively given by:

∥T∥A = sup
{∥Tw∥A
∥w∥A

: w ∈ R(A), w , 0
}
,

wA(T) = sup{|⟨Tx, x⟩A| : x ∈ H , ∥x∥A = 1},

rA(T) = lim sup
n→+∞

∥Tn
∥

1
n
A.

It is possible that either ∥T∥A = +∞ or wA(T) = +∞ or rA(T) = +∞ for some operator T ∈ B(H), see [17].
However, Douglas Theorem [14] asserts that for every T ∈ BA(H) we have ∥T∥A < +∞. In particular, ∥ · ∥A
is a seminorm on BA(H). On the other hand, it was shown in [15] that for every T ∈ BA(H):

∥T∥A = sup{∥Tx∥A : x ∈ H , ∥x∥A = 1}
= sup{|⟨Tx, y⟩A| : x, y ∈ H , ∥x∥A = ∥y∥A = 1}.

This implies that if T ∈ BA(H) then ∥Tx∥A ≤ ∥T∥A∥x∥A for all x ∈ H , and ∥T∥A = 0 if and only if AT = 0.
In addition, if T,S ∈ BA(H) then ∥TS∥A ≤ ∥T∥A∥S∥A. It should be mentioned that wA(·) is a seminorm on
BA(H) which is equivalent to ∥ · ∥A. More precisely, we have the following inequality

max
{
rA(T);

1
2
∥T∥A

}
≤ wA(T) ≤ ∥T∥A,

for all T ∈ BA(H), see [8, 17]. It is not difficult to check that ∥T∥ = ∥T♯∥A, wA(T) = wA(T♯) and rA(T) = rA(T♯)
for all T ∈ BA(H). We also have the following properties.

Theorem 4.1 ([15, 17, 31, 34]). Let T,S ∈ BA(H), the following assertions hold:
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1. ∥TT♯∥A = ∥T♯T∥A = ∥T∥2 = ∥T♯∥2A.
2. If T is A-selfadjoint then rA(T) = wA(T) = ∥T∥A.
3. wA(T) = sup

θ∈R
∥ℜA(eiθT)∥A = sup

θ∈R
∥ℑA(eiθT)∥A.

4. wA(T) = sup
α2+β2=1

∥αℜA(T) + βℑA(T)∥A.

5. rA(T) = inf
n∈N∗
∥Tn
∥

1
n
A = lim

n→+∞
∥Tn
∥

1
n
A.

6. rA(TS) = rA(ST).
7. If TS = ST then rA(TS) ≤ rA(T)rA(S) and rA(T + S) ≤ rA(T) + rA(S).

For more results concerning ∥ · ∥A, wA(·) and rA(·), we invite the readers to see [5, 15–17, 31, 34].
In 2018, Baklouti et al.[8] defined the A-numerical range of an operator T ∈ B(H), as follows:

WA(T) = {⟨Tx, x⟩A : x ∈ H , ∥x∥A = 1}.

They proved that WA(T) is a non-empty convex subset of C which is not necessarily compact even if
dim(H) < +∞. More precisely, they showed that WA(T) = Cwhen T(N(A)) ⊈ N(A), whereN(A) is the null
space of A. On the other hand, it is easy to see that wA(T) = sup{|λ| : λ ∈ WA(T)} for every T ∈ B(H). This
implies that the closure of WA(T) is a non-empty compact subset of C when T ∈ BA(H). Note that if T is
A-selfadjoint then WA(T) is a real segment, see [8, Proposition 2.1].

Let T ∈ BA(H), by Lemma 2.1, there exists a unique complex number ξT such that

RA(T) = inf
λ∈C

wA

(
T − λI

)
= wA

(
T − ξTI

)
.

Moreover, the disk of the center ξT and radius RA(T) is the smallest disk of the complex plane containing
the A-numerical range WA(T). It follows from Lemma 2.2 that ξT♯ = ξT and ξλT = λξT for every λ ∈ C. This
gives that RA(T♯) = RA(T) and RA(λT) = |λ|RA(T) for all λ ∈ C. In addition, RA(T) = 0 if and only if AT = αA
for some α ∈ C. On the other hand, we define the quantity KA(T) as follows:

KA(T) = inf
λ∈R

wA

(
T − iλξTI

)
.

It is clear that RA(T) ≤ KA(T) ≤ wA(T). This inequality can be strict, as shown in the following example.

Example 4.2. Let A =
[
5 3
3 2

]
, A

1
2 =

[
2 1
1 1

]
and T =

[
2 + i 1
−2 1 + i

]
. It is easy to see that T ∈ BA(H). A simple

calculation shows that WA(T) = W
(
A

1
2 TA−

1
2

)
and A

1
2 TA−

1
2 =

[
1 + i 0

0 i

]
. Hence, it follows from Example 2.3 that

ξT =
1
2
+ i,RA(T) =

1
2
,KA(T) =

3
√

5
and wA(T) =

√

2. This implies that

RA(T) < KA(T) < wA(T).

It is easy to verify that KA(T♯) = KA(T) and KA(λT) = |λ|KA(T) for all λ ∈ C. Moreover, all properties of
K(T) can be extended to KA(T). Some of them are presented in the following result, the others are left to the
reader. It should be indicated that the continuity of KA will be proved at the end of this section.

Proposition 4.3. Let T ∈ BA(H). Then the following assertions hold:

1. There exists a real number ηT such that KA(T) = wA

(
T − iηTξTI

)
.

2. If ξT , 0 then
∥∥∥ℜA(cTT)

∥∥∥
A ≤ KA(T) and

∥∥∥ℑA(cTT)
∥∥∥

A ≤ RA(T), where cT =
ξT

|ξT |
.

3. wA(T) ≤
√

KA(T)2 + RA(T)2.
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4. KA(T) = 0 if and only if AT = 0.
5. If T is A-adjoint then KA(T) = wA(T).

Proof. Only parts (2) and (5) are shown here, the others are found using the same techniques used in
Proposition 2.4.

(2) Let ηT ∈ R such that K(T) = wA(T − iηTξTI). A straightforward calculation shows that∥∥∥ℜA(cTT♯)
∥∥∥

A =
∥∥∥ℜA

(
cT(T♯ + iηTξTP)

)∥∥∥
A =

∥∥∥[ℜA

(
cT(T − iηTξTI)

)]♯∥∥∥
A,

and ∥∥∥ℑA(cTT♯)
∥∥∥

A =
∥∥∥ℑA

(
cT(T♯ − ξTP)

)∥∥∥
A =

∥∥∥ − [
ℑA

(
cT(T − ξTI)

)]♯∥∥∥
A.

Then, it follows from Theorem 4.1 that ∥ℜA(cTT)∥A ≤ KA(T) and ∥ℑA(cTT)∥A ≤ RA(T).
(5) Using the facts cT = ±1 and T♯ =ℜA(T♯), together with part (2), we get the desired result.

Let us begin with the following definition before moving on to our first extension in this section. For an
operator T ∈ BA(H) we define the set SA(T) by

SA(T) =
{
C ∈ BA(H) | (C♯)♯ = C♯ and T♯C♯ = C♯T♯

}
.

It is obvious that SA(T) is a real linear space, SA(T) = SA(T♯) and I,P ∈ SA(T). Also, when A = I then
SA(T) is exactly S (T). Moreover, we have the following properties.

Proposition 4.4. Let T,C ∈ BA(H). Then

1. C ∈ SA(T) if and only if C♯ ∈ SA(T).
2. If C is A-selfadjoint such that TC = CT or CT♯ = T♯C then C ∈ SA(T).

3. SA(T) is closed in
(
BA(H), ∥ · ∥A

)
.

Proof. 1. This comes immediately from the facts ((R♯)♯)♯ = R♯ (R ∈ BA(H)) and SA(T) = SA(T♯).
2. Since C is A-selfadjoint, we have (C♯)♯ = C♯. So, by assumption we get the desired result.
3. Observe that, if R ∈ BA(H) then ∥R♯∥A = 0 if and only if R♯ = 0, because R♯ = A†R∗A. Now, let

C ∈ BA(H) and a sequence {Cn} of elements of SA(T) such that lim
n→+∞

∥C − Cn∥A = 0. Let n ∈N, by the
fact that Cn ∈ SA(T), we get

∥T♯C♯ − C♯T♯∥A = ∥T♯C♯ − T♯C♯n + C♯nT♯ − C♯T♯∥A
≤ 2∥T♯∥A∥C♯ − C♯n∥A,

and,

∥(C♯)♯ − C♯∥A = ∥(C♯)♯ − (C♯n)♯ + C♯n − C♯∥A
≤ 2∥Cn − C∥A.

Letting n→ +∞ yields
(
C♯

)♯
= C♯ and T♯C♯ = C♯T♯. Thus, C ∈ SA(T).

Now we present our first extension in this section, which generalizes Theorem 3.1 and improves [19,
Theorem 2.13]. The proof is similar to that of Theorem 3.1.
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Theorem 4.5. Let T,S ∈ BA(H). Then

wA

(
TS + ST♯

)
≤ 2 distA

(
T, iSA(S)

)
wA(S)

≤ 2 inf
µ∈R
∥T − iµC∥A wA(S) (for all C ∈ SA(S)) (23)

≤ 2∥T∥AwA(S),

with distA

(
T, iSA(S)

)
= inf

{
∥T − iC∥A | C ∈ SA(S)

}
.

Proof. We show the first inequality, the others follow. Let C ∈ SA(S), a simple calculation shows that:

wA

(
TS + ST♯

)
= wA

(
S♯[T♯ + iC♯] + (S[T♯ + iC♯])♯

)
.

By applying [34, Lemma 3.1] we get

wA

(
TS + ST♯

)
≤ 2wA(S)∥T − iC∥A.

Hence, by taking the infimum over all C ∈ SA(S), we obtain the desired inequality.

Remark 4.6. 1. Note that, distA(T, iSA(S)) = distA(T♯, iSA(S)).
2. It follows from (23) that

wA

(
(ST)♯ + S♯T

)
= wA

((
[(ST)♯ + S♯T]♯

)♯)
= wA

(
T♯S♯ + S♯(T♯)♯

)
≤ 2 distA

(
T, iSA(S)

)
wA(S). (24)

This gives an improvement of [34, Lemma 3.1].
3. By replacing T by iT in (23) and (24), we obtain

max
{
wA

(
TS − ST♯

)
,wA

(
(ST)♯ − S♯T

)}
≤ 2 distA

(
T,SA(S)

)
wA(S)

≤ 2 inf
µ∈R
∥T − µC∥A wA(S)

≤ 2∥T∥A wA(S),

for every C ∈ SA(S).

Corollary 4.7. Let T,S ∈ BA(H). Then

wA

(
TS + ST♯

)
≤ 2kA(T)wA(S) and wA

(
TS − ST♯

)
≤ 2k′A(T)wA(S),

where kA(T) = inf
µ∈R
∥T − iµI∥A and k′A(T) = inf

µ∈R
∥T − µI∥A.

In all what follows, T and S are elements of BA(H) such that ξTξS , 0. We denote by cT =
ξT

|ξT |
and

cS =
ξS

|ξS|
.

In the following result, we present an extension of Theorem 3.5.

Theorem 4.8. Let T,S ∈ BA(H). Then

wA(TS + ST) ≤ 2
(
distA

(
ℜA(cSS), iSA(T)

)
+ distA

(
ℑA(cSS), iSA(T)

))
wA(T)

≤ 2
(
kA

(
ℜA(cSS)

)
+ kA

(
ℑA(cSS)

))
wA(T)

≤ 2
(
∥ℜA(cSS)∥A + ∥ℑA(cSS)∥A

)
wA(T)

≤ 2
(
KA(S) + RA(S)

)
wA(T)

≤ 2
(
wA(S) + RA(S)

)
wA(T).
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In particular, if TS = ST then

wA(TS) ≤

(
distA

(
ℜA(cSS), iSA(T)

)
+ distA

(
ℑA(cSS), iSA(T)

))
wA(T)

≤

(
kA

(
ℜA(cSS)

)
+ kA

(
ℑA(cSS)

))
wA(T)

≤

(
∥ℜA(cSS)∥A + ∥ℑA(cSS)∥A

)
wA(T)

≤

(
KA(S) + RA(S)

)
wA(T)

≤

(
wA(S) + RA(S)

)
wA(T).

Proof. Since (ℜA(cSS)♯)♯ =ℜA(cSS)♯ and (ℑA(cSS)♯)♯ = ℑA(cSS)♯, we have

wA(ST + TS) = wA

(
ℜA(cSS)♯T♯ + T♯(ℜA(cSS)♯)♯ − i[ℑA(cSS)♯T♯ + T♯(ℑA(cSS)♯)♯]

)
.

So, by using Theorem 4.5 and replicating the proof of Theorem 3.5, we reach the desired result.

Next, we present the following result which is a natural generalization of Theorem 3.7 and considerably
improves the inequalities in [34, Theorem 3.4] and [34, Theorem 3.5.].

Theorem 4.9. Let T,S ∈ BA(H). Then

wA(TS) ≤ ∥TS∥A ≤ ∥T∥A
[
KA(S) + RA(S)

]
≤ ∥T∥A

[
wA(S) + RA(S)

]
,

and,

wA(TS) ≤ ∥TS∥A ≤

[
KA(T) + RA(T)

][
KA(S) + RA(S)

]
≤

[
wA(T) + RA(T)

][
KA(S) + RA(S)

]
≤

[
wA(T) + RA(T)

][
wA(S) + RA(S)

]
.

Proof. We achieve the required inequalities by using Proposition 4.3 (2) and following a similar reasoning
as the one used in the proof of Theorem 3.7.

The next result follows directly from the previous theorem.

Corollary 4.10. Let T,S ∈ BA(H). Then

wA(TS) ≤ 2∥T∥AKA(S) and wA(TS) ≤ 4KA(T)KA(S).

From the following results, we can immediately obtain the extensions of Theorems 3.13 and 3.15. We
leave the proofs to the reader. The first result presents the relationship between BA(H) and the algebra of
all operators acting on the Hilbert space R(A

1
2 ) :=

(
R(A

1
2 ), ⟨·, ·⟩

R(A
1
2 )

)
, where

⟨A
1
2 x,A

1
2 y⟩

R(A
1
2 )

:= ⟨Px,Py⟩ ( for all x, y ∈ H).

For more information concerning R(A
1
2 ) and B

(
R(A

1
2 )
)
, we invite the readers to check [7, 17, 27].

Lemma 4.11 ([7, 17, 27]). Let T ∈ BA(H), then there exists a unique T̃ ∈ B
(
R(A

1
2 )
)

such that T̃WA =WAT̃, where

WA : H −→ R(A
1
2 ) defined by WAx = Ax for all x ∈ H . Moreover, we have the following properities:
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1. ∥T∥A =
∥∥∥T̃

∥∥∥
B

(
R(A

1
2 )
), wA(T) = w

(
T̃
)

and rA(T) = r
(
T̃
)
.

2. T̃♯ =
(
T̃
)∗

and ˜(T♯)♯ = T̃.
3. If S ∈ BA(H) and α ∈ C then

T̃ + αS = T̃ + αS̃ and T̃S = T̃S̃.

4. Ĩ = I
B

(
R(A

1
2 )
) the identity element of B

(
R(A

1
2 )
)
.

The last result is the following.

Lemma 4.12. Let T ∈ BA(H), the following properties hold:

1. RA(T) = R
(
T̃
)
.

2. ξT = zT̃.

3. KA(T) = K
(
T̃
)
.

4. ℜ̃A(T) =ℜ
(
T̃
)

and ℑ̃A(T) = ℑ
(
T̃
)
.

Proof. The parts (1), (3) and (4) come directly from Lemma 4.11. Now, we give the proof of part (2). From
Lemma 2.2 we have

wA

(
T − ξTI

)
< wA

(
T − (ξT + λ)I

)
( for all λ ∈ C \ {0}).

So, by applying Lemma 4.11, we get

w
(
T̃ − ξT Ĩ

)
< w

(
T̃ − (ξT + λ)̃I

)
( for all λ ∈ C \ {0}).

By Lemma 2.2, we conclude that ξT = zT̃.

Combining lemmas 4.11, 4.12 and Proposition 2.7, we get the following result, showing the continuity
of KA.

Proposition 4.13. Let T ∈ BA(H) and {Tn} be a sequence of elements of BA(H) such that lim
n7→+∞

∥Tn − T∥A. Then,
the sequence {KA(Tn)} converges to KA(T).
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