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Existence results for some elliptic systems with perturbed gradient

Said Ait Temgharta, Hasnae El Hammara, Chakir Allaloua, Khalid Hilala

aLMACS, FST of Beni Mellal, Sultan Moulay Slimane University, Morocco

Abstract. In this paper, we consider the existence of weak solutions for some nonlinear elliptic problems
with perturbed gradient under homogeneous Dirichlet boundary conditions. We apply the Galerkin
approximation and the convergence in term of Young measure combined with the theory of Sobolev spaces
to obtain the existence of at least one weak solution u ∈W1,p

0 (Ω;Rm).

1. Introduction:

Let Ω denote a bounded open domain of Rn≥2. We denote by Mm×n, the set of m × n matrices with
reduced Rmn topology, i.e., if ξ ∈ Mm×n then |ξ| is the norm of ξ when regarded as a vector of Rmn. We
endowMm×n with the product

ξ : η =
∑

i, j

ξi jηi j.

The main aim of the this paper is to prove the existence of weak solutions to a class of nonlinear elliptic
problems of the following prototype−div(a(x,Du −Θ(u))) = f (x,u,Du) in Ω

u = 0 on ∂Ω,
(1)

where f : Ω × Rm
×Mm×n

→ Rm is a function assumed to satisfy some conditions (see below) and the
function a : Ω ×Mm×n

→Mm×n satisfies the following assumptions

(H0) a : Ω ×Mm×n
→Mm×n is a Carathéodory function.

(H1) The function a is strictly monotone, that is(
a(x, η −Θ(s)) − a(x, ξ −Θ(s))

) (
η − ξ

)
> 0,∀η, ξ ∈Mm×n, η , ξ.

(H2) As well as the growth and the coercivity assumptions

|a(x, η −Θ(s))| ≤ M(x) + |η −Θ(s)|p−1;
a(x, η −Θ(s)) : η ≥ α|η −Θ(s)|p − b0(x).
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Here,M ∈ L1(Ω), b0 ∈ Lp′(Ω) and α is positive constant. The function Θ : Rm
→ Rm×n is continuous such

that
Θ(0) = 0 and |Θ(x) −Θ(y)| ≤ CΘ|x − y| ∀x, y ∈ Rm,

where CΘ is a positive constant related to the exponent p and the diameter of Ω by

CΘ ≤
1

2diam(Ω)
.

We assume that f satisfies the following assumption

(H3) f : Ω ×Rm
×Mm×n

→ Rm is a Carathéodory function.

Moreover, the function f satisfies one of the following condtions:

(1) There exist 0 < γ < p − 1, 0 ≤ µ < p − 1, d0 ∈ Lp′ (Ω)
there holds | f (x, s, ξ)| ≤ d0(x) + |s|γ + |ξ|µ,
for a.e. x ∈ Ω and all (s, ξ) ∈ Rm

×Mm×n.

(2) The function f is independent of the third variable, x ∈ Ω
or, for almost and all s ∈ Rm, the mapping ξ 7→ f (x, s, ξ) is linear.

The problem (1) models several natural phenomena which appear in area of oceanography, turbulent fluid
flows, induction heating and electrochemical problems. We cite for example the following parabolic model
(see also [2]):
- Fluid flow through porous media: this model is governed by the following equation,

∂θ
∂t
− div

(
|∇φ(θ) − K(θ)e|p−2(∇φ(θ) − K(θ)e)

)
= 0,

whereθ is the volumetric content of moisture, K(θ) the hydraulic conductivity,φ(θ) the hydrostatic potential
and e is the unit vector in the vertical direction.
A known prototype of the operator a is defined by a(x,Du − Θ(u)) = |Du − Θ(u)|p−2(Du − Θ(u)) and is
called the generalized p-Laplacian operator. The problem (1) is a generalization of the following nonlinear
problem−div(|Du −Θ(u)|p−2(Du −Θ(u))) = f in Ω

u = 0 on ∂Ω,
(2)

studied in [3] by E. Azroul and F. Balaadich, they proved the existence of weak solutions when f ∈
W−1,p′ (Ω;Rm) by using Young measures and without any Leray-Lions type growth conditions. Dolzmann
et al. [15] investigated the existence of a distributional solution and Lorentz estimate for some p-harmonic

systems with a measure-valued right hand side , i.e., f = µ ∈ M(Ω;Rm), under the condition 2−
1
n
< p < n.

Cianchi and Maz’ya in their works [13, 14] discussed a global Lipschitz regularity, and they obtained a
sharp estimate for the decreasing length of the gradient for Dirichlet and Neumann problems associated
to −div

(
|Du|p−2Du

)
= f in Ω. In [19], Hungerbühler considered the following quasilinear elliptic system

under certain natural conditions on the function σ

−div σ(x, u, Du) = f in Ω, (3)

the author got some existence result by using the tool of Young measures and weak monotonicity over
σ. Many papers were written to investigate the existence of solutions to elliptic problems of the type (3)
by using classical monotone operator methods (See [1, 10–12, 17, 20, 21, 23] and references therein). We
address the reader to see [4–6] where Azroul and Balaadich have used the theory of Young measures for
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different kinds of nonlinear elliptic systems. The problem (1) with f independent of u and Du was treated
in [8], where the authors proved the existence of weak solutions under some conditions on the operator
A. The gol of the present paper is to establish the existence of solutions to the problem (1) and extend the
result of [8] by considering a general source term. The main tools are Galerkin method to construct the
approximating solutions and the theory of Young measures to identify weak limits when passing to the
limit.

Remark 1.1. A particular case when a(x, ξ−Θ(ν)) = |ξ−Θ(ν)|p−2 (ξ −Θ(ν)) and f (x, ν, ξ) = d(x)+ |ν|p−1 + |ξ|p−1,
our problem is reduced to the following generalized p-Laplacian system

−div
(
|Du −Θ(u)|p−2 (Du −Θ(u))

)
= d(x) + |u|p−1 + |Du|p−1, in Ω.

Remark 1.2. The hypothesis (H1) can be replaced by one of the following hypotheses:
(H1)′ For all x ∈ Ω and all u ∈ Rm, the map ξ 7→ a(x, ξ −Θ(u)) is a C1-function and is monotone, that is,

(a(x, ξ −Θ(u)) − a(x, η −Θ(u))) : (ξ − η) ≥ 0, ∀ξ, η ∈Mm×n.

(H1)′′ There exists a function (potential) B : Ω ×Mm×n
→ R such that a(x, ξ − Θ(u)) = (∂B/∂ξ)(x, ξ − Θ(u)) :=

DξB(x, ξ −Θ(u)), and ξ 7→ B(x, ξ −Θ(u)) is convex and C1-function for all x ∈ Ω and u ∈ Rm.
(H1)′′′ The operator a is strictly quasimonotone, that is, there exists c0 > 0 such that∫

Ω

(a(x,Du −Θ(u)) − a(x,Dv −Θ(u))) : (Du −Dv)dx ≥ c0

∫
Ω

|Du −Dv|pdx.

In the sequel, we need the following two technical lemmas

Lemma 1.3. [7]. For ξ, η ∈ RN and 1 < p < ∞, we have

1
p
|ξ|p −

1
p
|η|p ≤ |ξ|p−2ξ(ξ − η).

Lemma 1.4. For a ≥ 0, b ≥ 0 and 1 ≤ p < ∞, we have

(a + b)p
≤ 2p−1 (ap + bp) .

Before stating the main result, we give a definition of weak solutions for the elliptic problem (1).

Definition 1.5. A function u ∈W1,p
0 (Ω;Rm) is said to be a weak solution of (1) if∫
Ω

a(x,Du −Θ(u)) : Dφdx =
∫
Ω

f (x,u,Du) · φdx

holds for all φ ∈W1,p
0 (Ω;Rm).

Theorem 1.6. Assume that (H0) − (H3) hold. Then the Dirichlet problem (1) has a weak solution in the sense of
Definition 1.5.

Lemma 1.7. For a ≥ 0, b ≥ 0 and 1 ≤ p < ∞, we have

(a + b)p
≤ 2p−1 (ap + bp) .

The following is a breakdown of the current paper’s structure. In Section 2, we go through some basic
information about Young measures. Section 3 is dedicated to the existence of weak solution for approxima-
tion problem by applying Galerkin method, while Section 4 concerns the proof of the main theorem based
on the convergence in term of Young measure.
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2. Young measures and nonlinear weak-* convergence:

Throughout the paper, we denote by δc the Dirac measure onRn (n ∈N), concentrated at the point c ∈ Rn,
C0(Rm) denotes the set of functions φ ∈ C(Rm) satisfying lim

|λ|→∞
φ(λ) = 0. We know that (C0(Rm))′ =M(Rm)

and the duality pairing is given for ν : Ω→M(Rm) by

⟨ν, φ⟩ =

∫
Rm
φ(λ)dν(λ).

As stated in the introduction, the tool we use to prove the needed result is the Young measure. For the
reader not familiar with this concept we recall some basic notions and properties (See [9] and [18]).

Lemma 2.1. [18]. Let (zk)k be a bounded sequence in L∞(Ω;Rm). Then there exists a subsequence
(

denoted again

by (zk)
)

and a Borel probability measure νx on Rm for a.e. x ∈ Ω, such that for each φ ∈ C0(Rm) we have

φ(zk)→∗ φ weakly in L∞(Ω;Rm),

where φ(x) = ⟨νx, φ⟩ for a.e. x ∈ Ω.

Definition 2.2. We call ν = {νx}x∈Ω the family of Young measures associated to (zk). In [9], it is shown that if for all
R > 0

lim
L→∞

sup
k∈N
|{x ∈ Ω ∩ BR(0) : |zk(x)| ≥ L}| = 0,

then the Young measure νx generated by zk is a probability measure, i.e., ∥νx∥M = 1 for a.e. x ∈ Ω.
The following properties build the basic tools used in the sequel. If |Ω| < ∞, then there holds

zk → z in measure ⇔ νx = δz(x) f or a.e. x ∈ Ω. (4)

If we choose zk = Dwk for wk : Ω→ Rm, the above results remain valid.

Lemma 2.3. [3]. Assume that Dwk is bounded in Lp(Ω;Mm×n), then the Young measure νx generated by Dwk
satisfies:

1. νx is a probability measure.
2. The weak L1- limit of Dwk is given by ⟨νx, id⟩.
3. The identification ⟨νx, id⟩ = Dw(x) holds for a.e. x ∈ Ω.

We conclude this section by recalling the following Fatou-type inequality.

Lemma 2.4. [16]. Let φ : Mm×n
→ R be a continuous function and wk : Ω → Rm a sequence of measurable

functions such that Dwk generates the Young measure νx, with ∥νx∥M(Mm×n) = 1. Then

lim
k→

inf
∞

∫
Ω

φ(Dwk)dx ≥
∫
Ω

∫
Mm×n

φ(λ)dνx(λ)dx,

provided that the negative part of φ(Dwk) is equiintegrable.

3. Existence of weak solution:

The aim of this section is to use the well-known Galerkin method to construct approximating solutions.
Firstly, the Hölder inequality and the following Poincaré inequality (See [19], Lemma 2.2) are central to
establish the required estimates to prove the desired results. There exists a positive constant α such that

∥v∥p ≤
α
2
∥Dv∥p, ∀v ∈W1,p

0 (Ω;Rm) . (5)
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Now, consider the mapping T : W1,p
0 (Ω;Rm) → W−1,p′ (Ω;Rm) given for arbitrary u ∈ W1,p

0 (Ω;Rm) and all
φ ∈W1,p

0 (Ω;Rm) by

⟨T(u), φ⟩ =
∫
Ω

a(x,Du −Θ(u))Du : Dφdx −
∫
Ω

f (x,u,Du)φdx.

Lemma 3.1. T(u) is well defined, linear and bounded.

Proof. For arbitrary u ∈W1,p
0 (Ω;Rm), T(u) is trivially linear and (without loss of generality, we may assume

that γ = p − 1 = µ ) we can obtain,

|I1| ≤

∫
Ω

|a(x,Du −Θ(u))||Dφ|dx

≤

∫
Ω

M(x)|Dφ|dx +
∫
Ω

|Du −Θ(u)|p−1
|Dφ|dx

≤ ∥M∥p′ ∥Dφ∥p +
(∫
Ω

|Du −Θ(u)|pdx
) 1

p′

∥Dφ∥p

≤ ∥M∥p′ ∥Dφ∥p + 2
(p−1)2

p
(
∥Du∥pp + ∥Θ(u)∥pp

) p−1
p
∥Dφ∥p

=

(
∥M∥p′ + 2

(φ−1)2

p
(
∥Du∥pp + ∥Θ(u)∥pp

) p−1
p

)
∥Dφ∥p.

On the other hand, we have

|I2| ≤

∫
Ω

| f (x,u,Du)||φ|dx

≤

(
∥d0∥p′ + ∥Du∥p−1

p + ∥u∥p−1
p

)
∥φ∥p.

Since these two expressions are finite by our assumptions, T(u) is well defined. Finally we have

|⟨T(u), φ⟩| ≤ |I1| + |I2|

≤ C1∥Dφ∥p + C2∥φ∥p
≤ C3∥Dφ∥p,

thus T is well defined and bounded.

Lemma 3.2. The restriction of T to a finite linear subspace of W1,p
0 (Ω;Rm) is continuous.

Proof. Let X be a finite subspace of W1,p
0 (Ω;Rm) with dim X = r and (xi)i=1,··· ,r a basis of X. We consider in X,

the sequence
(
uk = ai

kxi

)
which converges to u = aixi in X. Hence uk → u and Duk → Du almost everywhere

for a subsequence still denoted by (uk)k. From the continuity of a and f , one can obtain that

a (x,Duk −Θ(uk))→ a (x,Du −Θ(u)) a.e. in Ω

and
f (x,uk,Duk)→ f (x,u,Du) a.e. in Ω.

Using the strong convergence of uk to u in X ana Lemma 1.7, we can infer that ∥uk∥p and ∥Duk∥p are
bounded. Now, in order to apply the Vitali Theorem, we need to show the equi-integrability of the
sequences

(
a (x,Duk −Θ(uk)) : Dφ

)
and

(
f (x,uk,Duk) · φ

)
. To do this, let E ⊂ Ω a measurable subset, then
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by the growth condition in (H0), we have

∫
E

∣∣∣a (x,Duk −Θ(uk)) : Dφ
∣∣∣ dx ≤

(∫
E
|M(x)|p

′

+ |Duk −Θ(uk)|pdx
) 1

p′
(∫

E
|Dφ|pdx

) 1
p

≤

∥M∥p
′

p′ + 2p−1

∥Duk∥
p
p︸ ︷︷ ︸

≤C

+cp
∥uk∥

p
p︸︷︷︸

≤C




1
p′ (∫

E
|Dφ|pdx

) 1
p

and

∫
E

∣∣∣ f (x,uk,Duk) · φ
∣∣∣ dx ≤ C

∥d0∥p′ + ∥uk∥
p−1
p︸ ︷︷ ︸

≤C

+ ∥Duk∥
p−1
p︸    ︷︷    ︸

≤C


(∫

E
|Dφ|pdx

) 1
p

.

Since
∫

E
|Dφ|pdx is arbitrary small if the measure of E is chosen small enough, then the equiintegrability of(

a (x,Duk −Θ(uk)) : Dφ
)

and
(

f (x,uk,Duk) · φ
)

follows. From Vitali’s Theorem, we conclude the continuity
of mapping T.

Lemma 3.3. The operator T defined above is coercive.

Proof. By taking φ = u in the definition of T, we have

⟨T(u),u⟩ =
∫
Ω

a(x,u,Du)Du : Dudx −
∫
Ω

f (x,u,Du)udx

≥ α

∫
Ω

|Du −Θ(u)|pdx −
∫
Ω

b0(x)dx −
∫
Ω

f (x,u,Du)udx.

Since
1

2p−1 |Du|p =
1

2p−1 |Du −Θ(u) + Θ(u)|p

≤
1

2p−1

[
2p−1 (|Du −Θ(u)|p + |Θ(u)|p)

]
≤ |Du −Θ(u)|p + |Θ(u)|p.

Using Hölder inequality, (5) and the assumption (H3), we deduce that∣∣∣∣∣∫
Ω

f (x,u,Du) · udx
∣∣∣∣∣ ≤ ∫

Ω

d0(x)|u|dx +
∫
Ω

|u|γ|u|dx +
∫
Ω

|Du|µ|u|dx

≤ ∥d0∥p′∥u∥p + ∥u∥
γ
γp′∥u∥p + ∥Du∥µµp′∥u∥p

≤
α
2
∥d0∥p′∥Du∥p +

(
α
2

)γ+1
∥Du∥γ+1

p +
α
2
∥Du∥µ+1

p .

From (5) and the choice of the constant CΘ in the assumption on Θ, we obtain

⟨T(u),u⟩ ≥
α

2p−1

∫
Ω

|Du|pdx − α
∫
Ω

|Θ(u)|pdx −
∫
Ω

b0(x)dx −
α
2
∥d0∥p′∥Du∥p −

(
α
2

)γ+1
∥Du∥γ+1

p −
α
2
∥Du∥µ+1

p

≥
α

2p−1

∫
Ω

|Du|pdx − αCp
Θ

∫
Ω

|u|pdx −
∫
Ω

b0(x)dx −
α
2
∥d0∥p′∥Du∥p −

(
α
2

)γ+1
∥Du∥γ+1

p −
α
2
∥Du∥µ+1

p

≥
α
2p

∫
Ω

|Du|pdx −
∫
Ω

b0(x)dx −
α
2
∥d0∥p′∥Du∥p −

(
α
2

)γ+1
∥Du∥γ+1

p −
α
2
∥Du∥µ+1

p .
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Hence
⟨T(u),u⟩ −→ ∞ as ∥u∥1,p →∞,

since p > max{1, γ + 1, µ + 1}.

In what follows, let us fix some k and assume that Xk has the dimension r and e1, . . . , er is a basis of Xk.
We define the map

G : Rr
→ Rr

β1

β2

...
βr

 7→

⟨T(βiei), e1⟩

⟨T(βiei), e2⟩

...
⟨T(βiei), er⟩


Lemma 3.4. G is continuous and G(β).β→∞ as ∥β∥Rr →∞, where β = (β1, . . . , βr)t and the dot is the inner
product of two vectors of Rr.

Proof. Let u j = β
j
i ei ∈ Xk, u0 = β0

i ei ∈ Xk. Then ∥β j
∥Rr is equivalent to ∥u j∥1,p and ∥β0

∥Rr is equivalent to
∥u0∥1,p and

G(β) · β = ⟨T(u),u⟩.

Lemma 3.3 gives G(β).β→∞when ∥β∥Rr →∞.

Lemma 3.5. For all k ∈N there exists uk ∈ Xk such that

⟨T(uk) , φ⟩ = 0 f or all φ ∈ Xk. (6)
and there is a constant R > 0 such that
∥uk∥1,p ≤ R for all k ∈N. (7)

Proof. From Lemma 3.4, it follows the existence of a constant R > 0 such that for any β ∈ ∂BR(0) ⊂ Rr we
have G(β).β > 0 and the topological argument [22] gives that G(x) = 0 has a solution x ∈ BR(0) . Therefore,
for each k ∈N there exists uk ∈ Xk such that (6) holds.

4. The convergence in term of Young measure:

Assertion 1
The sequence (uk) is uniformly bounded in W1,p

0 (Ω;Rm) for some p > 1, thus a subsequence converges
weakly in W1,p

0 (Ω;Rm) to an element denoted by u.
Proof.
we have ⟨T(u) , u⟩ → ∞ as ∥u∥1,p → ∞. Hence, there exists R > 0 with the property, that ⟨T(u) , u⟩ > 1
whenever ∥u∥1,p > R. Consequently, for the sequence of Galerkin approximations uk ∈ Xk which satisfy (6)
with φ replaced by uk, we get that (uk) is uniformly bounded in W1,p

0 (Ω;Rm).
Assertion 2
The sequence ak defined by ak := a(x,Duk − Θ(uk)) is uniformly bounded in Lp′ (Ω;Rm) and therefore equi-
integrable on Ω.
Proof.
By using the growth assumption (H2), we get∫

Ω

|a(x,Duk −Θ(uk))|p
′

≤

∫
Ω

M(x)dx +
∫
Ω

|Duk −Θ(uk)|p < ∞, (8)

by the boundedness of (uk)k in W1,p
0 (Ω;Rm) . Hence ak(x) is uniformly bounded in Lp′ (Ω;Rm).

Assertion 3
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The sequence (ak(x) : Duk)− is equi-integrable on Ω. Moreover, there exists a sequence (vk) such that vk → u in
W1,p

0 (Ω;Rm) and ∫
Ω

ak(x) : (Duk −Dvk)dx→ 0 as k→∞.

Proof.
For any measurable subset E of Ω and by the coercivity assumption, we have∫

Ω

|min(a(x,Duk −Θ(uk)) : Duk, 0)|dx ≤
α

2p−1

∫
E
|Duk|

pdx + α
∫

E
|Θ(uk)|pdx +

∫
E
|b0(x)|dx < ∞.

Then (ak(x) : Duk)− is equi-integrable.
We choose a subsequence vk which belongs to the same finite dimensional space Xk as uk such that vk → u in W1,p

0 (Ω;Rm).
By taking uk − vk as a test function in (6), we deduce that∫

Ω

a(x,Duk −Θ(uk)) : (Duk −Dvk)dx =
∫
Ω

f (x,uk,Duk)(uk − vk)dx

≤ ∥ f (x,uk,Duk)∥p′∥uk − vk∥p

≤ C∥uk − vk∥p.

Since uk − vk → 0 in W1,p
0 (Ω;Rm), then∫

Ω

a(x,Duk −Θ(uk)) : (Duk −Dvk)dx→ 0 as k→∞.

Assertion 4
The following div-curl inequality holds:∫

Ω

∫
Mm×n

a(x, λ −Θ(u)) : (λ −Du)dνx(λ)dx ≤
∫
Ω

∫
Mm×n

a(x,Du −Θ(u)) : (λ −Du)dνx(λ)dx. (9)

Proof.
We define the sequence

Jk := (a(x,Duk −Θ(u)) − a(x,Du −Θ(u))) : (Duk −Du)

= a(x,Duk −Θ(u)) : (Duk −Du) − a(x,Du −Θ(u)) : (Duk −Du)

=: Jk,1 + Jk,2.

By using the growth condition in (H1), (H0) and the Poincaré’s inequality, we get∫
Ω

|a(x,Du −Θ(u))|p
′

dx ≤ C + C′
∫
Ω

|Du|pdx < ∞ (10)

for arbitrary u ∈ W1,p
0 (Ω;Rm) , hence a(x,Du − Θ(u)) ∈ Lp′ (Ω;Mm×n). According to the weak convergence described in

Lemma 2.3, one can obtain

lim inf
k→∞

∫
Ω

Jk,2dx =
∫
Ω

a(x,Du −Θ(u)) :
(∫
Mm×n

λdνx(λ) −Du
)

dx = 0. (11)

Next, from Assertion 1, there exits a subsequence uk such that uk → u in measure. Since Θ is continuous then
Θ(uk)→ Θ(u) almost everywhere in Ω. In view of Lemma 2.4, one can conclude that

J : = lim inf
k→∞

∫
Ω

Jkdx

= lim inf
k→∞

∫
Ω

Jk,1dx

≥

∫
Ω

∫
Mm×n

a(x, λ −Θ(u)) : (λ −Du)dνx(λ)dx.
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Showing (9) is equivalent to proving that J ≤ 0. By virtue of Assertion 3, we deduce that

A = lim inf
k→∞

∫
Ω

a(x,Duk −Θ(uk)) : (Duk −Du)dx

= lim inf
k→∞

∫
Ω

a(x,Duk −Θ(uk)) : (Dvk −Du)dx

≤ lim inf
k→∞

∥|a(x,Duk −Θ(uk))|∥p′ ∥vk − u∥1,p = 0.

It follows that∫
Ω

∫
Mm×n

(a(x, λ −Θ(u)) − a(x,Du −Θ(u))) : (λ −Du)dνx(λ)dx ≤ 0.

Moreover, the monotonicity of the function a implies that the above integral must vanish with respect to the product
measure dνx(λ) ⊗ dx, hence

(a(x, λ −Θ(u)) − a(x,Du −Θ(u))) : (λ −Du) = 0 on suppνx.

Assertion 5
The sequence ak converges weakly in the space L1 (Ω;Mm×n) as k→ +∞ to the weak limit ā given by

ā(x) = a(x,Du −Θ(u))

and Duk converges to Du in measure on Ω, as k→ +∞.
Proof.
Using (9) and the strict monotonicity assumption (H4), we deduce that

(a(x, λ −Θ(u)) − a(x,Du −Θ(u))) : (λ −Du) = 0 a.e. x ∈ Ω, λ ∈ RN.

Then λ = Du(x) a.e. x ∈ Ωwith respect to the measure νx onRN. Therefore, the measure νx reduces to the Dirac measure
δDu(x). By virtue of Theorem ii), we deduce that Duk → Du in measure, then uk → u and Duk → Du almost everywhere
(up to a subsequence) in Ω. From the continuity of Θ and a one can deduce that

a(x,Duk −Θ(uk))→ a(x,Du −Θ(u)) a.e. x ∈ Ω.

From Assertion 2, ak is equiintegrable, then one can apply Vitali’s Theorem to get

a(x,Duk −Θ(uk))→ a(x,Du −Θ(u)) in L1 (Ω;Mm×n) .

Lemma 4.1. The function u is a weak solution to problem (1).

Now, we have all ingredients to pass to the limit and so to prove the main result. From the Assertion 5, we have

lim
k→+∞

∫
Ω

a(x,Duk −Θ(uk)) : Dφdx =
∫
Ω

a(x,Du −Θ(u)) : Dφdx,

for all φ
⋃

k∈N Xk.
Now, we focus our attention on the source term. Let start with the case (H3)(1), the continuity of f permit to deduce
that

f (x,uk,Duk) · φ→ f (x,u,Du) · φ

for all φ ∈ W1,p
0 (Ω;Rm) . From the growth condition in (H5)(i), we deduce the equiintegrability of

(
f (x,uk,Duk) · φ(x)

)
,

which implies by Vitali Convergence Theorem that, f (x,uk,Duk) · φ(x)→ f (x,u,Du) · φ(x) in L1(Ω). Therefore

lim
k→∞

∫
Ω

f (x,uk,Duk) · φ(x)dx =
∫
Ω

f (x,u,Du) · φ(x)dx, ∀φ ∈
⋃
k∈N

Xk.

Next, we consider the case (H3)(2), if the function f is independent of the third variable, then we can obtain

f (x,uk)⇀ f (x,u) in Lp′ (Ω).
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On the other hand, we assume that the mapping A 7→ f (x,u,A) is linear, for a.e. x ∈ Ω and all u ∈ Rm. Since f (x,uk,Duk)
is equiintegrable. We deduce that

f (x,uk,Duk)→
〈
νx, f (x,u, .)

〉
=

∫
Mm×n

f (x,u, λ)dνx(λ)

= f (x,u, .)o
∫
Mm×n

λdνx(λ)︸           ︷︷           ︸
=:Du(x)

= f (x,u,Du),

by the linearity of f .
It remains to show that ⟨T(u), φ⟩ = 0 for any φ ∈W1,p

0 (Ω;Rm), to complete the proof of Theorem 1.6.

Let φ ∈ W1,p
0 (Ω;Rm), the density of

⋃
k∈N

Xk in W1,p
0 (Ω;Rm) implies the existence of a sequence

{
φk

}
⊂

⋃
k∈N

Xk such that

φk → φ in W1,p
0 (Ω;Rm) as k goes to +∞. We conclude that

〈
T (uk) , φk

〉
− ⟨T(u), φ⟩ =

∫
Ω

a (x,Duk −Θ(uk)) : Dφkdx −
∫
Ω

a (x,Du −Θ(u)) : Dφdx −
∫
Ω

f (x,uk,Duk) · φkdx

+

∫
Ω

f (x,u,Du) · φdx

=

∫
Ω

a (x,Duk −Θ(uk)) : (Dφk −Dφ)dx +
∫
Ω

(a (x,Duk −Θ(uk)) − a (x,Du −Θ(u))) : Dφdx

−

∫
Ω

f (x,uk,Duk)
(
φk − φ

)
dx −

∫
Ω

(
f (x,uk,Duk) − f (x,u,Du)

)
φdx.

We take the limit as k goes to +∞, it follows that

lim
k→+∞

⟨T(uk), φk⟩ = ⟨T(u), φ⟩.

From Lemma 3.5, we deduce that ⟨T(u), φ⟩ = 0 for all φ ∈W1,p
0 (Ω;Rm).
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