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Abstract. In this present work, the existence and uniqueness of solutions for fractional pantograph differ-
ential equations involving Riemann-Liouville and Caputo fractional derivatives are established by applying
contraction mapping principle and Leray-Schauder’s alternative. The Mittag-Leffler-Ulam stability results
are also obtained via generalized singular Gronwall’s inequality. Finally, we give an illustrative example.

1. Introduction and fractional calculus

Fractional differential equations have recently been studied by many scholars, these equations will
be used to describe phenomena of real world problems. For more information, see the monographs
[1, 18, 20] and the references therein. Many interesting and important area concerning of research for
fractional differential equations are devoted to the existence theory and analysis of the solutions, see works
[1, 3, 17, 27, 29, 31]. Hybrid differential equations using fractional calculus have also been studied by
several scholars, for instance, see, [2, 10, 13, 22, 25]. Recently, several researchers have discussed the
existence, uniqueness and Ulam-stability of solutions for hybrid differential equations involving fractional
derivatives, for instance, see [2, 14, 19, 33]. In recent years, considerable attention has been given to
the study of existence, uniqueness and Ulam stability of solutions for sequential fractional differential
equations, we refer the reader to the monographs [24, 26, 28, 34] and thereference therein. The pantograph
type equation is considered as a special delay differential equation, it arises in quite different fields of pure
and applied mathematics such as number theory, dynamical systems, probability, electro dynamics and
quantum mechanics, see [9, 12, 32]. The classical form of the pantograph equation is given by the following
differential equation [6]:

z′ (t) = Az (t) + Bz
(
ηt

)
,

z (0) = z0,

0 ≤ t ≤ T, 0 < η < 1.

(1.1)
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In recent years, there are many scholars have discussed the existence, uniqueness and different types of
Ulam stability of solutions of the above equation invoving different fractional derivatives. For some recent
work on pantograph equation of fractional-order, we refer to [4, 5, 11, 15, 16, 30] and references therein.
In [6] the authors established existence and uniqueness of fractional pantograph equation with Caputo
fractional derivative of the form:

CDδz (t) = ψ
(
t, z (t) , z

(
µt

))
,

z (0) = z0,

0 ≤ t ≤ T, 0 < δ < 1, 0 < µ < 1,

(1.2)

where CDδ is the Caputo fractional derivative. On the other hand, in [7], the authors discussed the existence
and uniqueness for the fractional hybrid pantograph equation involving Riemann-Liouville fractional
derivative:

RLDδ

[
z (t)

φ
(
t, z (t) , z

(
ηt

)) ] = ψ (
s, z (t) , z

(
µt

))
,

z (0) = 0,

0 ≤ t ≤ 1, 0 < δ ≤ 1, 0 < η, µ < 1,

(1.3)

where RLDδ denote the Riemann-Liouville fractional derivative, φ ∈ C
(
[0, 1] ×R2,R\ {0}

)
and

ψ ∈ C
(
[0, 1] ×R2,R

)
.

Motivated by the aforementioned papers, in this article, we study the existence, uniqueness and Mittag-
Leffler-Ulam-stability of solutions for the following fractional hybrid pantograph equation with mixed
Riemann-Liouville and Caputo fractional derivatives:

RLDδ

[
CDλ

[
z (t)

φ
(
t, z (t) , z

(
ηt

)) ]] = ψ (
s, z (t) , z

(
µt

))
,

z (0) = 0, z (1) = 0,

0 ≤ t ≤ 1, 0 < η, µ < 1, 0 < δ, λ ≤ 1,

(1.4)

where RLDδ and CDλ denote the Riemann-Liouville and Caputo fractional derivatives,φ : [0, 1]×R2
→ R\ {0}

and ψ : [0, 1]×R2
→ R are given continuous functions. The operator RLDδ is the fractional derivative in the

sense of Riemann-Liouville [20, 23], defined by

RLDδz (t) =
1

Γ (n − δ)

(
d
dt

)n ∫ t

0
(t − s)n−δ−1 z (s) ds,n = [δ] + 1,

where Γ (.) is the Euler gamma function given by

Γ (δ) =
∫
∞

0
e−zzδ−1dz.

The operator CDλ is the fractional derivative in the sense of Caputo [20, 23], defined by

CDλz (t) =
1

Γ (n − λ)

∫ t

0
(t − s)n−λ−1 z(n) (s) ds,n = [λ] + 1,
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and the Riemann-Liouville fractional integral [20, 23] of order α > 0, defined by

Iαz (t) =
1
Γ (α)

∫ t

0
(t − s)α−1 z (s) ds, t > 0.

We recall the following lemmas [18, 23].

Lemma 1.1. Let α > ε > 0 and φ ∈ L1([a, b]). Then DεIαz(t) = Iα−εz(t), t ∈ [a, b] .

Lemma 1.2. For α > 0 and ε > −1, we have

Iα
[
(t − w)ε

]
=
Γ (ε + 1)
Γ (α + ε + 1)

(t − w)ε+α .

Also we recall the following lemmas

Lemma 1.3. [18] Let δ > 0 and z ∈ C (0, 1) ∩ L1 (0, 1) . Then the fractional differential equation RLDδz (t) = 0 has a
unique solution

z (t) =
n∑

i=1

citδ−i,

where ci ∈ R, i = 1, 2, ..,n and n − 1 < δ < n.

Lemma 1.4. [18] Let δ > 0. Then for z ∈ C (0, 1) ∩ L1 (0, 1) and RLDδz ∈ C (0, 1) ∩ L1 (0, 1) , we have

Iδ
[

RLDδz (t)
]
= z (t) +

n∑
i=1

citδ−i,

where ci ∈ R, i = 1, 2, ...,n,n = [δ] + 1.

Lemma 1.5. [18] For λ > 0, the general solution of the fractional differential equation CDλz (t) = 0 is given by

z (t) =
n−1∑
i=0

citi, ci ∈ R, i = 0, 1, 2, ..,n − 1 and n − 1 < λ < n.

Lemma 1.6. [18] Let λ > 0. Then

Iλ
[

CDλz (t)
]
= z (t) +

n−1∑
i=0

citi, ci ∈ R, i = 0, 1, 2, ...,n − 1,n = [λ] + 1.

In what follow, we need an important singular type Gronwall inequality.

Theorem 1.7. [21] For any t ∈ [0, 1) . If

y (t) ≤ m (t) +
n∑

i=1

ki (t)
∫ t

0
(t − s)νi−1 y (s) ds,

where all the functions are not negative and continuous. The costants νi > 0, ki (i = 1, 2, ...,n) are the bounded and
monotonic increasing functions on [0, 1), then

y (t) ≤ m (t) +
∞∑
j=1

 n∑
1′ ,2′ ,..., j′=1

∏ j
i=1

[
ki′ (t)Γ (νi′ )

]
Γ
(∑ j

i=1 νi′
) ∫ t

0
(t − s)

∑ j
i=1 νi′ −1 m (s) ds

 .
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Remark 1.8. For n = 2, if ν1, ν2 > 0, k1, k2 ≥ 0,m (t) is nonnegative and locally integrable on [0, 1) and y (t) is
nonnegative and locally integrable on [0, 1) with

y (t) ≤ m (t) + k1

∫ t

0
(t − s)ν1−1 y (s) ds + k2

∫ t

0
(t − s)ν2−1 y (s) ds,

then

y (t) ≤ m (t) +
∞∑
j=1

(
(k1Γ (ν1)) j

Γ
(
jν1

) ∫ t

0
(t − s) jε1−1 m (s) ds

+
(k2Γ (ν2)) j

Γ
(
jν2

) ∫ t

0
(t − s) jε2−1 m (s) ds

)
.

Remark 1.9. Under the conditions of Remark 1.8, let m (t) is a nondecreasing function on [0, 1). Then we have

y (t) ≤ m (t)
(
Eν1 [k1Γ (ν1) tν1 ] + Eν2 [k2Γ (ν2) tν2 ]

)
,

where Eν is the Mittag-Leffler function [1] defined by: Eν [w] =
∑
∞

j=1
wν

Γ( jν+1) ,w ∈ C.

The following proposition includes important findings that form the cornerstone of deriving the main
results in the current article.

Proposition 1.10. Let 0 < δ, λ < 1. If φ ∈ C
(
[0, 1] ×R2,R − {0}

)
and h ∈ C ([0, 1] ,R) , then, the solution of the

problem

RLDδ

[
CDλz (t)

[
z (t)

φ
(
t, z (t) , z

(
ηt

)) ]] = h (t) ,

z (0) = 0, z (1) = 0,

0 ≤ t ≤ 1, 0 < η, µ < 1, 0 < δ, λ < 1,

(1.5)

is given by

z (t) =
φ

(
t, z (t) , z

(
ηt

))
Γ (δ + λ)

∫ t

0
(t − s)δ+λ−1 h (s) ds

(1.6)

−tδ+λ−1φ
(
t, z (t) , z

(
ηt

))
Γ (δ + λ)

∫ 1

0
(t − s)δ+λ−1 h (s) ds.

Proof. Let z be a solution of the problem (1.5). Then, we have

RLDδ

[
CDλz (t)

[
z (t)

φ
(
t, z (t) , z

(
ηt

)) ]] = h (t) .

Now, applying the operator Iδ to both sides of the above equation and by Lemma 1.4, we can write

CDλz (t)
[

z (t)
φ

(
t, z (t) , z

(
ηt

)) ] = Iδ [h (t)] + atδ−1, (1.7)

where a ∈ R. Taking the Riemann-Liouville fractional q−integral of order λ to both sides of (1.7) and using
Lemma 1.6, we get

z (t) = φ
(
t, z (t) , z

(
ηt

)) [
Iδ+λ [h (t)] +

Γ (δ) a
Γ (δ + λ)

tδ+λ−1 + b
]
, (1.8)
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where b ∈ R. Using the conditions z (0) = 0 and z (1) = 0, we find that

a = −
Γ (δ + λ)
Γ (δ)

Iδ+λ [h (1)] and b = 0.

Inserting the values of a and b in (1.8) yields the solution (1.6).

2. Existence results

Let Z = C ([0, 1] ,R) denote a Banach space of continuous functions from [0, 1] into R with the norm

∥z∥ = sup {|z (t)| : t ∈ [0, 1]} ,

and the multiplication is defined by (zw) (t) = z (t) w (t) for all w, z ∈ Z.
By L1 ([0, 1] ,R) we denote the space of Lebesgue-integrable functions z : [0, 1]→ R with the norm

∥z∥L1 =

∫ 1

0
|z (t)| dt.

By Proposition 1.10, we define an operator Q : Z→ Z by

Qz (t) =
φ

(
t, z (t) , z

(
ηt

))
Γ (δ + λ)

∫ t

0
(t − s)δ+λ−1 ψ

(
s, z (s) , z

(
µs

))
ds (2.1)

−tδ+λ−1φ
(
t, z (t) , z

(
ηt

))
Γ (δ + λ)

∫ 1

0
(t − s)δ+λ−1 ψ

(
s, z (s) , z

(
µs

))
ds.

Obviously, the fixed points of operator Q are solutions of the fractional hybrid pantograph problem (1.4).

Before starting and proving the main results, we introduce the following conditions.
(C1) φ : [0, 1] × R2

→ R − {0} is continuous function and there exists a constant ω > 0, such that for all
t ∈ [0, 1] and z j,w j ∈ R, j = 1, 2,∣∣∣φ (t, z1, z2) − φ (t,w1,w2)

∣∣∣ ≤ ω (|z1 − w1| + |z2 − w2|) .

(C2) ψ : [0, 1]×R2
→ R is continuous function and there exists a constant ϑ > 0, such that for all t ∈ [0, 1]

and z j,w j ∈ R, j = 1, 2,∣∣∣ψ (t, z1, z2) − ψ (t,w1,w2)
∣∣∣ ≤ ϑ (|z1 − w1| + |z2 − w2|) ,

(C3) There exists A,B ∈ R∗+,where
∣∣∣φ (t, z1, z2)

∣∣∣ ≤ A and
∣∣∣ψ (t, z1, z2)

∣∣∣ ≤ B, for all t ∈ [0, 1] and z j ∈ R, j = 1, 2.
(C4) There exists a function ϕ ∈ L1 ([0, 1] ,R) , such that for all t ∈ [0, 1] and z j ∈ R, j = 1, 2,∣∣∣ψ (t, z1, z2)

∣∣∣ ≤ ϕ (t) .

The following uniqueness result is based on Banach’s fixed point theorem.

Theorem 2.1. Assume that conditions (Ci) , i = 1, ..., 3 hold. If the inequality

4 (Aω + Bϑ) < Γ (δ + λ + 1) , (2.2)

is valid, then the fractional hybrid pantograph problem (1.4) has a unique solution on [0, 1].
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Proof. We show that the operator Q is a contraction. Let z,w ∈ Z, then we have

|Qz (t) −Qw (t)|

≤

∣∣∣φ (
t, z (t) , z

(
ηt

))∣∣∣
Γ (δ + λ)

∫ t

0
(t − s)δ+λ−1

∣∣∣ψ (
s, z (s) , z

(
µs

))
− ψ

(
s,w (s) ,w

(
µs

))∣∣∣ ds

+tδ+λ−1

∣∣∣φ (
t, z (t) , z

(
ηt

))∣∣∣
Γ (δ + λ)

∫ 1

0
(t − s)δ+λ−1

∣∣∣ψ (
s, z (s) , z

(
µs

))
− ψ

(
s,w (s) ,w

(
µs

))∣∣∣ ds

+

∣∣∣φ (
t, z (t) , z

(
ηt

))
− φ

(
t,w (t) ,w

(
ηt

))∣∣∣
Γ (δ + λ)

∫ t

0
(t − s)δ+λ−1

∣∣∣ψ (
s, z (s) , z

(
µs

))∣∣∣ ds

+tδ+λ−1

∣∣∣φ (
t, z (t) , z

(
ηt

))
− φ

(
t,w (t) ,w

(
ηt

))∣∣∣
Γ (δ + λ)

∫ 1

0
(t − s)δ+λ−1

∣∣∣ψ (
s, z (s) , z

(
µs

))∣∣∣ ds.

So, thanks to (Ci), i = 1, ..., 3, we get

∥Q (z) −Q (w)∥ ≤
4 (Aω + Bϑ)
Γ (δ + λ + 1)

∥z − w∥ .

In view of condition (2.2), we infer that Q is a contraction operator. The proof is complete.

In the next result, we show the existence of solutions for the hybrid fractional pantograph problem (1.4)
by applying the following theorem.

Theorem 2.2. [8] Suppose that W is a non-empty subset of Z, which closed convex and bounded, Q1 : Z→ Z, and
Q2 : W → Z are two operators satisfying the following conditions:

1. Q1 is Lipschitizian with a constant ω,
2. Q2 is completely continuous,
3. z = Q1zQ2w⇒ z ∈W for all w ∈W, and
4. wB < 1, where B = ∥Q2 (W)∥ = sup {∥Q2 (z)∥ : z ∈W} .
Then the operator equation z = Q1zQ2z has a solution.

Theorem 2.3. Suppose that conditions (C1) and (C4) are valid. Further, if

4ω
∥∥∥ϕ∥∥∥L1 < Γ (δ + λ + 1) , (2.3)

then the fractional hybrid pantograph problem (1.4) has at least one solution on [0, 1].

Proof. We consider a subset W of Z given by

W = {z ∈ Z : ∥z∥ ≤ σ} ,

where σ =
2Λφ∥ϕ∥L1

Γ(δ+λ+1)−4ω∥ϕ∥L1
and Λφ = supt∈[0,1]

∣∣∣φ (t, 0, 0)
∣∣∣ .

Then in order to transform problem (1.4) into the operator equation z = Q1zQ2z, we need to define Q1
and Q2 as

Q1z (t) = φ
(
t, z (t) , z

(
ηt

))
, (2.4)

and

Q2z (t) =
1

Γ (δ + λ)

∫ t

0
(t − s)δ+λ−1 ψ

(
s, z (s) , z

(
µs

))
ds (2.5)

−
tδ+λ−1

Γ (δ + λ)

∫ 1

0
(t − s)δ+λ−1 ψ

(
s, z (s) , z

(
µs

))
ds.
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We shall show that the operators Qi, i = 1, 2 satisfy all the conditions of Theorem 2.2.
We start by showing that Q1 is a ω Lipschitzian operator on Z. Let w, z ∈ Z, then by (C1) , we have

|Q1z (t) −Q1w (t)| =
∣∣∣φ (

t, z (t) , z
(
ηt

))
− φ

(
t,w (t) ,w

(
ηt

))∣∣∣
≤ ω

(
|z (t) − w (t)| +

∣∣∣z (
ηt

)
− w

(
ηt

)∣∣∣)
≤ 2ω |z (t) − w (t)| ≤ 2ω ∥z − w∥ ,

Then

∥Q1 (z) −Q1 (w)∥ ≤ 2ω ∥z − w∥ , for all w, z ∈ Z.

Next, Q2 is completely continuous on W. We begin by ensuring the continuity of Q2 on W. Let {zn} be a
sequence in W converging to a point z ∈W. Then by Lebesgue dominated convergence theorem,

lim
n→∞

Q2zn (t) = lim
n→∞

(
1

Γ (δ + λ)

∫ t

0
(t − s)δ+λ−1 ψ

(
s, zn (s) , zn

(
µs

))
ds

−
tδ+λ−1

Γ (δ + λ)

∫ 1

0
(t − s)δ+λ−1 ψ

(
s, zn (s) , zn

(
µs

))
ds

)
=

1
Γ (δ + λ)

∫ t

0
(t − s)δ+λ−1 lim

n→∞
ψ

(
s, zn (s) , zn

(
µs

))
ds

−
tδ+λ−1

Γ (δ + λ)

∫ 1

0
(t − s)δ+λ−1 lim

n→∞
ψ

(
s, zn (s) , zn

(
µs

))
ds

=
1

Γ (δ + λ)

∫ t

0
(t − s)δ+λ−1 ψ

(
s, z (s) , z

(
µs

))
ds

−
tδ+λ−1

Γ (δ + λ)

∫ 1

0
(t − s)δ+λ−1 ψ

(
s, z (s) , z

(
µs

))
ds

= Q2z (t) .

Moreover, we show that Q2 (W) is a uniformly bounded and equicontinuous set in Z. First we prove the
uniform boundedness of the set Q2 (W) in Z.

For z ∈W and t ∈ [0, 1] , using (C4) , we can write

|Q2z (t)| ≤
1

Γ (δ + λ)

∫ t

0
(t − s)δ+λ−1

∣∣∣ψ (
s, z (s) , z

(
µs

))∣∣∣ ds

+
tδ+λ−1

Γ (δ + λ)

∫ 1

0
(t − s)δ+λ−1

∣∣∣ψ (
s, z (s) , z

(
µs

))∣∣∣ ds

≤

2
∥∥∥ϕ∥∥∥L1

Γ (δ + λ + 1)
,

which implies that

∥Q2 (z)∥ ≤
2
∥∥∥ϕ∥∥∥L1

Γ (δ + λ + 1)
.

On the other hand, we demonstrate that Q2 is an equicontinuous set in W. Let t1, t2 ∈ [0, 1] with t1 < t2 and
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z ∈W. Then we have

|Q2z (t1) −Q2z (t2)|

≤

∣∣∣∣∣∣ 1
Γ (δ + λ)

∫ t1

0

[
(t2 − s)δ+λ−1

− (t1 − s)δ+λ−1
]
ψ

(
s, z (s) , z

(
µs

))
ds

+
1

Γ (δ + λ)

∫ t2

0
(t2 − s)δ+λ−1 ψ

(
s, z (s) , z

(
µs

))
ds

∣∣∣∣∣∣
+

∣∣∣tδ+λ−1
1 − tδ+λ−1

2

∣∣∣
Γ (δ + λ)

∫ 1

0
(t − s)δ+λ−1

∣∣∣ψ (
s, z (s) , z

(
µs

))∣∣∣ ds.

Thanks to condition (C4), we get

|Q2z (t1) −Q2z (t2)| ≤

∥∥∥ϕ∥∥∥L1

Γ (δ + λ + 1)

[
(t2 − t1)δ+λ + tδ+λ2 − tδ+λ1

]
+

∥∥∥ϕ∥∥∥L1

Γ (δ + λ + 1)

∣∣∣tδ+λ−1
1 − tδ+λ−1

2

∣∣∣ .
Obviously the right hand side of the above inequality tends to zero independently of z ∈ W as t2 − t1 → 0.
Therefore, it follows from the Arzela-Ascoli theorem that Q2 is a completely continuous operator on W.

Next, we show that hypothesis (3) of Theorem 2.2 is satisfied. For z ∈ Z and w ∈W, where z = Q1zQ2w,
we get

|z (t)| = |Q1z (t)| |Q2w (t)|

≤

∣∣∣φ (
t, z (t) , z

(
ηt

))∣∣∣ [ 1
Γ (δ + λ)

∫ t

0
(t − s)δ+λ−1

∣∣∣ψ (
s,w (s) ,w

(
µs

))∣∣∣ ds

+
tδ+λ−1

Γ (δ + λ)

∫ 1

0
(t − s)δ+λ−1

∣∣∣ψ (
s,w (s) ,w

(
µs

))∣∣∣ ds
]

≤

∣∣∣φ (
t, z (t) , z

(
ηt

))
− φ (t, 0, 0)

∣∣∣ + ∣∣∣φ (t, 0, 0)
∣∣∣

×

[
1

Γ (δ + λ)

∫ t

0
(t − s)δ+λ−1

∣∣∣ψ (
s,w (s) ,w

(
µs

))∣∣∣ ds

+
tδ+λ−1

Γ (δ + λ)

∫ 1

0
(t − s)δ+λ−1

∣∣∣ψ (
s,w (s) ,w

(
µs

))∣∣∣ ds
]

≤

(
2ω |z (t)| + Λφ

) 2
∥∥∥ϕ∥∥∥L1

Γ (δ + λ + 1)
.

which implies that

∥z∥ ≤
2Λφ

∥∥∥ϕ∥∥∥L1

Γ (δ + λ + 1) − 4ω
∥∥∥ϕ∥∥∥L1

= σ.

This shows that condition (3) of Theorem 2.2 is satisfied. Finally, we have

N = ∥Q2 (W)∥ = sup {Q2 (z) z ∈W} ≤
2
∥∥∥ϕ∥∥∥L1

Γ (δ + λ + 1)

From above estimate, we obtain

ωN = ω
2
∥∥∥ϕ∥∥∥L1

Γ (δ + λ + 1)
< 1.
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Thus, all the conditions of Theorem 2.2 are satisfied and so, the operator equation z = Q1zQ2z has a solution
in W. In consequence, problem (1.4) has a solution on [0, 1].

3. Mittag-Leffler-Ulam-stability results

In this section, we consider the Mittag-Leffler-Ulam-Hyers stability and Mittag-Leffler-Ulam-Hyers-
Rassias stability for the hybrid fractional pantograph problem (1.4). For t ∈ [0, 1] , we give the following
inequalities:∣∣∣∣∣∣RLDδ

[
CDλz (t)

[
z (t)

φ
(
t, z (t) , z

(
ηt

)) ]] − ψ (
s, z (s) , z

(
µs

))
ds

∣∣∣∣∣∣ ≤ β, (3.1)

and ∣∣∣∣∣∣RLDδ

[
CDλz (t)

[
z (t)

φ
(
t, z (t) , z

(
ηt

)) ]] − ψ (
s, z (s) , z

(
µs

))
ds

∣∣∣∣∣∣ ≤ βθ (t) , (3.2)

where β is positive real number and θ : [0, 1]→ R+ is continuous function.

Definition 3.1. Problem (1.4) is Mittag-Leffler-Ulam-Hyers stable, with respect to Eδ+λ if there exists a real number
ϖ such that for each β > 0 and for each solution w ∈ Z of the inequality (3.1), there exists a solution z ∈ Z of the
problem (1.4) with

|w (t) − z (t)| ≤ ϖβEδ+λ [t] , t ∈ [0, 1] .

Definition 3.2. Problem (1.4) is Mittag-Leffler-Ulam-Hyers-Rassias stable, with respect to θEδ+λ if there exists a
real number γθ > 0 such that for each β > 0 and for each solution w ∈ Z of the inequality (3.2), there exists a solution
z ∈ Z of problem (1.4) with

|w (t) − z (t)| ≤ γθβθ (t) Eδ+λ [t] , t ∈ [0, 1] .

Remark 3.3. A function w ∈ Z is a solution of the inequality (3.1) if and only if there exists a function f ∈ C ([0, 1] ,R)
(which depend on w) such that∣∣∣ f (t)

∣∣∣ ≤ β, t ∈ [0, 1] ,

and

RLDδ

[
CDλz (t)

[
z (t)

φ
(
t, z (t) , z

(
ηt

)) ]] = ψ (
s, z (s) , z

(
µs

))
ds + f (t) , t ∈ [0, 1] .

Theorem 3.4. If conditions (Ci), i = 1, ..., 3 are satisfied, then the problem (1.4) is Mittag-Leffler-Ulam-Hyers stable

Proof. Let w ∈ Z be a solution of the inequality (3.1) and let us denote by z ∈ Z the unique solution of the
problem

RLDδ

[
CDλz (t)

[
z (t)

φ
(
t, z (t) , z

(
ηt

)) ]] = ψ (
s, z (s) , z

(
µs

))
ds,

z (0) = w (0) , z (1) = w (1) ,

0 ≤ t ≤ 1, 0 < η, µ < 1, 0 < δ, λ ≤ 1,

Applying Proposition 1.10, we can write

z (t)
φ

(
t, z (t) , z

(
ηt

)) = Iδ+λ [hz (t)] + a
Γ (δ)
Γ (δ + λ)

tδ+λ−1 + b.
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By integration of the inequality (3.1), we obtain∣∣∣∣∣∣ w (t)
φ

(
t,w (t) ,w

(
ηt

)) − Iδ+λ [hw (t)] − c
Γ (δ)
Γ (δ + λ)

tδ+λ−1
− d

∣∣∣∣∣∣
≤

β

Γ (δ + λ + 1)
tδ+λ ≤

β

Γ (δ + λ + 1)
. (3.3)

From these relations, we obtain that

|w (t) − z (t)|

≤ A

∣∣∣∣∣∣ w (t)
φ

(
t,w (t) ,w

(
ηt

)) − z (t)
φ

(
t, z (t) , z

(
ηt

)) ∣∣∣∣∣∣
≤ A

∣∣∣∣∣∣ w (t)
φ

(
t,w (t) ,w

(
ηt

)) − Iδ+λ [hw (t)] − c
Γ (δ)
Γ (δ + λ)

tδ+λ−1
− d

+Iδ+λ [hw (t) − hz (t)]
∣∣∣

≤ A

∣∣∣∣∣∣ w (t)
φ

(
t,w (t) ,w

(
ηt

)) − Iδ+λ [hw (t)] − c
Γ (δ)
Γ (δ + λ)

tδ+λ−1
− d

∣∣∣∣∣∣
+A

∣∣∣Iδ+λ [hw (t) − hz (t)]
∣∣∣ ,

where

hz (t) = ψ
(
s, z (s) , z

(
µs

))
and hw (t) = ψ

(
s,w (s) ,w

(
µs

))
,

and the constant A is defined in (C3).

Thanks to (C2) and (3.3), we get

|w (t) − z (t)|

≤
Aβ

Γ (δ + λ + 1)
+

2Aϑ
Γ(δ + λ)

∫ t

0
(t − s)δ+λ−1

|w (t) − z (t)| ds.

Now, applying Remark 1.8 and Remark 1.9, we obtain

|w (t) − z (t)| ≤
Aβ

Γ (δ + λ + 1)

(
Eδ+λ

[
2Aϑtδ+λ

])
, t ∈ [0, 1] .

So, the problem (1.4) is Mittag-Leffler-Ulam-Hyers stable.

Theorem 3.5. If conditions (Ci) , i = 1, ..., 3 are satisfied. Suppose there exists a function θ ∈ C([0, 1] ,R+) is
increasing and there exists γθ > 0 such that for any t ∈ [0, 1]

1
Γ (δ + λ)

∫ t

0
(t − s)δ+λ−1 θ(s)ds ≤ γθθ(t). (3.4)

Then the problem (1.4) is Mittag-Leffler-Ulam-Hyers-Rassias stable with respect to θEδ+λ.

Proof. Let w ∈ Z be a solution of the inequality (3.2). Using Remark 3.3, we can write∣∣∣∣∣∣ w (t)
φ

(
t,w (t) ,w

(
ηt

)) − Iδ+λ [hw (t)] − c
Γ (δ)
Γ (δ + λ)

tδ+λ−1
− d

∣∣∣∣∣∣
≤

β

Γ (δ + λ)

∫ t

0
(t − s)δ+λ−1 θ(s)ds.
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Let us denote by z ∈ Z the unique solution of the problem

RLDδ

[
CDλz (t)

[
z (t)

φ
(
t, z (t) , z

(
ηt

)) ]] = ψ (
s, z (s) , z

(
µs

))
ds,

z (0) = w (0) , z (1) = w (1) ,

0 ≤ t ≤ 1, 0 < η, µ < 1, 0 < δ, λ ≤ 1.

We have

z (t)
φ

(
t, z (t) , z

(
ηt

)) = Iδ+λ [hz (t)] + a
Γ (δ)
Γ (δ + λ)

tδ+λ−1 + b.

By (3.4) and (C2) , we have

|w (t) − z (t)|

≤ A

∣∣∣∣∣∣ w (t)
φ

(
t,w (t) ,w

(
ηt

)) − z (t)
φ

(
t, z (t) , z

(
ηt

)) ∣∣∣∣∣∣
≤ A

∣∣∣∣∣∣ w (t)
φ

(
t,w (t) ,w

(
ηt

)) − Iδ+λ [hw (t)] − c
Γ (δ)
Γ (δ + λ)

tδ+λ−1
− d

+Iδ+λ [hw (t) − hz (t)]
∣∣∣

≤
Aβ

Γ (δ + λ)

∫ t

0
(t − s)δ+λ−1 θ(s)ds

+
2Aϑ
Γ(δ + λ)

∫ t

0
(t − s)δ+λ−1

|w (t) − z (t)| ds

≤ Aβγθθ(t) +
2Aϑ
Γ(δ + λ)

∫ t

0
(t − s)δ+λ−1

|w (t) − z (t)| ds.

So, using Remark 1.8 and Remark 1.9, we get

|w (t) − z (t)| ≤ Aβγθθ(t)
(
Eδ+λ

[
2Aϑtδ+λ

])
, t ∈ [0, 1] .

Then, the problem (1.4) is Mittag-Leffler-Ulam-Hyers-Rassias stable.

4. Example

Let us consider the following problem

RLD
4
5

CD
6
7

 z (t)
1

13 tan−1 (t) z (t) + 1
13 cos z

(
2
3 t
)
+ 2

9




=
t

11
cos z (t) +

t
11

sin z
(

3
5 t
)
+ 1

11 t, t ∈ [0, 1] ,

z (0) = 0, z (1) = 0,

(4.1)

and the following inequalities∣∣∣∣∣∣∣RLD
4
5

CD
6
7 z (t)

 z (t)

φ
(
t, z (t) , z

(
2
3 t
)) 

 − ψ (
s, z (s) , z

(3
5

s
))

ds

∣∣∣∣∣∣∣ ≤ β,
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and ∣∣∣∣∣∣∣RLD
4
5

CD
6
7 z (t)

 z (t)

φ
(
t, z (t) , z

(
2
3 t
)) 

 − ψ (
s, z (s) , z

(3
5

s
))

ds

∣∣∣∣∣∣∣ ≤ βθ (t) ,

where

φ
(
t, z (t) , z

(2
3

t
))
=

1
13

tan−1 z (t) +
1

13
cos z

(2
3

t
)
+

2
3
,

ψ
(
t, z (t) , z

(3
5

t
))
=

t
11

cos z (t) +
t

11
sin z

(3
5

t
)
+

1
11

t,

For all t ∈ [0, 1] and z j,w j ∈ R, j = 1, 2, we have∣∣∣φ (t, z1 (t) , z2 (λt)) − φ (t,w1 (t) ,w2 (λt))
∣∣∣ ≤ 1

13
(|z1 − w1| + |z2 − w2|) ,∣∣∣ψ (t, z1 (t) , z2 (λt)) − ψ (t,w1 (t) ,w2 (λt))

∣∣∣ ≤ 1
11

(|z1 − w1| + |z2 − w2|) ,

and ∣∣∣φ (t, z1 (t) , z2 (λt))
∣∣∣ ≤ 32

39
= A, ψ (t, z1 (t) , z2 (λt)) ≤

3
11
= B.

Hence conditions (C1) and (C2) hold with ω = 1
13 and ϑ = 1

11 respectively.
Thus condition (2.2) reads

4 (ωA + ϑB) = 0.351 64 < Γ (δ + λ + 1) = 1.4934,

It follows from Theorem 2.1, that the problem problem (4.1) has a unique solution on [0, 1], and is Mittag-
Leffler-Ulam-Hyers stable with

|w (t) − z (t)| ≤ 1.2254β
(
E 58

35

[
0.14918t

58
35

])
, t ∈ [0, 1] .

Let θ (t) = t
1
2 . Then

I
4
5+

6
7 [θ(t)] = I

4
5+

6
7

[
t

1
2

]
=

1
2

√
π

Γ
(

117
70

) t
1
2+

4
5+

6
7 ≤

1
2

√
π

Γ
(

117
70

) t
1
2 = γθθ(t).

Thus condition (3.4) is satisfied with θ (t) = t
1
2 and γθ =

1
2

√
π

Γ( 117
70 ) . It follows from Theorem 3.5 problem (4.1) is

Mittag-Leffler-Ulam-Hyers stable with

|w (t) − z (t)| ≤
16
√
π

39Γ
(

117
70

)βt
1
2

(
E 58

35

[
0.14918t

58
35

])
, t ∈ [0, 1] .
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