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Nonlocal semilinear ®-Caputo fractional evolution equation with a
measure of noncompactness in Banach space

Abdellah Taqbibt?, M'hamed Elomari?, Said Melliani®

?Laboratory of Applied Mathematics and Scientific Calculus Sultan Moulay Slimane University, PO Box 523, FST, Beni Mellal, 23000, Morocco

Abstract. The aim of this work is to study the existence of solutions for nonlocal fractional differential
equations inclusions involving ®-Caputo fractional dirivative in Banach space. The proofs are based on the
noncompactness measure method. As application, we give an example is given to illustrate the theoretical
results.

1. Introduction

Let (X, ]| . I|) be a Banach space and A : D(A) — L be a densely defined linear operator. The aim of
this paper is to study the following semilinear fractional evolution problem with nonlocal conditions

(D3 u)®) = Au(® + 0u(0), 7Y =10,Al
Ou € \I’(T, y(’[)), (1)
(I u)(@) = p(u()) = o).

where CDgfp is the ®-Caputo fractional derivative of order A €]0,1[, A > 0, W is the multivalued function
and I(l): Y® is the d-Riemann-Liouville integral at order 1 — A.

Due to its huge applications in different fields such as physics, chemistry, engineering, finance and other
sciences, fractional calculus has become an indispensable branch of mathematics. As an extension of
the traditional integer calculus, which has the properties of an infinity memory and is hereditary. The
fractional calculus plays a crucial role to give a real modeling for many real-world phenomena, which
pushes researchers to study its qualitative aspects, in order to show the exact results. The study of this
theory of fractional calculus has developed considerably during the 19th and 20th centuries. To present a
common expression for various approaches of the fractional derivative, Almida in [1] tried to introduce a
function in the definition of the approach of Caputo and he succeeded in unifying the approaches of Caputo
and that of Hadamard, this type of fractional derivative is called ®-Caputo fractional derivative. In other
hand, the mathematical analysis is considered one of the fundamental mathematical domains, it has been
developing in recent years by an influx of results and theorems, especially the fixed point theory, which
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is considered as the beating heart in the search for solutions in the case of linear or nonlinear problems,
for more details see [14-16, 19, 20]. We follow the same strategy as in the case of the ordinary differential
equation of the first order, then we seek an equivalent integral equation and we define an operator of a
Banach space in itself, then we seek to show the existence of a fixed point under certain conditions see for
example[11, 12]. Morever there are several fixed point theorems, we seek to apply the one that is suitable
for each problem. In 1930, Schauder improved and generalized the existence and uniqueness problem of
Brower and insists on the continuous map on a convex and compact set unlike Brower who studies only
compactness because of their study which is performed on the topology. In recent years, many articles have
been devoted to the notion of noncompactness measure. This has been defined in several ways. Where
noncompactness measures have also proven very useful in metric fixed point theory, giving existence or
stability results for non-expansive and uniformly Lipschitz maps based on certain coefficients defined in
terms of such measures. This concept was initiated by the important work of Kuratowski [8]. In 1955, G.
Darbo, used the concept of noncompactness measure, to prove a theorem guaranteeing the existence of
fixed points of condensing operators [7]. This theorem has found an abundance of applications to prove
the existence of solutions for a wide class of differential and integral equations. It is worth mentioning that
Darbo’s theorem extends both the classical principle of Banach’s contraction and Schauder’s fixed point
theorem extended to noncompact operators [5].

The structure of this document is given in this order. In Section 2, we give some preliminaries, definitions
and results that we will need to show our main results. In Section 3, we show the existence of solutions for
the semilinear fractional evolution problem with nonlocal conditions (1) by introducing the noncompactness
measure. After that, we give a concrete example to illustrate our main results.

2. Preliminaries
This section deals with some preliminaries, definitions and properties of the ®-caputo fractional deriva-
tives and the measure of noncompactness. For more details, we refer the reader to [2, 9].
Let Y = [0, A]l, A > 0. We denote by O the set of all smoth functions ® : Y — R satisfying
®deC'(Y,R) and d'(t)>0 forallteX.
Definition 2.1. [2] Let ® € ©, A > 0and g € LY([Y, R) . The ®-Riemann-Liouville fractional integral at order A of
o is defined by
1 T
I[%0)(1) = == | @'(s)(@(1) — D(s))* " o(s)ds. 2
(100 = 15 [ @600 -0 ey @

Definition 2.2. [2] Let ® € ©, A > 0 and g9 € C""}(Y,R). The ®-Caputo fractional derivative at order A of ¢ is
defined by

1 T n-A-1 _[n
(CD3;®@)<T>=W fo D' (5)(P(1) — D(5))" " o (s)ds, (3)

where

@Eg](s) = (CD’L(S);_S) o(s) and n=EWN)+1,

and E(A) denotes the integer part of A.

Remark 2.3. In particular, note that

1) If O(t) = log(), then CDS;(D is the Caputo-Hadamard fractional derivative.
3) If O(t) = 7, then CDQ;CD is the Caputo fractional derivative.
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Remark 2.4. In particular, if A €]0, 1[, then we get

DM g(a) = ﬁ fo (@(1) - D(E) "/ (5)ds

and

CDQ;(DQ(t) 11 /\(I)(qi/((?))

Proposition 2.5. [2] Let o € C""}(Y,R) and A > 0, then

1) ‘DI o(v) = o(x).

n—1 []]

2) I D) o(t) = (® 7) = ©(0)).
j=0

3) I;fb : C — C is linear and bounded.

Remark 2.6. [2] Let o € C*(Y, R), then we get

L I®CDy®o(t) = o) +co  forall A €]0,1];
2. Igﬁ’ CD;}?@(T) = o(T) + co + c1(@(7) — D(0))  forall A €]1,2],
where ¢y, c1 € R.

Proposition 2.7. [2] Let t € Y and A > 11> 0, then

AD 1 _ I'(n) =
D (@) = SO = Famms () - 00)

1,0 _ o T _ n-A-
2) DyP(@(7) - ©(0)"" = -1 (D(1) — D(0))1™4 L.

3) D}P(@(1) - d(0)) =0, Yj<nel.

We give also the notations and definitions used along this document.

Let C(Y, X) be the space of Z-valued conctinous functions with the uniform norm topology

Iy llc=sup | y(7) |.

€Y

LP(Y, X) the space of X-valued Bochner intagrable functions endowed with the norm

lol=[ [ 1o r o]’

We consider the following set

Ci(Y,X) = {y e C(Y, ), hm T y(1) exists }

It is clear that C, (Y, L) is a Banach space of continuous functions with the norm is given by

Iy lic,= supft* ™ | y(7) |}.

€Y

Let J a subset of the space C,(Y, £), we define J, by
I, = {]//\/ VAS 5},

where
lim 7'~ y(1), ift=0;
7—0*

ya(r) =
T y(1), ift ey

6879

)

(8)
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Remark 2.8. It is clear that 3, is a subset of C(Y, Z).

Let
Yy :R—-> R (10)
207y ift>0;
r 77 4
T Pa(t) = (11)
0, if T <0.
Then
InPy(r) = (Y + (@' .y))(7); (12)
DY°y(t) = (¥a+ (25))(@), (13)

where * is convolution, (i.e, p*o(t) = fOT p(t — Q)Q(Q)de).
The following result is a invariant of the Arzela-Ascoli Theorem.
Lemma 2.9. [13]

I\ € C(Y, LX) is relatively compact & 3 C C(Y, L) is relatively compact (14)
In the rest of the article, we will need some definitions and results. For this we recall the following results
and definitions. Denote by B(Z) be the space of all bounded subsets in L.
Definition 2.10. [9, 10] Let a function & : B(X) — R*. We say that & is a measure of noncompactness in X if, for
every K € B(X) we have

&(x) = &(coK), (15)
where coX is a closed convex hull of K.

The Hausdorff measure of noncompactness is defined by:
X(K) = inf {C > 0 : K has a finite number of balls with radius < C}. (16)

Proposition 2.11. [9, 10]
1) if Ko C K, then x(Ko) < x(K1),  for all Ko, Ky € B(X).
2) x(KUu{b}) = x(K) foreveryb e , K € B(L).
3) x(K) = 0 is equivalent to the relative compactness of K.
4) x(Ko + 7G) < x(Ko) + x (%)
5) x(K U{K.}) = x(K) for every K. € B.(X), K € B(L).

Lemma 2.12. [4] Let {uy}nen- C LY(Y, Z) such that

| uu(t) IS x(T), foralln € N"and x € LYY, R"). (17)
Then the function x({tin}nen-) € LYY, RY) and
o [ @0, meNP <2 [ (i, n e 8)
0 0
Definition 2.13. [3] The one-sided stable probability density is given by

w sin(nmtd), 1t € (0,00). (19)

w,(@) = = Y (1) (@) - D(0)
n=1

Definition 2.14. [6] Let X be a subset of ©.. We say that X is contractible, if there exists an element ¥ € X and a
continuous function P : [0,1] x X — X with

PO,x)=x% and PA,x)=x, forallxelX. (20)

Theorem 2.15. [6] Let B be a convex compact banach subset of a banach space. if ¢ : E — E is with closed graph
and compact contractive values, then there exists a fixed point fi € P(fi).
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3. Main results

In this section we show the main results. Firstly we recall the lemma of a solution to the problem (1).
Let A generate a Cyp-semigroup equicontinuous Q(7), T € Rand L = max | Q1) || .
TE

Lemma 3.1. [17] Let p € CY(Y, X). A function u € CY(Y) is solution of problem

(CDgfpp)(T) = Au(t) + 0u(7), TeY;
o0 € V(T u(m), (21)
(L7 u)(@) = p(u()) (= po)-

if and only if y satisfies the following equation
D(7)-0(0)
MO =Sie@po+ [ Ria(@) - o0)EOF O, @)
0
where

S5)0(1)

Ri0(T)

VPR, (7).

1 fo ) M@(6) — ©(0))w1(6) QT (P(6) — D(0)))@’ (6)d6.

Proposition 3.2. 1. For any fixed 1 > 0, (S )\,q)(’[))
2. For u € X, we have

and (R/\lq)(’[)) are linear operators.

™0 0

1L
| Rio(ul < Ta+ A [ul.
L
[Spo(Du| < Xllul-

3. (S A’¢(T))r>() and (RA@(T))DO are strongly continuous for every t > 0, i.e forall 0 < 11 < 75 < A, we get

T}ig;z I Sho(t)p = Srp(t)ull = Tllij)l}z Il Ryo(t)p — Ryo(t2)u Il
= 0.

Proof. Lett € Y, we have
Rio(t) = 7' f A(®(6) - (0))wn(6) Q7 (P(6) — D(0)))P'(6)d6.
0

Then

|Rio(ul = o7 fo A(®(6) — (0))wn(6) Q7' (P(6) — D(0)))ud’(6)d6 |

IA

LIl [ A@0) - 00)re) )0 .
0
On the other hand, we know that

1

L‘ AGwA(G)q)’(G)dG = m,

SO
A1
| Ryo(Tu < Ta+h) lul. (23)
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From (23) it follows that
| S1,0(®(1) — ©O))u |

MR o(®(7) - ©(0))

L 1-1,0 _ A-1
< r(1+A)I (@) -20) |l
By Proposition 2.7, we get
|S10(00 - PO | < =T |u]
A = T(+A)
<
< Flel

Which imlies that
L
| Sro()u| < 1 ||, forallTeX.
O

Next, we will need the following assumption.

(H1) The multivalued map ¥ : ¥ X £ — X has nonempty convex compact values, W(z, .) is upper semicon-
tinuous and W(., u) has a strongly measurable selction.

(H2) There exist tow constants @ and § such that

ot w lI<a+pc ™ | ull, forall(r,u) € ¥ X X. (24)

(H?2’) There exists a function x € L1(Y, R*), g > % such that

X(W(t, K) < k(t)x(K), forall K € B(X). (25)

(H3) p : C4 — X is compact and continuous map such that
o) Isn lpll+y, forallueC(Y,X), (26)
where 11 €]0, #[ and y > 0.

Theorem 3.3. Let the assumptions (H1)-(H3). Moreover if

LA™ LA2-Mc, D(1)-D(0) .
( AT ) <1, where C; = fo (@(7) — D)1’ (6)d0,
then the problem (1) has a solution.
Proof. Let y € CA(Y, L) and S€(y) denote the set of all solutions of the following problem
(Dy"u)(0) = Au(r) + ou(x),  TE;
Ou € ‘P(T, y(r)), (27)
Ho = p(y()-

The proof is divided in several steps.
Step1: We will prove S(y) is bounded (if it is nonempty). Let u € S£(y), then from Lemma 3.1 we have

D(7)-D(0)
u(t) = Spo(T)po + fo Rp,a(P(1) — ©(0))0,(0)D'(0)dO, (28)
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Taking into account the expression of g ab the fact g, € \I’(T, [J(T)) together with assumption (H3), we get

m@ =

D(7)-D(0)
T8 o(D)p(a() + 7 fo Ri0(@®(1) — D(0))g, ()P (0)d0.

So,

@1 < T Sie(@pul) |
D(1)-®(0)
b [ R0 - ©(©)0.0)2'6) | do
0
Using Prposition 3.2, we derive

L Tlf/\

@1 < ———1pu0)|
D(7)-D(0) _
TRy fo (@)~ (0))"" | 2(6) | ' (O)0.
And form (H2), we have
1-A
L) | < LTA (n lu@ +y)
1= pO@-00) )
' F(LlT 0 Js (@@ - ®©) " (a+p 6" 1 (@) |}/ (0)d0
L N 1.1 1-A
< @+
1-4 O(7)-D(0) B
’ F(Lf 0 Jo (@)= @(@)) " (a+p 0" | u0) |} (0)d0
L N 1.1 1-A
< Tty
L 1-A D(7)-D(0) _
+ éﬁ“ﬂo (@) - 2(0))" @' (0)d0
LA O0-00) B
" ﬁﬁﬁno (@) - @(6)) 6" | w(6) | ' (0)d0

1-A

L L
< D@ 1+-

N aLt!™ c
AT(L+A) !
L,.L.l—/\ D(7)-D(0) -1
v L (0~ 0(0)) " 1 1a(0) | @/ (B)ae

ra+A2) Jo
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So,
L TliA CYC1
ol =3 —Ln[y I +/\)]
B LATI D(0)-P(0) o ,
oA ), (@@-20) 1@ 'O
< LAliA[ + aCy ]
= - T T+
BLAAA (1) ~0(0) . ,
taToraen ), (@@-2O) 1m®)] 'O
Set o )
— al
&(n) = A—Ln[y+ F(1+/\)]’
and

_ BLAA
T (A=LpTa+A)

By Gronwall’s lemma for singular kernaels, ther existe N, such that

B(1)-2(0) 1
@ < E+AN, fo £O)(@@ - o) |v©O)0

L A aCyq
< &+ AN, Cl/\—LT][y-i- r(1+/\)]
Finally
L Al-A aCq
< .
lille, < &+ ANy Gy + 5 75 (29)

Setp 2: We have to show that S€(y) is compcat contractive and closed graph. Let y € C(Y, L)) and let u
with pseudoderivative p, be a solution of

(DYPu)0) = Au() + ou(1),  TET;
ou € ¥(z, (1),
I u(t) = p(y())(= o).

if v with pseudoderivative g, be another solution and g = vy.
Let 6 € [0, 1]. We defined the following function

va(7), T € [0,0A];
PO, v)(T) = {
(T, 0OA)(T), T € [0A, A],
Where
D(BA)-D(0)
V(1) = TS (o + j; TR ,0(D(7) — (0))0,(0)P (0)dO

and

(T, 0A) (1) = TS e(T)o

D(BA)-D(0) 7
, f TR 0((7) - D(0)) 6 (B) (6)dO
0
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with
ov(1), T € [0,0A];
05(1) =
QH(T)/ TE [6A/ A]
Now, we have to prove that P(.,.) is continuous. Let
va(t+h) = 7S 0(1)o
D(1)-D(0)
+ f TRy o (D(T + h) — D(6))0,(0)D (6)d6O
0
D(7+h)-D(0)

" T Ry, 0(@(T + h) — B(6))0r(O) (6)d6
©(7)-0(0)

and

Pa(t + h) Tl_AS/\,(p(T)‘UO
D(T+11)—D(0)
+ f TRy o (D(T + h) — D(0))0,(0)D' (0)d6.
0

Then

O(7)-D(0)
va(t + h) (T +h) = f TR o(D(1 + h) — D(0))g, (0)D' (0)d0
0

D(t+h)-D(0)
+ f Tl_AR/\/q)(q)(T +h) — @(9))@17(9)@,(9)519
B(1)-D(0)
D(t+h)—D(0)
_ f TRy 0(@(c + h) — B(6))0, ()P (6)d6
0

D(7-+h)—D(0)
- ' Ry0(@(c + h) ~ B(6))] 0,(6) ~ 0:(6)| P (B)de.
D(7)-D(0)

And thus
lva(t+h) — ¥p(t+h)|< AT
D(t+h)-D(0)
| | Rao(@(x + 1) — ©(6))[,(6) - 6:(6)] | ¥'(6)d6.
D(7)-D(0)

and from Proposition 3.2, we get

- LAY
lva(t+h) - wh+mgra+M
D(T+h)-D(0)
f (@(T +h) — D(O)' " | 0,(6) — 05(6) | D' ()dO.
D(7)-P(0)
So,
lvi(z+h) — Va(t+h)||—=0,ash—0.

Consequently #(., .) is continuous.
On the other hand, it is clear
P(1,v)(1) = valt)

and

PO, v)(7) = pa(t),
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where
D(1)-D(0)
() = TS 0 (T)pio + f Ry 0(D(1) — B(0))0, (O)P (0)dO
0

Finaaly S%(y) is contractive.
We have to show that S€(y) is closed. From (H2), we get

a+plt " y(0) |
a +,B ” y ”C]—/\ .

loy(D) | <
<

Let

D(7)-D(0)
Un(7) = Spo(T)to + j; R),0(D(1) — D(0)) 04, (0)P'(0)d0.

Suppose that

tn(t) — u(7), uniformly on Y.

Since
lony(@ ] < a+Bllylic., -

Then g,,, € L*(Y, X) is precompact for any 7, and thus
On,y(T) — 0y(7), weakly in LMY, %),

because W(., y(.)) has compact values and it is almost USC. So it is easy to see that

D(1)—D(0)
u(x) = Sno(Do + fo Ry,o(@(7) — ©(6))g,(6) (6)d6.

Thus p is also a solution of

(Dy"u)(0) = Au() + ou(r),  TE;

ou € V(7 y(0),

I u(t) = p(y())(= o).
Therfore S(y) is compcat contractive. One can use the similare arguments as above to prove that S£(y)
has closed graph.

Step 3 : Existance an convex and compact k ¢ C(Y, £) such that S€(.) : k — k.
According to what is preceded, we have

D(7)-D(0)
pa() = TS o ()p(u() + 71 fo R),0(D(1) — ©(0))0,(0)D' (0)dO.
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And thus
LTl—/\
@1 < ——1p0)]
L D(7)-D(0) A1
1-A _ ,
+ TA+ ) fo ((D(T) <I>(6)) | 0,(0) | @'(0)dO
L 1-A
< = ly+nk)|
L D(7)—-D(0) 1
1-A — 1-A ’
+ T+ ) fo ((D(T) CD(@)) a+p 0" k| @'(0)do
LTl—A LnTl—/\
< 1 + k l
1-A
T et @
L D(7)—-D(0) 1
210-0) & B ,
S v A)ﬁk fo (CD(T) cI>(6)) ' (0)do.
So,

L Al—A 2(1-7)
Z + aCq ) k( n + LA C )
AT T+ A 1 T(1+A)

1-A7( v, 91
A L(X"’r(lm))

Loal-A  LA20-M)c
1| =5—+ r(1+/\)1

@ lle < A7

L qu"‘ LA20-Mcy

Since ( Tt ST ) <1, then for & > , we have that S€(.) : Fo — Fo, where Fy = EB

and B is the open unit ball in C, (Y, ).
Let §11 = SL(G,), then
gnﬂ C gn-

Now we define the following set R, (1) = {y(’c) T UE ?;n}, SO

B(1)-D(0) o0
Rpi1(7) = Sp,0(0)p(F) + f Ry0(@(1) — (0))( U o(0)) @' (0)d0.
0 k=1
Moreover according to the Properties 2.11 and (H2'), we obtain
D(1)-D(0)
H(Rr(0) < f Ra0(®(7) — D(6))k(B) (R, (6)) (6)d6,
0
since R,+1 C R, and x is a Hausdorff measure of noncompactness, then X(%nﬂ(’c)) < )((iRn(T)). And thus
D(1)-D(0)
f R),0(P(7) — ©(6))x(0)x (R ()P (6)dO
0
has a limit as well as )((‘RO(T)) = R(7), and this
D(1)-D(0)
M%) < f Ry 0(®(x) - B(0))(6)x(R(O)P' (O)dO.
0
Consequently )((SR(T)) < d(t), where

D(1)-D(0)
d(t) = f R),0(D(1) — ®(0))x(0)d(0)D’(0)dO. (30)
0
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Since (30) has a unique solution d(7) = 0. So, R, is a bounded convex and compact subsets of C(Y, L) and
from Lemma 2.9, then &, is a bounded convex and compact subsets of C,(Y, ). Evidently S£(y) : k — K,

where -
k=)

n=1

Finally from Theorem 2.15, then S¥(.) admet a fixed point

y € SLy().
Which is a solution of (1). [

4. Examples

we give a nontrivial example to illustrate our main result. Let £ ¢ R" with dX is smooth boundary,
Y = [0, 1] and Lebesgue measure o(X). Consider the Following problem

L) = L5 € [Hi( y, um ), Hol y i@ )], (my) €<%
72 j=

31
1 = (i ox, v, 6,000, )dc)do, Gh
(T, y) =0, yedxr, T € \{0,1}.
I}
Where p: Y X LI(X) —» R", fi= . |is a vector such that ) | ii; |= %, H;: Y XX xR* — R* such that
=1 :
Xm

Hl(T/ Y, (u(T/ y)) < H2(T’ Y, H(T/ y))’
<

Jda,>0, |Hitry wzy)l alul+p,
Vyu = (%, cee, (%) and ¢ is continuous such that

Ay,n>0 ey zulsnlul+y.
We define an operator A by

n
- By
Au=hmV,u= E hii—.
H yH = Jay],
with th domain

D(A) = {y €x, ﬁvyy}

Thon from [18] the operator A is the infinitesimal generator of the equicontinuous Co-semigroup P(7)
define by

Pry(y) = v(y + T ).

The equations (31) can be reformulation as the problem (21), where ®(7) = 7,

Wit = | ) kHi(ty, p( y)ightQ - KH(Ty, u(r, ).

ke[0,1]

and

o = [ ([t e.u, 000, yes
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Then W has nonempty convex and compact values. Moreover the hypothesis (H2') is verified.
On the other hand if we suppose that for every C > 0, there exists a function f; € LI(Y X £ X & x R*,IR")
such that

| (T, y1,2, 1) — (T, Y2, 2, W) IS fo(T, y1, Y2, W),
forall (t,y1,z, 1), (T, y2,2z, 1) € Y X LX X R* with | u |[< Cand

lim f ffc(’c, Y1, Yo, £)tdtdt = 0, uniformly on v, € X.
n=v2 Jy Jx

Then, by using Lemma 4.1 and Lemma 4.2 of chapiter 5 in [18], we show that p : LY — L7 is defined and
completely continuous. So, the assumptions (H1)-(H3) are satisfied. Finally let (1] + ﬁ) < %ﬂ), then
from Theorem 3.3, then the prblem (31) has a solution.
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