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Compactness of boundary value problems for impulsive
integro-differential equation
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Abstract. In this paper, we establish sufficient conditions to show the compactness of solution set of
boundary value problems for impulsive integro-differential equation using y-Hilfer fractional operator in
a appropriate Banach space. The method we use to show our result is based on fixed point theorems for
Meir-Keeler condensing operators via measure of non-compactness, an example is presented to illustrate
our method.

1. Introduction

The concept of fractional calculus has tremendous potential to change the way we see the model.
Several theoretical studies showed that some systems in physics and medicine are governed by fractional
differential equations [21, 22, 26]. The effectiveness of fractional calculus in many scientific fields has
motivated researchers to the theoretical study of differential problems, see [1, 6, 12, 17, 19, 23-25].

The class of impulsive fractional differential equations is distinguished from others by the modeling of
phenomena which undergo distortions, in particular in the field of medicine and physics, see [5]. In the
references [2, 7, 15], the authors are interested in the study of impulsive differential equations involving the
derivative of Riemann or Hilfer.

Recently, many interesting works have appeared in the study fractional differential equations on Banach
spaces, which resides in the existence and uniqueness results by using fixed point theorems and some basic
tools from functional analysis [13, 14]. One of the properties of solutions is the compactness of solution set,
Recently, this property have been studied by many researchers for certain differential problems considered,
see [10, 11, 16].

In this present work, we consider the following terminal value problem for impulsive fractional integro-
differential equation

@ [P0 = fEYO 3 YO), te k= (bl k=0 m
y(L) = Mand Ayl = Ji(uE)), k=1, ,m,

where D%#¥ denote the 1)— Hilfer fractional derivative of ordr0 < @ < land type0 < B < 1,y = a+p(1-a),
5 > 1 —7y. The operator 3% denotes the left-sided ¢— Riemann-Liouville fractional integral of order 5,
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f : (c,L] x E* - E a function satisfying some specified conditions, , k = 0,...,m are pre-fixed points
satisfying tp = ¢ < t; < --- <t < tyq1 = L, E is a Banach space with the norm ||.||, Jy : E — E,
3, 7))

]\/f € E ¢ e Clc, L],Il?*? satisfies {’(t) > 0, for all t € [c,L] and A, yyl;, = M% — y(t,), where
Sy = limes SV Y0, y() = limyee y(8) and yy,p(8) = lime e (p() — $(8) 7 y(8).

The present work is ordered as follows: to make the reader understand our problem, we give in section
2 some definitions, lemmas and basic results. Next, in the section 3, we present our main results by
applying the fixed point theorem combined with the technique of measure of non-compactness to show the
compactness of solution set of Problem (P). Finally an example to reinforce our work is presented in the
section 4.

2. Background and basic results

We introduce in this section some notation and technical results which are used throughout this paper.
Let C([a, D], E) be the space of E-valued continuous functions on the interval [4,b] C R endowed with the
following uniform norm topology:

llulleo = sup{llu(®)ll, t € [a, b]}.

Let C1-,([a, b], E) be the Banach spaces of functions from the interval (g, b] into E which is defined as:

Ciyp((@,b], E) = {u € C(la,b, E) = (p() = (@) u() € C(la, b], B)}.
A norm in this space is given by

(WY(t) = @)

lulle,,, = sup -2 S
T o W) = P@)

In the following, for all n > -1, we pose W,(r,s) = (Y(r) — (s))", for all s,r € [c,L] with r > s and

\I’:] = max{W¥,(ts1, &), k=0,...,m}.
We consider the following Banach spaces

llu(Bll-

PC1yp(le, LLE) = {y:[c,L] > E: yi € Croyy(lte, traal, E), k= 0,...,m with
yt) = yt) k=1,...,ml,

with the norm
Iyllpc,, = Jmax yklly,u.

yeen

where y is the restriction of y to (t, tx+1].
For any subset N of C1-,,y([c, L], E), we put N, y, =: {u,,y, u € N}, where

\yl—}/(tl tk)u(t)/ lft € (tk/ tk+1]
(tdy, g )i(£) = lim W1y (¢, tu(h), it = t,
—k

where (uy,y)x is the restriction of u,,y on [f, ti1],
Let us now give the definition of the measure of non-compactness in the sense of Kuratowski and its
properties. For all G € E, we denote by S,(G) the set of all bounded subsets of G.

Definition 2.1. [8, 18] Let D € Sy(E). The Kuratowski measure of non-compactness 3 of the subset D is defined as
follows:
(D) = infle > 0 : Q admits a finite cover by sets of diameter < ej.
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Lemma 2.2. [8, 18] Let A, B € Sy(E). The following properties hold:

(i1) S(A) = 0if and only if A is relatively compact,

(ir) S(A) = S(A), where A denotes the closure of A,

(i3) S(A+ B) < 9(A) + 3(B),

(iy) A C Bimplies 9(A) < 9(B),

(i5) 9(a.A) = |al.9(A) foralla € R,

(ig) S({a} UA) = 3(A) foralla € E,

(i) S(A) = 9(Conv(A)), where Conv(A) is the smallest convex that contains A.
Lemma 2.3. [16] Let D € Sy(E) and € > 0. Then, there is a sequence {u,}nen C D, such that

I(D) <29({pn,m e N}) + ¢

Lemma 2.4. [18] If D is a equicontinuous and bounded subset of C([a, b, E), then 9(D(.)) € C([a, b], R*)

b b
9c(D) = max (D), s({ f w(t)dt:weD})S f S(D(t)dr,

where D(t) = {w(t) : w € D} and S¢ is the non-compactness measure on the space C([a, b], E).

We denote by Sk b and ¥, , the Kuratowski measures of non-compactness defines respictively on C1-, 4 ([t tx+1], E)
and PC1-,y([c, L] E),k=0,.

Lemma 2.5. [18] For all bounded subset D of PC1-,,4([c, L], E), we have

8y4(D) = max 9 ,(Dy),

where Dy is the restriction of D on (tx, txs1].

Definition 2.6. [4] Let k be an arbitrary measure of non-compactness on E and G be a nonempty subset of E . Let A
be an operator from G to G. A is said Meir-Keeler condensing operator if

Ve >0, dk(e) > 0,VD € 5p(G) : e < k(D) < ¢ + k = k(AD) < e.

Theorem 2.7. [4] Let x be an arbitrary measure of non-compactness on E and G a closed, bounded and convex subset
of E. Let A be an operator from G to G, assume that A is a Meir-Keeler condensing operator and continuous, then the
set {w € G : A(w) = w} is nonempty and compact.

We begin with some definitions from the theory of fractional calculus.

Definition 2.8. [19, 27] Let £ be an integrable function defined on (a, b],

(i) the Y-Riemann- Liouville fractional integral of order a > O of the function { is defined by

S
£(t) F( )f Y (5)Wo-1(t, 5)C(s)ds,
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(ii) the Y-Riemann- Liouville fractional derivative of order o > 0 of the function € is defined by

1
T(n—a) (¢ 0 dt) (f Y () Wi-a-1(t, s)(s)ds |,

where T is the gamma function defined by I'(x) = fooo tle7tdt (x > 0) and n = [a] + 1 ([a] represents the
integer part of the real number ).

RL Z):lkp h(t) =

Definition 2.9. [19,27] Let ¢ € C'([a, b, E) a functions such that ¢ (t) > 0, for all t € [a,b]. The y-Hilfer fractional
derivative of a function € of order 0 < a < 1 and type 0 < p < 1 is given by

1 d

H By — xp(l-a)y
Dt =3 (tp(t)dt

) JA-PA=)Y () = FPA-DYRLDY Y p(p),

where y = a + (1 - a).
Lemma 2.10. [19] Let o, p € R}, and t > a. We have then

. ~Q, T
(i1) \SZ+¢\I]p—1(t/ a) = r(;ip) \ya+p—1(t1 a).

(ix) MNPV, 1 (ta) = Wy aa(ta), 0 <a <1, p>1,

We consider the following spaces
Cy_,,([a,b]) = {u € Croyy([a,b]), *-D) 1 € C1-y ([, b)),

C)l/ Y. w([cl L]) = {u € Pcl—)/,lp([cl L]) : RL‘DZ{lpuk € Cl—)/([tk/ tk+1])/ k = 0/ e /m}/

and

pc[lx ﬁv W

(le,L]) = {u € PC1yple, L) = "D up € Coy ([t tria D), K =0, .
From the definition of HZ)“’ﬁ ¥ and since 3 fl_a)’w is defined from Ci—y ([t ts1]) into Crioy ([t tsal), k =

0,...,m, we have PC}_, w([c L) c ey’ (e 1),

Lemma 2.11. [20]Let0<a <1, 0<p<landy=a+p—ap. Ifo €C]_[a,b]), then
VD=3 DN @

and
D3 1/1@01 Yo = fol_a)a).

Lemma 2.12. [20] Let w : (a.b] — E be a function such that w(.) € C1-y,y([a, b]). Then, a function y € c/

7o, b)

is a solution of linear fractional differential problem:
HOY Yy = w(t), 0<a<1,0<p<1;
“”wy(m)—a)o y=a+p—ap.

if and only if y satisfies the following integral equation:

wO\P)/—l (t/ l/'l)

=10y T T

f ' (5)W o1 (t, s)w(s)ds.
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Lemma 2.13. Leth: (c,L]X — E bea function such that h(.) € C1—, y([tx, trs1) kK =0,...,m. Ify € SDC’{_W([C, L)]).

Then, y is a solution of the following problem

HD?ﬁ/wy(t) = h(t)/ te (tm—k/ tm—k+1]/ k= 0/ s m
m-k

y(L) =Mand Ay yyls, . = Jn-k(Yyp(t, ), k=1,...,m
if and only if y satisfies the following integral equation:

%(M—“‘W(L)) s [V OWan (s ta(s)ds, ift e,
0 = %(M T 30 h(tmi1) = T TmiCyy (8_))
+i ftmszp (s)\I/a_l(t,s)h(s)ds, ift € Ly,
k=1,...,m

Proof. Assume y satisfies the problem (2.1)-(2.2). We want to prove that y verified (2.3).
If t € (tw, tms1], we have HD¥PYy(t) = h(t), from Lemma 2.12, we obtain

<~1+} 2 y(th)
v = ) )f¢ Worrt h(s)s
Since y(L) = M, we obtain
mlz)/l}’y(t ) Y M“ph
\yl—y(tmﬂr tn)T(y) VT (L)

So,
\Ij)/—l (t/ tm)
‘P)/—l (tm+1/ tm)

If t € (ty-1, tm], then, from Lemma 2.12, we get

_ _~xay 1 t ’
y(®) = (M= 37Vh(L)) v ft ’1/; (S)W at (5, tm)hi(s)ds.

<~1 vy (t+ 1) "
y() = HFT‘I’;@(E tm-1) + T J, Y (5)Wq-1(t, s)h(s)ds.
By Equations (2.2) and (3.4), we have
3.0 o N

‘1’17y(fm,tm71)r()/) =M-3Vh(L) - T h(tm) = Ty (£3,))-

So,
—1(t, t— t
y() = (M= T30 = 17 hit) = T, (£1) ’f(ﬁ _11)) t e f Y/ () Wanas, ta)h(s)ds.

If t € (ty—2, tm-1], then. By Lemma 2.12, we have

\py—l (i’, tm—Z) 1 t ,
\I, 1(t 1 t 2) r(a) ; l)[) (s)\yﬁé—l(sl tﬂl—l)h(s)ds‘
r= m—L1s+m— m-2

y(®) = (Y(tn1) = 377 hltn))

By Equations (2.2) and (2.5), we have

2

y—l(tm—lr tm—2) F(O‘) [

! Wt b ¢
by =M=y 53 m_l-“)—me_i(yy(t;_,-))]q, oD L g, s
i=0

i=0

2.1)

(2.2)

2.3)

(2.4)

(2.5
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If t € (ty—k, tm-k+1], using, again, Lemma 2.12, by recurrence, we find

W, _1(t, t—
y(t) = Zfs“%(tm 1) = me 6 | i) f 0 (5)Worr (£ 5)h(s)ds.

y—l(tm—lrtm 2 F(O() [

Conversely, assume that y satisfies the impulsive equation (2.3). If t € (t,, ty41], then y(L) = M and using
the lemma 2.12, we get

HO{ PV y(t) = h(t), for each t € (ty, tus].
By recurrence. If t € (ty—k, tm—r+1], k = 1,...,m and using the lemma 2.12 again, we get
HOMPVy(t) = h(t), for each t € (tyg, g1 ]-
Also, we can easily show that

A}/,l/}ylt=fm,k = IM*k(y)/(t:,—l_k))l k = 0/ e, m = ]-
O

3. Existence and compactness of solution set

Suppose that the function f : (c,L] X E> — E verifies: f(.,u(.),v(.) € PC%’ yw([c, L)), for all u(.),v(.) €

PC1-([c,L]), f(.,0,0) € C([c, L], E) and there exists A, B € R* and A > 1 -y such that
(Hy) Forany u,v,u,v € E:

If(t,1,0) = F(t,5,D)|| < AWA(E to)llu — Tl + Bllo — 7|, forallt € I, k=1,...,m
(Hz) For each nonempty, bounded set Q c C1-, y([c,L]), forall t € I,k =0,...,m, we have
8(f(t,Q), 3,7 QW) < AW, tk)S(Q(t))) +BS(3, V),

where 3,V Q(t) = {37 y(t), y € PC1y,4([c, LD}, k=0,...,m.
Suppose that the functions Ji : E = E, k =1,...,m, are continuous and there exists C € R* such that

(H3) Foranyu € E :
k@Il < Cllull, k=1,...,m

(Hy) For each nonempty, bounded set QO  PC1-, y([c, L]), we have
8(JQw) < co(Qw), k=0,...,m.
(Hs)

mC‘I’;_yl"(a +1)+(m+2)(AV ,, + BTV ) <T(a+1),

r'y)

where T = m

Our result concerning the existence and compactness of solution set of the problem (P) for which we have
used the fixed point theorem of Meir-Keeler is as follows

Theorem 3.1. We assume that the hypotheses from (Hy) to (Hs) are satisfied, Then the solution set of problem (P)
is nonempty and compact. Moreover its solutions belong to PCi/_V ([c, L)) c PpCP 15y, w([C, L)).
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Proof. First, we prove the existence of the solutions in the space $C1-,y([c, L], E). Consider the operator
N :PC1-yy(lc, L], E) = PCi1y,y([c, L], E) defined by

\Ily—l (t/ tm—k)

},7] (tm—k+1r tm—k)

Ny(f)—[ ZS‘“”f(tm i1, Yltr-isn), 3 (b z+1)))—ZIm (Walty )| X

Fr S O 10,5 s

ty

with t € L = (ty—t, tm-k+1] kK = 0,...,m. First, we prove the existence of the set of fixed points of N is
included in PC1-, y([c, L], E)

From the definition of the operator N and Lemma 2.13, we see that the fixed points of N are solutions of
Eq. (2.3). For this reason, it suffices to verify the axioms of Theorem 2.7, it is done in four steps.
First step. We start to prove that N is continuous. Let ¢ > 0 and {yu}uen — y in PC1yy([c, L], E).
The hypothesis (Hy) and (Hj3) confirm the existence of an integer m € IN such that, for all n > m and
t € (b, tmris1l, k=1,...,m, we have

Ia+1)e

A€ty 32 9(®) = £16 900, 3, Ol < 3o e BT
A o/ T

3.1)

and

e
”]m—k((y}/)n(t;_k) - ]m—k(yy(t;_k)” < % (32)
Thus, for all t € (t,—k, tw—i1l, k=1,...,m, we have

\pl—}’ (tr tm—k)
\yl—y (tm—k+1/ tm—k)

k-1
INYa(®) = Ny O < Y Wiyt ) = Tv-iCyy (£ D
i=0

bn—i

k
5 0, ~0
) S et Y1), S Y1) = (b, Y(tneisn), S5 Yt
l:0 m-1 m—i

Wy y(t Em— k)
I—'(a)\pl V(tm k+1s b k)

X V() Wr-alt, 9N f (s, ]/n(S),Jt+ () = fls, y(s Y©))llds.

m—k

By Equations (3.1) and (3.2), for all t € (t—k, t—k+1], Kk =1,...,m, we get

\I]l—j/ (t/ tm—k)
\yl—y (tm—k+1/ tm—k)

INY(t) = Ny(e)l < 5

2(m + 2)(AW + BTW)W,, o [(a + 1)e
Ia+1) 2(m + 2)(AW + BTV,

So,
INy» — Nyllpc,,, < €.
Thus, N is continuous on PC1-,,4([c, L], E)).

Second step. Now we will prove that N is bounded. Let y € C1-, y([c, L], E), from (Hy) it is easy to
deduce that Ny € PC1-,y([c, L], E). Using (Hy), for all y € D, = {y € PC1-y4([c, L] E) : llyllec,, < x}and
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t € (b, tm—ts11, we get

<||M||+ Wllf(tm i1 Y(tnisn), S +y<tm s
t

H‘l’l (b k)Ny(f)”
\yl—y(tm fe+1s Em— k
k-1

+ ) Wi Walt D

i=0
Wiy (¢, tu-k)
F(a)‘l’l—y(tm k+1 bnk)
(m +2)(f* + (AW} + BTW)x) ¥,
I'(a+1) ’

f Y OWar NG, 1,3 y(s)lds

bk

< |IMJ| + mCW7]_ x +

So,

(m +2)(f* + (AW} + BTW;)x)¥,,

< * -
INYilpe, , < M+ mCW;_x + RS ¢

where f* = max{supte[tk/tml IIf(£,0,0), k=0,...,m}.

Third step. We prove that (ND); is equicontinuous for all bounded subset D of £Ci-, y([c, L], E),
k =0,...,m, where (ND); the restriction of ND on the interval (t, ty41], let D, be the subset which was
previously defined. It suffices to prove that (ND, ), is equicontinuous in C,, y([t—k, tiu-k+1], E). Lety € (Di)m—«
and t1,tr € (tyk, tm_iki1] With £ < £, we have

H Wiy (b2, bn-t)NY(t2) Wiy (b1, b)) Ny (H) ”
\Ijl—}/(tm—k+1/ tm—k) \yl—y(tm—k+1/ tm—k)

- Wiy (t1, tuk) h WO Waor(tr, ) = Pos (b, )G, y(s) 3 y(s))llds
= \Ijl_y(tm—k+1,tm—k)r(a) - a-1\t1, a-1\l2, 'Y ’\t;ﬁky

(Wit i) = Wiy (br, b)) O
Wiy (tkr1s b (@) bk Y (5)Wa-1(t2, 9l f (s, y(s), S Y (s))llds

Wi (ta, i Lo O
T s, b0 T@) s yb(s)‘I’a_l(tz,s)IIf(S,y(s),d y(S))IIds

f+ AV + BTY)x |
< T(@) - Y (8)[Wa-1(t1,s) = Wa1(t2,5)]ds
F Vi (t2, tni) = Wiy (t1, ti)]
\yl—y(tm—kﬂl tm—k)r(a)
+ AK[\pl—}’(tZI tm-k) — \yl—y(tlr tm—t)]

f W (W (b2, $ds

Bbl (S)\Ija—l (t2/ S)\I"Aﬂ/—l (S/ tm—k)ds

r(a) Em—k
BTxk[W1-y(t2, tu-x) = W1y (t, ti)]
+ ) - - - ll) (S)\pa—l(tZ/ S)\Péﬂ/—l (S/ tm—k)ds
r(a) m —k
f+ (AW + BTY))x
R CIeeT
f*+ (AW, + BTW:)k
< r(a T 1) [\Pa(tZI tl) + \Illl/(tll tm—k) - \pa(tZ/ tmfk)]
f ‘yaﬂ/ 1 + AK\P;+)/+/\ 1 + BTK\II:1+)/+6 1

F(OZ + 1) [\Ijl—a(t2/ tm—k) - \pl—a(tll tm—k)]



B. Moustafa, H. Beddani / Filomat 37:20 (2023), 6855-6866 6863

F*+ (AW, + BTWS)x
Ia+1)

\IID( (t2/ tl)

Taking t, tends towards t;, we get that, the last inequality tends to zero. Then (NDy); is equicontinuous in

Cl—)/,tp([tm—k/ tm—k+1]/ E)/ k = 0/ cecy m
Final step. We verify that N satisfies the assumptions of theorem 2.7. We pose

= {y € PCl_%lp([C, L]/ E) : “]/”PC,,,#, < R}/
where R is a real number verifies the following equality

(IMIIT(c + 1) + (m + 2) V7,

7 T(a+1) - mCw,_ T+ 1)+ (m+2)AY,, +BTV,_ )’

(3.3)

First, we now show that N is defined from D to D, Indeed, for any y € D, by above conditions (H,), (Hs)
and by according to a little calculation, for all ¢ € (t,,—, t—k+1], we have

Wiy (8 b )Ny (H) (m +2)f"V;, . AV, + BT )
H Wiy (k1 tmtk) ” < IMil+ I'a+1) ( mCWy_ -+ I'a+1) )R
< (IMIIT (e + 1) + (m + 2) 7,
- Ia+1)
mC\I’;_yl"(a +1)+ (m+2)(AY; , + BTV )
+[ Ta+1) )R

From the inequality (3.3), we obtain
Vy eD: ||Ny||7)c%w <R.

Then N remains defined from D to D. Note that D is bounded, convex and closed subset of PC1-,, y([c, L], E)
and N is continuous on D, we can easily show the following equalitie

\Pl—y(t/ tm—k)NV(t)

\yl—y (tm—k+1/ tm—k)

Sl)c/llp((NV)m—k) = Sup {‘9 ( )/ t € (tm—k/ tm—k+1]} 7
forallVc D, k=0,...,m. Next, we need to prove the following implication
Ye>0,do(e) >0:e <9, y(V)<e+p= 9, ,(NV) <g¢, forany V C D. (3.4)

Let € be a strictly positive real, V ¢ D. From Lemmas 2.3,2.4,2.5, (H3) and the previous steps, we have, that
there exists a sequence {u,};”, C V such that, for all t € (-, ti—r+1] :

* * En-i+1
S(Wl_}’(t, tm_k)(NV)(t)) < E t 2(A\y ’ BT\I’ Zf (S)\ya 1(tm i+1s S)Sy ( m— 1)
i=0

‘ylﬂ/ (tm—k+1/ tm—k) 2 F(a)

2(AW + BTW?)

+2C\y;_y29;f;'(vm_i) f P/(5)Wari(t, 58K (Vn)ds.
i=0

I'(a)
We know that
o< 2 (m + 2)(AW;,, + BTW;, ) + mCW;_ Ia + 1)] .
rwNV) <5+ T(a+1) r(V):
If [ ]
(m+2)(AW*, +BTY;, )+mCW; T(a+1)
€ Ata O+a 1-y

<= 2 ’
Sap(NV) < 5 + T D 9,0(V)<e
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this implies that
Ia+1)

€,
4[(m + 2)(AW;,  +BTW;, )+ mCW;_ T+ 1]

Sa,p(V) <

so that implication (3.4) is fulfilled, we take

T(ar+1) - 4[(m + 2)(AW;

Aa

+BTW;, )+ mCW;_ Ia + 1)]

0 €.

4|(m +2)(AW;,, +BTW; ) +mCW;_T(a+1)]

So, N is a Meir-Keeler condensing operator via 9, y, finally all the hypotheses of the theorem 2.7 are fulfilled.
Then, the solution set of Eq. (2.3) is nonempty and compact. Let us now show that the fixed point of N is

included in PC)l’ﬂ,w([C, L]), Letw € {u € PC1-yy([c,L]) : Nu = u}, for all t € (ty—t, tm-is1, Kk = 0,...,m, we

have
k k-1
‘ W, 1t by)
_ ~a) ) ) ~O00 ) ) y=1\E bk
wt)=|M - IZ_(; ‘Stm,,f(tm—”'l’ W(tm—is1), Jt;I_iw(tm—z+1))) - ; ]m—z(wy(t:,;_,')) \Py—l(tm—k+1/ Frri)
1 [ ~
@, Y OVat9f 6w, 3 wo)s,

By entering ®-9)’, on both sides, it follows from Lemma 2.10 and Lemma 2.11 that
k

RL
o)

m—k

Vx4 ~0
w(t) =Rt @ztﬁii At w(d), 3 w(t)
(1_ ) ~0
—RL @f:,,k f(twd), 3 w()).

Thus, according to the hypotheses on f, we deduce that RLZ)? w(t) € C)l/ ([t teenD), k= 0,...,m, from the
k

—
definition of PC)l’_y ¢([Cf L]), we conclude that the fixed point w of N is an element of such space. Finally, the
solution set of Problem (P) is nonempty and compact. [

4. Example

We take the following problem

~OU o
3p y() () = P(t)
H by B ! —
Dk ]/(t) - 20 + nt2 + 20 + t + tz ]/n(t) » 7 t € (tk/ tk+1] - (O/ ]-]/ k - O/ 1 (41)
y(1) = (1,0,...,0,...). 4.2)
1 1"
AyypYliy = 55¥w(5 ) (4.3)

where Y(t) =t,tp=0,t; =05, =1, a==6=A=05and

E= {(ylfer” R ) : 5uP|]/n| < OO}/

with the norm ||y|| = sup,, [y,|, then (E, ||.]l) consists a Banach space, by comparing with the (P), we notice
that

Ft,y®) = (A @, 3 1@ falt, ya®), 3, ya(B), ),

where

~O
; 3,y Nt
Fult (D), 3 yu(B) = 2+ :

= )t € (tr, 1],k = 0,1,n € N* and
20 + nt? 20+t+t2]/n( )/ (k/ k+1]/ 0, ,n an
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1
Ji(uw) = 0t forall u € E.

We can easily see that f : (t,tis1] XE = E, k = 0,1 and |; : E — E are continuous and there exists

A=

B=C-= 21—0 such that
Lf(t,u,v) = f(t, u,0)|| < AVt —tllu —ull + Bllv —9||, forall t € Iy and u,v,u,v € E and

IlJ1(w)]] = Cllu||, for allu € E.

So, (H) and (Hy) are valid. Next, let Q be a bounded subset of PCy,,4 ([0, 1]), we have

9( £t ), S‘Z‘/’Q(t))) < %( Ms(g(t)) ; s(fsfj”g(t)), tel,k=0,1and

9(]1(Q(t)) < 11—0(Q(t)).

Thus, (Hi) and (Hj) are satisfied. A quick calculation gives us

CW;_ T(a+1)+3(AW,,, +BTW,,,) < [(a+1).

So, (Hs) holds. Therefore, Theorem 3.1 ensures that the solution set of Problem (4.1)-(4.3) is nonempty and
compact.
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