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Hyperbolic Ricci soliton on warped product manifolds
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Abstract. In this paper, we investigate hyperbolic Ricci soliton as the special solution of hyperbolic
geometric flow on warped product manifolds. Then, especially, we study these manifolds admitting either
a conformal vector field or a concurrent vector field. Also, the question that:” whether or not a hyperbolic
soliton reduces to an Einstein manifold?” is considered and answered. Finally, we obtain some necessary
conditions for generalized Robertson-Walker space-time to be a hyperbolic Ricci soliton.

1. Introduction

The concept of warped product metrics was first introduced by Bishop and O’Nill [4] to construct
examples of Riemannian manifolds with negative curvature. In pseudo-Riemannian geometry, using
of warped product manifolds and their generic forms, many new examples with interesting curvature
properties have been constructed. For instance, Einstein spaces [3, 22] and symmetric spaces [2].

On the other hand, geometric flows are important topic in differential geometry, because by these flows
we can find canonical metrics on their underlying Riemannian manifolds. A geometric flow is an evolution
of a geometric structure under a differential equation with a functional on a manifold.
One of these geometric flows is hyperbolic geometric flow which is a system of nonlinear evolution partial
differential equations of second order, it is very similar to wave equation flow metrics, and defines as
follows

∂2

∂t2 1 = −2Ric, 1(0) = 10,
∂1

∂t
(0) = k0, (1)

where k0 is a symmetric 2-tensor field on M. Also, one can see that this flow is similar to Einstein equation

∂2

∂t2 1i j = −2Ri j −
1
2
1pq ∂1i j

∂t
∂1pq

∂t
+ 1pq ∂1ip

∂t
∂1 jq

∂t
.

The existences and uniqueness of (1) studied in [11] on closed Riemannian manifolds. Also, Lu in [25]
studied the Ricci flow and hyperbolic geometric flow on warped product manifolds.
Suppose that (Mn, 1(t)) is a solution of the hyperbolic geometric flow on a time interval (a, b) containing 0,
and set 10 = 1(0). We say that 1(t) is a self-similar solution of the hyperbolic geometric flow if there exist
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a scalar functions σ(t) and a diffeomorphism ϕt on Mn such that 1(t) = σ(t)ϕ∗t(10) for all t ∈ (a, b). We may
assume without loss of the generality that σ(0) = 2, σ′(0) = λ, σ′′(0) = −2µ, and ϕ0 = id. Then we have

Ric(10) + λLX10 + (LX ◦ LX)10 = µ10 (2)

where X = Y(0) and Y(t) is the family of vector fields generating the diffeomorphismsϕt. In this case, we say
10 is a hyperbolic Ricci soliton and, we show it by (M, 10,X, λ, µ). If X vanishes identically, a hyperbolic Ricci
soliton is an Einstein metric. If λ = 1

2 and the vector field X is a 2-Killing vector filed, i.e., (LX ◦ LX)10 = 0
then a hyperbolic Ricci soliton is a Ricci soliton. When the vector field X = ∇ f for some smooth functions
f : M → R, we say that (M, 10,∇ f , λ, µ) is a gradient hyperbolic Ricci soliton. 2-Killing vector fields were
firstly introduced by Németh in [28] and, Cruz Neto et al. in [10] showed the importance of 2-Killing vector
fields on Lorentzian geometry. However all Killing vector fields are 2-Killing vector fields, but there are
also examples of 2-Killing vector fields that are not Killing vector fields (see [28]).
The concept of Ricci solitons was introduced by Hamilton [18], which are natural generalizations of Einstein
metrics. Since then, Ricci solitons have been extensively studied for different reasons and in different spaces
[5, 7, 8, 15, 26, 27, 30, 31].
In [21], the authors obtain a criteria that the Riemannian manifold M is Einstein or a gradient Ricci soliton
using of the second derivative of warping function f in the warped and Lorentzian warped product spaces
of the form R × f M with gradient Ricci solitons. Also, in [1, 6, 13, 14, 19, 20, 23, 24, 36], have been studied
the Ricci solitons and gradient Ricci solitons on warped product manifolds.

Let Mi, i = 1, 2 be two smooth pseudo-Riemannian manifolds with pseudo Riemannian metrics 1i for
i = 1, 2. Let π1 : M1 ×M2 →M1 and π2 : M1 ×M2 →M2 be the natural projections on M1 and M2. Also, let
f : M1 → (0,∞) be a smooth positive function. The warped product manifold M =M1× f M2 is the manifold
M1 ×M2 equipped with the metric 1 = 11 ⊕ f 212 defined by 1 = π∗1(11) ⊕ ( f ◦ π1)2π∗212, where ∗ denotes
the pull-back operator on tensors. The function f is called the warping function of the warped product
manifold M1 × f M2. In following we assume that ∇i, i = 1, 2, Rici and Li are the Levi-Civita connections,
Ricci tensors and Lie derivatives on Mi, respectively. Also, we denote the hessian of a smooth function f
by H f .

In this paper, we will consider the warped product metrics combining with hyperbolic Ricci solitons
and we obtain some results about hyperbolic Ricci solitons on warped product manifolds.

2. Preliminaries

Now, we have the following two proposition from [4, 9, 29, 35].

Proposition 2.1. Let (M, 1) = (M1 × f M2, 11 ⊕ f 212) be a warped product manifold with function f > 0 on M1.
Then

1) ∇X1 Y = ∇1
X1

Y1,

2) ∇X1 Y2 = ∇Y2 X1 =
X1 f

f Y2,

3) ∇X2 Y2 = − f12(X2,Y2)∇ f + ∇2
X2

Y2,

4) (LZ1)(X,Y) = (L1
Z1
11)(X1,Y1) + ( f 2

LZ212)(X2,Y2) + 2 f (Z1 f )12(X2,Y2),

for all vector fields X = X1 + X2, Y = Y1 + Y2 and Z = Z1 + Z2 on M where Xi,Yi,Zi ∈ X(Mi), i = 1, 2 and ∇ f is
the gradient of f .

Proposition 2.2. Let (M, 1) = (M1 × f M2, 11 ⊕ f 212) be a warped product manifold with function f > 0 on M1 and
dim(M2) = n2. Then

1) Ric(X1,Y1) = Ric1(X1,Y1) − n2
f H f (X1,Y1),
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2) Ric(X1,Y2) = 0,

3) Ric(X2,Y2) = Ric2(X2,Y2) − f ♯12(X2,Y2),

for all vector fields Xi,Yi ∈ X(Mi), i = 1, 2 where f ♯ = f∆ f + (n2 − 1)|∇ f |2.

Corollary 2.3. Let (M, 1) = (M1 × f M2, 11 ⊕ f 212) be a warped product manifold with function f > 0 on M1. Then

1) (LZLZ1)(X1,Y1) = (L1
Z1
L

1
Z1
11)(X1,Y1),

2) (LZLZ1)(X2,Y2) = f 2(L2
Z2
L

2
Z2
12)(X2,Y2) + 2Z1( f 2)(L2

Z2
12)(X2,Y2)

+Z1(Z1( f 2))12(X2,Y2),

3) (LZLZ1)(X1,Y2) = −X1 f
f

(
f 2(L2

Z2
12)(Z2,Y2) + Z1( f 2)12(Z2,Y2)

)
,

for all vector fields Z = Z1 + Z2 on M and Xi,Yi,Zi ∈ X(Mi), i = 1, 2.

Proof. From the Proposition 2.1 we have

LZX1 = ∇ZX1 − ∇X1 Z = ∇Z1 X1 + ∇Z2 X1 − ∇
1
X1

Z1

= ∇
1
Z1

X1 +
X1 f

f
Z2 − ∇

1
X1

Z1

= L
1
Z1

X1 +
X1 f

f
Z2.

Therefore

(LZLZ1)(X1,Y1) = LZ(LZ1(X1,Y1)) − LZ1(LZX1,Y1) − LZ1(X1,LZY1)
= LZ(L1

Z1
11(X1,Y1)) − L1

Z1
11(LZX1,Y1) − L1

Z1
11(X1,LZY1)

= L
1
Z(L1

Z1
11(X1,Y1)) − L1

Z1
11(L1

Z1
X1 +

X1 f
f

Z2,Y1)

−L
1
Z1
11(X1,L

1
Z1

Y1 +
Y1 f

f
Z2)

= (L1
Z1
L

1
Z1
11)(X1,Y1).

Using again the Proposition 2.1 we get

LZX2 = ∇ZX2 − ∇X2 Z = ∇Z1 X2 + ∇Z2 X2 − ∇X2 Z1 − ∇X2 Z2

= ∇
2
Z2

X2 − ∇
2
X2

Z2

= L
2
Z2

X2.

Therefore,

(LZLZ1)(X2,Y2) = LZ(LZ1(X2,Y2)) − LZ1(LZX2,Y2) − LZ1(X2,LZY2)

= LZ

(
f 2
L

2
Z1
12(X2,Y2) + Z1( f 2)12(X2,Y2)

)
− f 2
L

2
Z2
12(L2

Z2
X2,Y2) − Z1( f 2)12(L2

Z2
X2,Y2)

− f 2
L

2
Z2
12(X2,L

2
Z2

Y2) − Z1( f 2)12(X2,L
2
Z2

Y2)

= f 2(L2
Z2
L

2
Z2
12)(X2,Y2) + 2Z1( f 2)(L2

Z2
12)(X2,Y2)

+Z1(Z1( f 2))12(X2,Y2).
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Also, we have

(LZLZ1)(X1,Y2) = LZ(LZ1(X1,Y2)) − LZ1(LZX1,Y2) − LZ1(X1,LZY2)

= −LZ1(L1
Z1

X1 +
X1 f

f
Z2,Y2) − LZ1(X1,L

2
Z2

Y2)

= −
X1 f

f
LZ1(Z2,Y2)

= −
X1 f

f

(
f 2(L2

Z2
12)(Z2,Y2) + Z1( f 2)12(Z2,Y2)

)
.

Theorem 2.4. Let the connected warped product manifold (M1 × f M2, 11 ⊕ f 212, ξ = ξ1 + ξ2, λ, µ) be a hyperbolic
Ricci soliton. Then either f is constant or the operator T : X(M2)→ R vanishes, where T(X2) = f 2(L2

ξ2
12)(X2, ξ2)+

ξ1( f 2)12(X2, ξ2).

Proof. From the definition of hyperbolic Ricci soliton we get

Ric(X,Y) + λLξ1(X,Y) + (Lξ ◦ Lξ)1(X,Y) = µ1(X,Y), (3)

for all vector fields X, Y on M1 × f M2. If we assume that X = X1 ∈ X(M1) and Y = Y2 ∈ X(M2), then the part
4 of Proposition 2.1, the part 2 of Proposition 2.2, and the part 3 of Corollary 2.3, imply that

(X1 f )
(

f 2(L2
ξ2
12)(ξ2,Y2) + ξ1( f 2)12(ξ2,Y2)

)
= 0, (4)

or equivalently (X1 f )T(Y2) = 0 for any vector fields X1 ∈ X(M1) and Y2 ∈ X(M2). This shows that f is
constant or T = 0.

Theorem 2.5. Let the warped product manifold (M1× f M2, 11⊕ f 212, ξ = ξ1+ξ2, λ, µ) be a hyperbolic Ricci soliton
and H f = 0. Then the manifold (M1, 11, ξ1, λ, µ) is a hyperbolic Ricci soliton.

Proof. From the definition of hyperbolic Ricci soliton we get

Ric(X,Y) + λLξ1(X,Y) + (Lξ ◦ Lξ)1(X,Y) = µ1(X,Y), (5)

for all vector fields X, Y on M1 × f M2. If we assume that X = X1 ∈ X(M1) and Y = Y1 ∈ X(M1), then by
H f = 0, the part 4 of Proposition 2.1, the part 1 of Proposition 2.2, and the part 1 of Corollary 2.3, we have

Ric1(X1,Y1) + λL1
ξ1
1(X1,Y1) + (L1

ξ1
◦ L

1
ξ)11(X1,Y1) = µ11(X1,Y1), (6)

that is (M1, 11, ξ1, λ, µ) is a hyperbolic Ricci soliton.

A pseudo Riemannian manifold (M, 1) is an h-almost Ricci soliton if there exist a vector field X ∈ X(M),
a smooth function γ(x) : M→ R, and a function h : M→ R such that

Ric + hLX1 = γ(x)1.

In this case we denote it by (M, 1,X, h, γ). The h-almost Ricci solitons have been introduced by Pigola et al.
[32] and Gomes et al. [17].

Theorem 2.6. Let the warped product manifold (M1 × f M2, 11 ⊕ f 212, ξ1 + ξ2, λ, µ) be a hyperbolic Ricci soliton
and ξ2 be 2-Killing vector field. Then (M2, 12) is an h-almost Ricci soliton with parameters h = λ f 2 + 2ξ1( f 2) and
γ(x) = µ f 2 + f ♯ − λξ1( f 2) − ξ1(ξ1( f 2)).
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Proof. From the definition of hyperbolic Ricci soliton we get

Ric(X,Y) + λLX1(X,Y) + (LX ◦ LX)1(X,Y) = µ1(X,Y), (7)

for all vector fields X, Y on M1 × f M2. If we assume that X = X2 ∈ X(M2) and Y = Y2 ∈ X(M2), then the part
4 of Proposition 2.1, the part 3 of Proposition 2.2, and the part 2 of Corollary 2.3, imply that

Ric2(X2,Y2) − f ♯12(X2,Y2) + λ f 2
L

2
ξ2
12(X2,Y2) + λξ1( f 2)12(X2,Y2)

+ f 2
L

2
ξ2
L

2
ξ2
12(X2,Y2) + 2ξ1( f 2)L2

ξ2
12(X2,Y2) (8)

+ξ1(ξ1( f 2))12(X2,Y2) = µ f 212(X2,Y2).

Since ξ2 is a 2-Killing vector field then L2
ξ2
L

2
ξ2
12 = 0 and we can write the equation (8) as

Ric2 + (λ f 2 + 2ξ1( f 2))L2
ξ2
12 =

(
µ f 2 + f ♯ − λξ1( f 2) − ξ1(ξ1( f 2))

)
12.

This completes the proof of theorem.

Definition 2.7. A vector field ξ on a manifold (M, 1) is called a conformal vector field if Lξ1 = ρ1 for some smooth
function ρ : M→ R. If ρ is non-zero constant or zero, then ξ is called homothetic or Killing vector field, respectively.

Theorem 2.8. Let the warped product manifold (M =M1 × f M2, 1 = 11 ⊕ f 212, ξ1 + ξ2, λ, µ) be a hyperbolic Ricci
soliton. Then 1 is an Einstein metric if

i) ξi is conformal vector field on Mi with factor ρi, i = 1, 2,

ii) µ f 2
− λξ1( f 2) − ξ1(ξ1( f 2) − ρ2

(
λ f 2 + 2ξ1( f 2)

)
− f 2
(
ξ2(ρ2) + ρ2

2

)
= f 2
(
µ − λρ1 − ξ1(ρ1) − ρ2

1

)
.

Proof. Since ξi is conformal vector field on Mi with factor ρi, i = 1, 2 we haveL1
ξ1
11 = ρ111 andL2

ξ2
12 = ρ212.

Therefore

L
1
ξ1
L

1
ξ1
11 =

(
ξ1(ρ1) + ρ2

1

)
11, L

2
ξ2
L

2
ξ2
12 =

(
ξ2(ρ2) + ρ2

2

)
12.

Since (M1 × f M2, 11 ⊕ f 212, ξ1 + ξ2, λ, µ) is a hyperbolic Ricci soliton we have

Ric(X1,Y1) + λL1
ξ1
11(X1,Y1) +L1

ξ1
L

1
ξ1
11(X1,Y1) = µ11(X1,Y1)

then

Ric(X1,Y1) =
(
µ − λρ1 − ξ1(ρ1) − ρ2

1

)
11(X1,Y1).

Similarly, as (M1 × f M2, 11 ⊕ f 212, ξ1 + ξ2, λ, µ) is a hyperbolic Ricci soliton we have

Ric(X2,Y2) +
(
λ f 2 + 2ξ1( f 2)

)
L

2
ξ2
12(X2,Y2) +

(
λξ1( f 2) + ξ1(ξ1( f 2))

)
12(X2,Y2)

+ f 2
L

2
ξ2
L

2
ξ2
12(X2,Y2) = µ f 212(X2,Y2).

Then

Ric(X2,Y2) =
(
µ f 2
− λξ1( f 2) − ξ1(ξ1( f 2) − ρ2

(
λ f 2 + 2ξ1( f 2)

)
− f 2
(
ξ2(ρ2) + ρ2

2

))
12(X2,Y2).

Therefore

Ric(X,Y) =
(
µ − λρ1 − ξ1(ρ1) − ρ2

1

)
1(X,Y),

that is (M, 1) is an Einstein manifold.
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Theorem 2.9. Let manifold (M1, 11, ξ1, λ1, µ1) be a hyperbolic Ricci soliton and (M2, 12) be an Einstein manifold
with factor γ. Then the warped product manifold (M =M1 × f M2, 1 = 11 ⊕ f 212, ξ = ξ1 + ξ2, λ1, µ1) is a hyperbolic
Ricci soliton if

1) ξ2 is conformal vector field on M2 with factor ρ,

2) f is a constant function or T = 0 and H f = 0,

3) µ1 f 2 = γ − (n2 − 1)|∇ f |2 + λ1

(
f 2ρ + ξ1( f 2)

)
+ f 2(ξ2(ρ) + ρ2) + 2ρξ1( f 2) + ξ1(ξ1( f 2)).

Proof. We assume that Xi ∈ X(Mi), i = 1, 2. Since H f = 0, we get ∆ f = 0. Since (M2, 12) is an Einstein
manifold with factor γ and according to the Proposition 2.2, for X = X1 + X2 and Y = Y1 + Y2 we have

Ric(X,Y) = Ric(X1,Y1) + Ric(X2,Y2)

= Ric1(X1,Y1) −
n2

f
H f (X1,Y1) + Ric2(X2,Y2) − f ♯12(X2,Y2) (9)

= Ric1(X1,Y1) + (γ − (n2 − 1)|∇ f |2)12(X2,Y2).

Since (M1, 11, ξ1, λ1, µ1) is a hyperbolic Ricci soliton we infer

Ric1(X1,Y1) + λ1L
1
ξ1
11(X1,Y1) +L1

ξ1
L

1
ξ1
11(X1,Y1) = µ111(X1,Y1). (10)

Now since ξ2 is a conformal vector field with factor ρ and using part 4 of Proposition 2.1 we conclude that

(Lξ1)(X,Y) = L
1
ξ1
11(X1,Y1) + f 2

L
2
ξ2
12(X2,Y2) + ξ1( f 2)12(X2,Y2)

= L
1
ξ1
11(X1,Y1) +

(
f 2ρ + ξ1( f 2)

)
12(X2,Y2). (11)

Also, since f is a constant function or T = 0, then the Corollary 2.3 implies that

(LξLξ1)(X,Y) = (LξLξ1)(X1,Y1) + (LξLξ1)(X2,Y2)
= (L1

ξ1
L

1
ξ1
11)(X1,Y1) + f 2(L2

ξ2
L

2
ξ2
12)(X2,Y2)

+2ξ1( f 2)(L2
ξ2
12)(X2,Y2) + ξ1(ξ1( f 2))12(X2,Y2) (12)

= (L1
ξ1
L

1
ξ1
11)(X1,Y1) +

(
f 2(ξ2(ρ) + ρ2) + 2ρξ1( f 2)

+ξ1(ξ1( f 2))
)
12(X2,Y2).

By equations (9)-(12) we obtain

Ric(X,Y) + λ1(Lξ1)(X,Y) + (LξLξ1)(X,Y)
= Ric1(X1,Y1) + (γ − (n2 − 1)|∇ f |2)12(X2,Y2)

+λ1L
1
ξ1
11(X1,Y1) + λ1

(
f 2ρ + ξ1( f 2)

)
12(X2,Y2)

+(L1
ξ1
L

1
ξ1
11)(X1,Y1) +

(
f 2(ξ2(ρ) + ρ2) + 2ρξ1( f 2) + ξ1(ξ1( f 2))

)
12(X2,Y2)

= µ111(X1,Y1) +
(
γ − (n2 − 1)|∇ f |2 + λ1

(
f 2ρ + ξ1( f 2)

)
+ f 2(ξ2(ρ) + ρ2)

+2ρξ1( f 2) + ξ1(ξ1( f 2))
)
12(X2,Y2)

= µ11(X,Y).

Therefore (M, 1) is a hyperbolic Ricci soliton.

Theorem 2.10. Let the warped product manifold (M =M1 × f M2, 1 = 11 ⊕ f 212, ξ = ξ1 + ξ2, λ, µ) be a hyperbolic
Ricci soliton. Then (M, 1) is Einstein manifold if one of the following conditions holds.

1) ξ = ξ1, ξ1 is a Killing vector field on M1 and λξ1( f 2) + ξ1(ξ1( f 2) = 0.
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2) ξ = ξ2, ξ2 is a Killing vector field on M2.

3) ξi is a Killing vector field on Mi, i = 1, 2 and λξ1( f 2) + ξ1(ξ1( f 2) = 0.

Proof. If ξi is a Killing vector field on Mi, i = 1, 2 then

L
i
ξi
1i = 0, L

i
ξi
L

i
ξi
1i = 0, i = 1, 2.

If ξ = ξ1 and ξ1 is a Killing vector field on M1 and λξ1( f 2) + ξ1(ξ1( f 2) = 0 then for any vector fields
X = X1 + X2 and Y = Y1 + Y2 where Xi,Yi ∈ X(Mi), i = 1, 2 we have

(Lξ11)(X,Y) = L
1
ξ1
11(X1,Y1) + ξ1( f 2)12(X2,Y2) = ξ1( f 2)12(X2,Y2),

and

(Lξ1Lξ11)(X,Y) = (Lξ1ALξ11)(X1,Y1) + (Lξ1Lξ11)(X2,Y2)
= (L1

ξ1
L

1
ξ1
11)(X1,Y1) + +ξ1(ξ1( f 2))12(X2,Y2)

= ξ1(ξ1( f 2))12(X2,Y2).

Since λξ1( f 2) + ξ1(ξ1( f 2) = 0, the hyperbolic Ricci soliton equation for (M, 1) becomes

µ1(X,Y) = Ric(X,Y) + λ(Lξ11)(X,Y) + (Lξ1Lξ11)(X,Y)

= Ric(X,Y) +
(
λξ1( f 2) + ξ1(ξ1( f 2))

)
12(X2,Y2) = Ric(X,Y)

that is (M, 1) is an Einstein manifold.
If ξ = ξ2 and ξ2 is a Killing vector field on M2 Then

(Lξ21)(X,Y) = f 2
L

2
ξ2
12(X2,Y2) = 0,

and

(Lξ2Lξ21)(X,Y) = f 2(L2
ξ2
L

2
ξ2
12)(X2,Y2) = 0.

Then the hyperbolic Ricci soliton equation for (M, 1) becomes

µ1(X,Y) = Ric(X,Y) + λ(Lξ21)(X,Y) + (Lξ2Lξ21)(X,Y) = Ric(X,Y),

this shows that (M, 1) is an Einstein manifold.
If ξi is a Killing vector field on Mi, i = 1, 2 then

(Lξ1)(X,Y) = L
1
ξ1
11(X1,Y1) + f 2

L
2
ξ2
12(X2,Y2) + ξ1( f 2)12(X2,Y2)

= ξ1( f 2)12(X2,Y2),

and

(LξLξ1)(X,Y) = (LξLξ1)(X1,Y1) + (LξLξ1)(X2,Y2)
= (L1

ξ1
L

1
ξ1
11)(X1,Y1) + f 2(L2

ξ2
L

2
ξ2
12)(X2,Y2)

+2ξ1( f 2)(L2
ξ2
12)(X2,Y2) + ξ1(ξ1( f 2))12(X2,Y2)

= ξ1(ξ1( f 2))12(X2,Y2).

Hence, since λξ1( f 2) + ξ1(ξ1( f 2) = 0 the hyperbolic Ricci soliton equation for (M, 1) gives

µ1(X,Y) = Ric(X,Y) + λ(Lξ1)(X,Y) + (LξLξ1)(X,Y)

= Ric(X,Y) +
(
λξ1( f 2) + ξ1(ξ1( f 2))

)
12(X2,Y2)

= Ric(X,Y).

This completes the proof of theorem.
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A vector field Z on a pseudo Riemannian manifold M is said to be a concurent vector field if for any vector
field X ∈ X(M),

∇XZ = X.

Since for concurent vector field Z we have (LZ1)(X,Y) = 21(X,Y), then Z is a homothetic vector field. Also,
if we assume u = 1

21(Z,Z) then for any vector field X on M we get

1(X,∇u) = X(u) = 1(∇XZ,Z) = 1(X,Z),

thus Z = ∇u.

Theorem 2.11. Let the connected warped product manifold (M = M1 × f M2, 1 = 11 ⊕ f 212, ξ = ξ1 + ξ2, λ, µ) be a
hyperbolic Ricci soliton and ξ be a concurent vector field on M. If ξ2 , 0, then M, M1, and M2 are Ricci flat, gradient
hyperbolic Ricci solitons such that µ = 2λ + 4.

Proof. Since ξ is a concurent vector field on M we have Lξ1 = 21 and

(LξLξ1)(X,Y) = Lξ(Lξ1(X,Y)) − Lξ1(LξX,Y) − Lξ1(X,LξY)
= 2Lξ(1(X,Y)) − 21(LξX,Y) − 21(X,LξY)
= 2(Lξ1)(X,Y) = 41(X,Y)

for any vectors fields X, Y on M. Definition of hyperbolic Ricci soliton yields

Ric(X,Y) =
(
µ − 2λ − 4

)
1(X,Y). (13)

In (13) suppose that X = X2 ∈ X(M2) and Y = Y2 ∈ X(M2), then

Ric2(X2,Y2) =
(
(µ − 2λ − 4

)
f 2 + f ♯)12(X2,Y2). (14)

Since ξ is a concurrent vector field on M we get

∇X1ξ = X1, ∇X2ξ = X2, ∀X1 ∈ X(M1), X2 ∈ X(M2). (15)

On the other hand , the part 1 of Proposition 2.1 gives

∇X1ξ = ∇
1
X1
ξ1. (16)

Thus equations (15) and (16) give ∇1
X1
ξ1 = X1, that is ξ1 is a concurrent vector field on M1. Using the

Proposition (2.1) again we obtain

X2 = ∇X2ξ = ∇X2ξ1 + ∇X2ξ2 =
ξ1 f

f
X2 − f12(ξ2,X2)∇ f + ∇2

X2
ξ2. (17)

Then ∇ f = 0, this shows that f = c is constant. Therefore the equation (17) becomes ∇2
X2
ξ2 = X2, that is ξ2

is a concurrent vector field on M2. Also, since f = c we have f ♯ = 0 and we can write (14) as

Ric2(X2,Y2) = c2(µ − 2λ − 4)12(X2,Y2). (18)

If we assume that X2 = Y2 = ξ2 then

Ric2(ξ2, ξ2) = c2(µ − 2λ − 4)|ξ2|
2
2. (19)

Let {ξ2, e1, · · · , en2−1} be orthogonal basis of X(M2), then the curvature tensor R2 of M2 is given by

R2(ξ2, ei, ξ2, ei) = 1(R2(ξ2, ei)ξ2, ei)
= 12(∇ξ2∇eiξ2 − ∇ei∇ξ2ξ2 − ∇[ξ2,ei]ξ2, ei)
= 12(∇ξ2 ei − ∇eiξ2 − [ξ2, ei], ei) = 0.
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Hence, Ric2(ξ2, ξ2) = 0. Replacing it in equation (19) we infer µ − 2λ − 4 = 0 and so equations (13) and (18)
imply that Ric(X,Y) = Ric2(X2,Y2) = 0. Therefore M and M2 are Ricci flat. If we consider X = X1 ∈ X(M1)
and Y = Y1 ∈ X(M1) then

0 = Ric(X1,Y1) = Ric1(X1,Y1) −
n2

f
H f (X1,Y1) = Ric1(X1,Y1). (20)

This shows that also M1 is Ricci flat. Thus, the manifods M1 and M2 are gradient hyperbolic Ricci soliton
with the same factors λ and µ such that µ = 2λ + 4. Notice that ξ and ξi are gradient vector fields with
potential functions u = 1

21(ξ, ξ) and ui =
1
21(ξi, ξi), respectively, where i = 1, 2.

In [16], the authors using two (0, 2) tensor fields, have defined bi-conformal vector fields. Then De et al. in
[13] defined Ricci bi-conformal vector fields by taking the metric tensor field 1 and the Ricci tensor field Ric
as the two tensor fields as follows.

Definition 2.12. A vector field X on a Riemannian manifold (M, 1) is called Ricci bi-conformal vector field if it is
satisfies the following equations

(LX1)(Y,Z) = α1(Y,Z) + βRic(Y,Z) (21)

and

(LXRic)(Y,Z) = αRic(Y,Z) + β1(Y,Z) (22)

for some non-zero smooth functions α and β.

Theorem 2.13. Let the warped product manifold (Mn =M1 × f M2, 1 = 11 ⊕ f 212, ξ = ξ1 + ξ2, λ, µ) be a hyperbolic
Ricci soliton and admits a Ricci bi-conformal vector field ξ as (21) and (22). Then the manifold M is an Einstein
manifold or

1 + λβ + 2αβ + ξ(β) = 0, λα + ξ(α) + α2 + β2
− µ = 0. (23)

Proof. Using (21) and (22) we get

LξLξ1 = (ξ(α) + α2 + β2)1 + (ξ(β) + 2αβ)Ric. (24)

Substititing (21) and (24) into hyperbolic Ricci soliton equation, we conclude(
1 + λβ + 2αβ + ξ(β)

)
Ric +

(
λα + ξ(α) + α2 + β2

− µ
)
1 = 0. (25)

If 1 + λβ + 2αβ + ξ(β) = 0 then λα + ξ(α) + α2 + β2
− µ = 0. Otherwise, that is, if 1 + λβ + 2αβ + ξ(β) , 0 then

by taking trace of (25) we have

λα + ξ(α) + α2 + β2
− µ = −

(
1 + λβ + 2αβ + ξ(β)

) R
n
. (26)

Replacing it in (25) yields Ric = R
n 1. This shows that manifold M is Einstein.

3. Hyperbolic Ricci soliton on generalized Robertson-Walker space-time

In this section we will consider hyperbolic Ricci solitons on generalized Robertson-Walker space-time
and indicate some necassary conditions for this space-time to be hyperbolic Ricci soliton. Let (N, 1N) be an
n-dimensional Riemannian manifold, f : I→ (0,∞) be a smooth function on open, connected subinterval I
ofR and dt2 be the Euclidean metric tensor on I. Then (n+ 1)-dimensional product manifold I ×N with the
metric 1 = −dt2

⊕ f 21N is called a generalized Robertson-Walker space-time and is denoted by M = I × f N
(see [33, 34]).
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Theorem 3.1. Let the generalized Roberston-Walker space-time (M = I× f N, 1 = −dt2
⊕ f 21N,∇u, λ, µ) be a gradient

hyperbolic Ricci soliton where u =
∫ t

a f (r)dr for some constant a ∈ I. Then Ric = (µ − 2λ ˙f − 2 f f̈ − 4 ˙f 2)1.

Proof. Let ξ = ∇u, then ξ = f (t)∂t where ∂t =
∂
∂t ∈ X(I). Thus the vector field ξ is prependicular to M.

Assume that {∂t, ∂1, ∂2, · · · , ∂n} is an orthogonal basis forX(M). The Hessian tensor of function u is given by

Hu(X,Y) = 1(∇X∇u,Y) = (X f )1(∂t,Y) + f1(∇X∂t,Y), ∀X,Y ∈ X(M).

Now, since ∇∂t∂t = 0, ∇∂i∂t =
˙f

f ∂i, we have

Hu(∂t, ∂t) = (∂t f )1(∂t, ∂t) + f1(∇∂t∂t, ∂t) = ˙f1(∂t, ∂t),
Hu(∂t, ∂i) = (∂t f )1(∂t, ∂i) + f1(∇∂t∂t, ∂i) = ˙f1(∂t, ∂i), ∀i = 1, 2, ...,n,
Hu(∂i, ∂ j) = (∂i f )1(∂t, ∂ j) + f1(∇∂i∂t, ∂ j) = ˙f1(∂i, ∂ j), ∀i, j = 1, 2, ...,n.

Therefore Hu(X,Y) = ˙f1(X,Y),

(Lξ1)(X,Y) = 1(∇X∇u,Y) + 1(X,∇Y∇u) = 2Hu(X,Y) = 2 ˙f1(X,Y),

and

(LξLξ1)(X,Y) = Lξ(Lξ1(X,Y)) − (Lξ1)(LξX,Y) − (Lξ1)(X,LξY)
= 2Lξ( ˙f1(X,Y)) − 2 ˙f1(LξX,Y) − 2 ˙f1(X,LξY)
= 2(ξ ˙f )1(X,Y) + 2 ˙f (Lξ1)(X,Y)
= (2 f f̈ + 4 ˙f 2)1(X,Y).

Since (M = I × f N, 1 = −dt2
⊕ f 21N,∇u, λ, µ) is a gradient hyperbolic Ricci soliton we conclude

Ric = µ1 − λLξ1 − LξLξ1 = (µ − 2λ ˙f − 2 f f̈ − 4 ˙f 2)1.
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15(2) (2018), 76-87.

[2] M. Bertola and Goutheir, Lie triple system and warped products, Rend. Math. Appl., 7 (21) (2001), 275-293.
[3] A. L. Besse, Einstein manifolds, Ergebnisse der mathematics used threr Grenzgeiete, 3 (10), Springer-Verlag, Berlin, 1987.
[4] R. L. Bishop, B. O’Nill, Manifolds of negative curvature, Trans. Am. Math. Soc., 145 (1969), 1-49.
[5] S. Brendle, Rotational symmetry of Ricci solitons in higher dimensions, Journal of Differential Geometry, 97 (2014) 191-214.
[6] M. Brozos-Vázquez, E. Garcia-Rio and S. Gavino-Fernandez, Locally conformally flat Lorentzian gradient Ricci solitons, J. Geom.

Anal., 23 (2013), 1196-1212.
[7] H., -D. Cao and D. Zhou, On complete gradient shrinking Ricci solitons, Journal of Differential Geometry, 85 (2010), 175-186.
[8] B.-Y. Chen, Classification of torqued vector fields and its applications to Ricci solitons, Kragujevac Journal of Mathematics, 41(2) (2017),

239-250.
[9] B. Y. Chen, Differential geometry of warped product manifolds and submanifolds, World Scientific, 2017.

[10] J. X. Cruz Neto, I. D. Melo and P. A. Sousa, Non-existence of strictly monotone vector fields on certain Riemannian manifolds, Acta
Math. Hungar, 146 (2015), 240-246.

[11] W. R. Dai, D. X. Kong, K. Liu, Hyperbolic gometric flow (I): short-time existence and nonlinear stability, Pure and applied mathematics
quarterly, 6 (2010), 331-359.
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