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Continuity of the scattering function and Levinson type formula for
Klein-Gordon s-wave equation with boundary conditon depends on
spectral parameter
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Abstract. In this article, we consider inverse problem of scattering theory for Klein-Gordon s-wave
equation with boundary condition depends on spectral parameter. We define the scattering data and we
also prove that the continuity of the scattering function discussing the scattering solutions. Furthermore,
we obtain Levinson type formula.

1. Introduction

Scattering problems and analysis have been significant roles in mathematical physics. Studies of scatter-
ing problems first begin for Schrodinger equations in [1,2]. In [2], Marchenko has investigated the properties
of eigenvalues of Sturm-Liouville boundary value problem given by

~y" +q(y =A%y, 0<x<eo 1.1)
¥(0) = 0 (1.2)
for a real valued function g, and then he has obtained the Jost function of (1.1) defined by

00

e(A)=1+f1<(o,t)ert, AeCr:={A:AeC, ImA >0}.
0

which has a finite number of simple zeros in C... The scattering data of (1.1)-(1.2) is the following set
{S(A),iAg, m :k=1,2,...,n} (1.3)

where i/ are the zeros of Jost function, mlzl are the norm of the zeros of Jost function for A = iA; in L,(0, c0)
and S(A) is scattering function of (1.1)-(1.2) defined by

S(1) 1= 50 A€ (~e0,0)
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([1]). As the potential function g is given, the problem of getting scattering data written (1.3) and investigat-
ing the properties of scattering data is called the direct problem for scattering theory. Oppositely, finding
the potential function g according to the scattering data is known inverse problem of scattering theory.
There are a lot of papers about direct and inverse scattering problems for Sturm-Liouville, Schrodinger and
Dirac equations. Some of them are given by [3-9]. Furthermore, the spectral properties with eigenvalues
and spectral singularities of Klein-Gordon s-wave equation was given in [10], and the continuity of the
scattering function and Levinson Formula of Sturm-Liouville problem depends on spectral parameter was
examined in [11-12]. But scattering theory of Klein-Gordon s-wave equation with quadratic spectral pa-
rameter dependent boundary condition has not been investigated yet. In this work, we will consider the
operator L, generated by the Klein-Gordon s-wave equation of second order

y”+[/\—q(x)]2y:0, 0<x<o (1.4)
with boundary condition depends on spectral parameter
¥ (0,A) + (@ + a1 A + aaA?)y(0,A) = 0, (1.5)

for a complex parameter A = yz where «; are real numbers fori =0,1,2, a1 <0, a2 >0, g + 1A + A2 #0
and g is a non-negative real valued function satisfying the following condition

fx [|q(x)| +
0

When the condition (1.6) is satisfied, equation (1.4) has the following solutions fU(x, 1) = f(x, y?) and

q’(x)” dx < 0. (1.6)

fO(x, u) = f(x,u?) for y € Ry := {p:Reu >0, Imu =0}. Moreover, they have analytic continuation to
Cl={ueC:Reu20, Imyu>0}and C; := {peC:Rep 20, Imyu < 0}, respectively and the asymptotic
behaviour

FD(x, 1) = ™ [1+0(1)] , x > o0, .
FO ) = e i +o(1)] , x - oo (1.7)

is valid. The solutions f®(x,u) and fM(x,u), called Jost solutions of L,, are respectively analytic in
C; ={ueC:Reu>0,Imyu>0}and C] := {u€C:Reu >0, Imyu <0}, and they are continuous on real
and imaginary axes with respect to y ([10]). The Jost solutions can be expressed as

FO, ) = flx, 1?) = ele@nisl 4 [K(x, e,
) (1.8)

P ) = 7o 1) = o107 1 Tk, ot

where a(x) = f q(t)dt and K(x, t) are solutions of integral equations of Volterra type and are continuously

X
differentiable with respect to their arguments.
Moreover, [K(x, t)|, [Ky(x, t)l, [K¢(x, t)| satisfy the following inequalities:

IK(x,t)| < cw (XTH) exp (y(x)), (1.9

IK.(x, )], (Ko, B)] < c [a)2 ("T”) +0 (XT”)] (1.10)
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where

() = [)q(t)(

7 )|,
y(x) = xft [|q(t)| +2 |q(t ]dt
0) =} [20acof” + |7 |
and ¢ > 0 is a constant ([13]). L
From (1.7) and (1.8), the Wronskian of the solutions of f®(x, 1) and f®(x, u) is

WO ), fO, )] = lim WO, ), fO0 )] = 20

for u € Ry. Hence f(x, u) and fM(x, y) are the fundamental solutions of (1.4) for u € R} = R\ {0}.
Let oV(x, 1) = @(x, u?) denote the solution of (1.4) satisfying the initial conditions

(0, 1)
(0, )

compatible with (1.5). We must give the following lemma which could have been proved as like [14]:

@0, %) =
@x(0, 1?) — (g + a1 p® + ap ).

Lemma 1.1. The identity

Ziyz(p(l)(X, y) iy W
FO0, 1) + (a0 + arps? + o) FOO, ) fRG 0 = 5106 1) (1.11)
holds for all u € R;, where
g2 F _EQ
SNW‘SW)‘Fw%_Pﬂm (1.12)
and
Si(u) = [S1(w] ™" (1.13)

The functions Fy (i) = (0, 1) + (a0 + a1 % + o) fV(0, 1) and Sy () are respectively called Jost function
and scattering function of L,. S1(u) is meromorphic function in €] and the poles councide wtih the zeros
of F1(u). After examining the properties of zeros of F1(u) then we can say that zeros of F1(1) may have only
a finite number on the imaginary axis and they are all simple. Also, S1(u) =1+ O( ) for | y| — oo under
the condition (1.6). These relations were obtained in [14].

To find the unique kernel K(x, ) of the solution f M(x, u) and the potential g(x) = —% d%K(x, x), it suffices
to find the Levinson formula for L.
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2. The Continuity of the Scattering Function S;(y)

Lemma 2.1. If the function
1 ( ip%x
Fo )= = [ ull = Siw]erda @)
0

is Fourier transformation of u[1 — S1(u)] for all x > 0, it belongs to the L, (0, ) space.

Proof. We can easily verify that
1
uﬂ—&WHzO&),W%+w

It follows that p [1 — Si(u)] € Lz (0, o) and hence the function Fg, (x) also belongs to the space L, (0,00). [

Definition 2.2. Fork=1,2,...,n,

[f(l) ; yk)]z 1 ( 2 ar + Zazyz
-1 _ e o
my [«li |f(1) o, Hk))2 Of[q(x) Hk] |f (x #k)| Y -

where Ly are zeros of Jost function on the upper imaginary axis.

Lemma 2.3. The kernel function K(x, t) satisfies the following equation

(o8]

P0G+ y) + K(x, y) + f[((x, HG(t+y)dt =0, (x<y) (2.2)
where
n .
G(x) = Z, myei + Fs, (). 23
k=1

Proof. Lets rewrite (1.11) as follows

2ipPeW(x, 1)

G = SV ),

and substitute f®(x, u) in this by its expressions (1.8), we get that

2 2o 4 i 2 r iy : 2 r 2
%”()x“) = pila] fK(X, e dt — Sy (p) lel[a(x)w A 4 fK(x, e tdt‘.
1

X X

Also, as necessary arrangements are made and equation (2.1) is used, we reach

(o)

dy:meﬂx+w+K&ngmeﬂ&ﬂ+yﬂt (2.4)

X

21 ‘f.o ‘u3(p(1)(xl ‘Ll)eilllzy
T Fi(w)
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By using Jordan Lemma and Residue Theorem,

2 [ W, p)ey 2i ¢
p- J i) 271 p- ;‘ Res(Fy, p)

L 4o, et
k=1 (F1) (1)

and then
9 oo ‘u3(P(l)(x,[J) . n -
=) B P ity gy, = my F O (x, e)ette?
”of e = Y )

JARIEATD)

L) i,
FOO,) SMCE

because of the fact that ¢™(x, ux) and fD(x, ux) are linearly dependent with M (x, uy) =
Fi(ur) = 0. If we consider the last equation and (2.4) together, we get
Z i [ FO(x, yk)el’#iy] = e"WFs (x +y) + K(x, y) + f K(x, H)Fs, (t + y)dt,

k=1 x

and from (2.3), we obtain (2.2). [
Lemma 2.4. For F1(0) =0,

—-K(0,0) + f K. (0, Hdt + [ag + i’ (0)] €90 + f K(0, H)dt = 0. (2.5)
0 0
Proof. From (1.8),

00

20,00 = O+ f K(0, Hyat,

0

0,00 = ia’(0)e* - K(0,0) + f Ky (0, t)dt.
0
As last equations are substituted in F;(0) = 0, we hold (2.5). O

Lemma 2.5. Following integral equation

(o)

K1) = [ [K:0, + a0 0K, )] dy 26)

z

belongs to L1(0, o) space and K;(z) is bounded.

Proof. The equation (2.6) can be proved belongs L; (0, o) space easily using equations (1.9) and (1.10).
Substituting x = 0 into the main equation (2.3) and using partial integrate respect to x, we get

0 = i (0)e*OG(y) + *OG,(y) + K+(0, )

(e8]

— K(0,0)G(y) + f K0, HG(t + y)dt. 2.7)
0
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If we multiple both sides of the main equation (2.2) by @y and we add to (2.7) then we get

(e8] (]

0= f [K<(0, y) + aoK(0, y)] dy + [ (@0 + ia’(0)) €*© = K(0, 0) f Gly)dy

z

- OG(z) + f [K(0, £) + apK(0, )] dt f G(&)dE (2.8)
0 z+t
including
—d {f [K:(0, v) + aoK(0, y)] dy} = K,(0,t) + agK(0, t). (2.9)
t

If (2.9) is used in integral equation (2.8), we get

0 = Ki(2) + (@ + i’ (0)) €*© - K(0,0)] f G(y)dy

— ¢ OG(z) - f[ZfG(E)dé] dKy (t)dt

0 +t

= Ki(2) + [(ao + i (0)) €@ — K(0,0) + K1 (0)] f G(y)dy

[

—e*OG(z) - f Ki(H)G(z + t)dt. (2.10)
0
From (2.8),
ia’ (0)e© + ae™® — K(0,0) = —ag f K(0, t)dt — f K (0, t)dt. (2.11)
0 0

As K;(0) is added to both sides of (2.11), we obtain
ia’ (0)e*® + ae @ — K(0,0) + K1(0) = 0. (2.12)

If last equation is used in (2.10), we get

(e8]

Ki(z) - f Ki(HG(z + tdt = ¢*OG(z).
0

Finally, we have shown that the function K;(z) is a bounded solution to L,. [J

Theorem 2.6. Under the condition (1.6), the scattering function S1(u) is continuous in Ry when ay is not equal to
-1

[—sina(0)] ™ [cos a(0) + le(t)dt] or sin a(0) lcos a(0) + fK(o, tdt
0 0
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B .
Fy(u) 18

Proof. Itis clear that F1(u) does not have zero in R}. Moreover, if F1(0) # 0 then the function §;(u) =
continuous at u = 0.

Now we shall prove the continuity of the function Sq(u) for y = 0 in case of F;1(0) = 0.

The Jost function F;(u) can be written via (1.8) that

(o]

Fi(p) = i(o/©0) + ) e = K(0,0) + f K0, e dt
0

o] o)

+ap [0 + f KO, ettt | + oy u? | + f K(0, et dt
0 0

+ agu* |70 4 f K(0, e'tat | . (2.13)
0

If we define I; as

I = —K(0,0) + f K (0, et dt + g | €O + f K(0, He**tat |, (2.14)
0 0

we get that F1(u) as follows

(o]

F1 (y) = Il + 0(1[.12 €ia(0) + fK(O, i’)elpztdf
0

+ aput | 4 f K(0, e dt| +i (o (0) + ) €. (2.15)
0

If we apply the partial integration to I;, then we hold

(o) (o)

I; = —K(0,0) + ape®® + f K (0, y)dy + ap f K(0, y)dy
0 0

+iy2ffo(O,y)ei”2tdydt+iy2aoffK(O,y)ei”ztdydt. (2.16)
0 0

t t

From Lemma 2.4, we get

L = —id(0)e™ +iy? K0, y)e* dydt + ip2aq f f K(0, ) dyat
0

t

= i (0)eO 4 iy [K:(0, y) + aoK(0, y)] e dydt.

S s
T— "3

By using Lemma 2.5, we obtain that
I = —ia’ (0)e*© + iy? f Ky (et dt.
0
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If I is written in the integral equation (2.15), we get

Ki(he' ™t dt

Fi(u) —ia/ (0)e™© +i (o (0) + ) 2 + i

°—s

0o [

+app? e + f K(0, e tdt +appt |0 + f K(0, et dt
0 0

o]

= u?eO 4 f Ki(He**tdt

0

—iay le a0 4 fK(O t)elt tdt] — iy [1“(0) +fK(O, t)ei“ztdt‘ )

0 0
From Kj(t) € L1(0, o0) and K(0, t) € L1(0, o) and definition of a(x), we can rewrite F;(u) as follows

Fi(w) = iu*K(w),
Fi(y) = —iK(p)

where

K() = ¢ (1 - iy — iapp®) + f Ky (t)etdt
0

i(ar +a?) | KO, pedt, (2.17)

O%g

and

(o)

E(y) = ¢ 0 (1+i0z1+ia2y2)+fl<l(t)e’Pztdt
0

00

+i (al +a2y2)fK(0, et gy,
0

From definition of scattering function, we obtained following result

~ipK(y) _ _@

Si(u) = — —.
T ek T R
and for u =0,
51(0) = —@
K(0)

where Re E(O) = aq sin a(0) + cos a(0) + fK1(t)dt and Im E(O) = sina(0) — a1 |cos a(0) + fK(O, H)dt|. So, the
0 0

scattering function S;(u) is continuous at p = 0 because Re E(O) # 0 or Im E(O) # 0. As aresult, 51(u) is
continuousinR;. [
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3. The Levinson Formula of L,
Lemma 3.1. Let the following identity
Fi(u) = re'%® (3.1)
holds where arg F1(u) = 6(u).
Theorem 3.2. The following formula

9(0) = 0 | (o) + T(Ey) = 1, (3.2)
2n
is valid where

0i(1) = 6(i1),

1 ifa; #0
C(al):{i i}raizo !

[0, ifF(0)#0
T(Fl)_{ _%, lfP1(O):0

and n is the number of the zeros of the function F1(u) on the first quarter of complex plane. The equation (3.2) is called
the Levinson Type Formula.

Proof. We define the following equation for sufficiently large R > 0 and sufficiently little ¢ > 0,
r;ré_ =CrUC; UCim U Cre
where C; and C; are quarter circles with centers in origin and corresponding radius of R and ¢, respectively.

Cj is oriented by opposite of clockwise and C; is oriented by clockwise. Also, Cge and Ciy, are line segments
oriented points ¢ to R and iR to i¢, respectively (see Figure 3.1).
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The function F;(y) is analytic inside the curve I'; ., and is continuous on the boundary of I'; .. Further-

more, I'; , does not include the finite zeros of F;(u) defmed as g, (k=1,2,..,n). By the argument principle,
we can wnte

1 1
n= EAF;Q,E argF1(u) = EAFE,EG(”)
L aciom s Lac
=5 ACRO(u) + ZHACS o(u)
1 1
+ gACReG(M) + ZACImQ(‘LL) (33)

If we use the asymptotic equation for Jost function in [14] as

— &0

Ey(u) ~ (a1 +1)e*Ou? , ay £0,
1) = 042#4 , a1 =0, ‘u|—>oo

and following equalities

O(u) = arg [(al + i)ei“(o)] +2argu, ap #0,
O(u) = arg(ap) +4argu, a; =0,

arg F1(u)
arg F1(u)

then we can obtain

1 w, ar+0

- + ’

2 11m ACEO(u) = { 2 =0
and

1 .
_ 3 if al F 0

C(al) - { 1 , lf 011 — 0 7 (34)

because

lim A} [(n +i)e™®] = lim AC [arg(a2)] = 0
and

lim ACy [argu] =
Moreover, we can write F1(u) by using (2.17) as follows

rn | O i RO#0
1) ~ i1?K(0), if F1(0) =

- 0.
Thus, we hold
_ 1 - _ 1 f 0,if O)#0 _ [ 0,if F1(0)#0
T(Fy) = 7 i AC O() = 27'({ —n, i F,(0) =0 ‘{ L if BO)=0 (32)
Furthermore, we get following equality
1 . a1 . .

= 1%1_1% A(Cre U Cim) 6(p) = 1%5’% 5, [0(€) = OGR) + O(R) — 0(e)]

= 5 [0(9) ~ (). 6

Taking into account (3.4)-(3.6) in (3.3), we can find (3.2). O
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Corollary 3.3. Under the condition (1.6), the Levinson Formula for L, has also following representation

In Sil(oo) — In 51(c0) B

o n—Clar) — T(Fy) (3.7)

where
St (1) = S1(i).

Proof. From definition of scattering function, we can write

R rew ~2600)

Si(p) = Fi(p)  red®

By using properties of logarithm function,

_InSi(w)

O(u) = T

Also, we can find

6(c0) — Bi(o0) _ IS (00) —InSy(e0)
27 - 4mi

from (3.2), and then (3.7) can be obtained from (3.8). O

(3.8)
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